Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Sea salt is a widely used ingredient in culinary practices around the world. Beyond its flavor-enhancing properties, sea salt has been recognized for its potential health benefits. This review aimed to explore the role of sea salt in food and its applications for promoting human health. We have discussed the composition and production of sea salt, its culinary uses, and its impact on various aspects of human health, including cardiovascular health, electrolyte balance, and digestion. Additionally, we have examined the potential risks associated with excessive sea salt consumption and highlight the importance of moderation in its usage. Overall, this review provides insights into the multifaceted role of sea salt, emphasizing its potential positive effects on human health when consumed in appropriate amounts. Ultimately, the review serves as a valuable resource for individuals seeking a comprehensive understanding of the role of sea salt in promoting human health.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298273343231128062213
2024-01-09
2025-01-21
Loading full text...

Full text loading...

References

  1. Galvis-SánchezA.C. LopesJ.A. DelgadilloI. RangelA.O.S.S. Sea salt.Comprehensive Analytical Chemistry.Elsevier2013Vol. 60719740
    [Google Scholar]
  2. HsuS.C. LiuS.C. ArimotoR. ShiahF-K. GongG-C. HuangY-T. KaoS-J. ChenJ-P. LinF-J. LinC-Y. HuangJ-C. TsaiF. LungS-C.C. Effects of acidic processing, transport history, and dust and sea salt loadings on the dissolution of iron from Asian dust.J. Geophys. Res.2010115D192009JD01344210.1029/2009JD013442
    [Google Scholar]
  3. RoedderE. The fluids in salt.Am. Mineral.1984695–6413439
    [Google Scholar]
  4. PilcherJ.M. Food in world history.Taylor & Francis202310.4324/9781003332039
    [Google Scholar]
  5. LeshemM. Biobehavior of the human love of salt.Neurosci Biobehav Rev.200933111710.1016/j.neubiorev.2008.07.007
    [Google Scholar]
  6. ColicchioT. Think Like a Chef: A Cookbook.Clarkson Potter2012
    [Google Scholar]
  7. ZiegerP. VäisänenO. CorbinJ.C. PartridgeD.G. BastelbergerS. Mousavi-FardM. RosatiB. GyselM. KriegerU.K. LeckC. NenesA. RiipinenI. VirtanenA. SalterM.E. Revising the hygroscopicity of inorganic sea salt particles.Nat. Commun.2017811588310.1038/ncomms1588328671188
    [Google Scholar]
  8. GenigeorgisC. Microbial and safety implications of the use of modified atmospheres to extend the storage life of fresh meat and fish.Int. J. Food Microbiol.19851523725110.1016/0168‑1605(85)90016‑9
    [Google Scholar]
  9. SharmaV. NemiwalM. KumarD. Catalytic applications of recent and improved covalent organic frameworks.Mini Rev. Org. Chem.202219781582510.2174/1570193X19666220105144523
    [Google Scholar]
  10. WangG. Atmospheric processing at the sea‐land interface over the south china sea: Secondary aerosol formation, aerosol acidity, and role of sea salts.J. Geophys. Res. Atmos.20221275e2021JD03625510.1029/2021JD036255
    [Google Scholar]
  11. FigueroaV. FarfánM. AguileraJ.M. Seaweeds as novel foods and source of culinary flavors.Food Rev. Int.202339112610.1080/87559129.2021.1892749
    [Google Scholar]
  12. KongstadS. GiacaloneD. Consumer perception of salt-reduced potato chips: Sensory strategies, effect of labeling and individual health orientation.Food Qual. Prefer.20208110385610.1016/j.foodqual.2019.103856
    [Google Scholar]
  13. LaskinA. IedemaM.J. IchkovichA. GraberE.R. TaraniukI. RudichY. Direct observation of completely processed calcium carbonate dust particles.Faraday Discuss.200513045346810.1039/b417366j16161798
    [Google Scholar]
  14. WolffE.W. BarbanteC. BecagliS. BiglerM. BoutronC.F. CastellanoE. de AngelisM. FedererU. FischerH. FundelF. HanssonM. HutterliM. JonsellU. KarlinT. KaufmannP. LambertF. LittotG.C. MulvaneyR. RöthlisbergerR. RuthU. SeveriM. Siggaard-AndersenM.L. SimeL.C. SteffensenJ.P. StockerT.F. TraversiR. TwarlohB. UdistiR. WagenbachD. WegnerA. Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core.Quat. Sci. Rev.2010291-228529510.1016/j.quascirev.2009.06.013
    [Google Scholar]
  15. DuceR.A. WoodcockA.H. Difference in chemical composition of atmospheric sea salt particles produced in the surf zone and on the open sea in Hawaii.Tellus, Ser. A, Dyn. Meterol. Oceanogr.1971234-542743510.3402/tellusa.v23i4‑5.10520
    [Google Scholar]
  16. BryanC.R. KnightA.W. KatonaR.M. SanchezA.C. SchindelholzE.J. SchallerR.F. Physical and chemical properties of sea salt deliquescent brines as a function of temperature and relative humidity.Sci. Total Environ.202282415446210.1016/j.scitotenv.2022.15446235278544
    [Google Scholar]
  17. KaravoltsosS. SakellariA. BakeasE. BekiarisG. PlavšićM. ProestosC. ZinelisS. KoukoulakisK. DiakosI. DassenakisM. KalogeropoulosN. Trace elements, polycyclic aromatic hydrocarbons, mineral composition, and FT-IR characterization of unrefined sea and rock salts: environmental interactions.Environ. Sci. Pollut. Res. Int.20202710108571086810.1007/s11356‑020‑07670‑231950411
    [Google Scholar]
  18. YangQ. LiuT. KuklinaE.V. FlandersW.D. HongY. GillespieC. ChangM.H. GwinnM. DowlingN. KhouryM.J. HuF.B. Sodium and potassium intake and mortality among US adults: prospective data from the Third National Health and Nutrition Examination Survey.Arch. Intern. Med.2011171131183119110.1001/archinternmed.2011.25721747015
    [Google Scholar]
  19. RosaA. PinnaI. PirasA. PorceddaS. MasalaC. Flavoring of sea salt with Mediterranean aromatic plants affects salty taste perception.J. Sci. Food Agric.2022102136005601310.1002/jsfa.1195335446446
    [Google Scholar]
  20. MattersS. MattersB.-S. SightsS. Artisanal salt and culinary expectations.2022
    [Google Scholar]
  21. EliasM. LaranjoM. Agulheiro-SantosA.C. PotesM.E. The role of salt on food and human health.Salt in the Earth2020Vol. 1910.5772/intechopen.86905
    [Google Scholar]
  22. VinithaK. SethupathyP. MosesJ.A. AnandharamakrishnanC. Conventional and emerging approaches for reducing dietary intake of salt.Food Res. Int.202215211093310.1016/j.foodres.2021.11093335181101
    [Google Scholar]
  23. ThieleC.J. GrangeL.J. HaggettE. HudsonM.D. HudsonP. RussellA.E. Zapata-RestrepoL.M. Microplastics in European sea salts – An example of exposure through consumer choice and of interstudy methodological discrepancies.Ecotoxicol. Environ. Saf.202325511478210.1016/j.ecoenv.2023.11478236934543
    [Google Scholar]
  24. GuoL. GuW. PengC. WangW. LiY.J. ZongT. TangY. WuZ. LinQ. GeM. ZhangG. HuM. BiX. WangX. TangM. A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols.Atmos. Chem. Phys.20191942115213310.5194/acp‑19‑2115‑2019
    [Google Scholar]
  25. SchindelholzE. RisteenB.E. KellyR.G. Effect of relative humidity on corrosion of steel under sea salt aerosol proxies: II. MgCl2, artificial seawater.J. Electrochem. Soc.201416110C460C47010.1149/2.0231410jes
    [Google Scholar]
  26. CipollinaA. MisseriA. StaitiG.D.A. GaliaA. MicaleG. ScialdoneO. Integrated production of fresh water, sea salt and magnesium from sea water.Desalination Water Treat.2012491-339040310.1080/19443994.2012.699340
    [Google Scholar]
  27. O’DonnellM. MenteA. RangarajanS. McQueenM.J. WangX. LiuL. YanH. LeeS.F. MonyP. DevanathA. RosengrenA. Lopez-JaramilloP. DiazR. AvezumA. LanasF. YusoffK. IqbalR. IlowR. MohammadifardN. GulecS. YusufaliA.H. KrugerL. YusufR. ChifambaJ. KabaliC. DagenaisG. LearS.A. TeoK. YusufS. Urinary sodium and potassium excretion, mortality, and cardiovascular events.N. Engl. J. Med.2014371761262310.1056/NEJMoa131188925119607
    [Google Scholar]
  28. Merino-JimenezI. CelorrioV. FerminD.J. GreenmanJ. IeropoulosI. Enhanced MFC power production and struvite recovery by the addition of sea salts to urine.Water Res.2017109465310.1016/j.watres.2016.11.01727866103
    [Google Scholar]
  29. ZhangH. GuW. LiY.J. TangM. Hygroscopic properties of sodium and potassium salts as related to saline mineral dusts and sea salt aerosols.J. Environ. Sci.202095657210.1016/j.jes.2020.03.04632653194
    [Google Scholar]
  30. DrakeS.L. DrakeM.A. Comparison of salty taste and time intensity of sea and land salts from around the world.J. Sens. Stud.2011261253410.1111/j.1745‑459X.2010.00317.x
    [Google Scholar]
  31. XuY. LuoC. ZhengY. DingH. ZhouD. ZhangL. Natural calcium‐based sorbents doped with sea salt for cyclic CO 2 capture.Chem. Eng. Technol.201740352252810.1002/ceat.201500330
    [Google Scholar]
  32. WittmerJ. BleicherS. OfnerJ. ZetzschC. Iron(III)-induced activation of chloride from artificial sea-salt aerosol.Environ. Chem.201512446147510.1071/EN14279
    [Google Scholar]
  33. HuntC. D. MeachamS. L. Aluminum, boron, calcium, copper, iron, magnesium, manganese, molybdenum, phosphorus, potassium, sodium, and zinc: Concentrations in common western foods and estimated daily intakes by infants; toddlers; and male and female adolescents, adults, and seniors in the United States.J Am Diet Assoc.2001101910581060
    [Google Scholar]
  34. McNeillD.A. AliP.S. SongY.S. Mineral analyses of vegetarian, health, and conventional foods: Magnesium, zinc, copper, and manganese content.J. Am. Diet. Assoc.198585556957210.1016/S0002‑8223(21)03654‑33989172
    [Google Scholar]
  35. SinoirM. ButlerE.C.V. BowieA.R. MonginM. NesterenkoP.N. HasslerC.S. Zinc marine biogeochemistry in seawater: A review.Mar. Freshw. Res.201263764465710.1071/MF11286
    [Google Scholar]
  36. RahimzadehM.R. RahimzadehM.R. KazemiS. MoghadamniaA.A. Zinc poisoning-symptoms, causes, treatments.Mini Rev. Med. Chem.202020151489149810.2174/138955752066620041416194432286942
    [Google Scholar]
  37. LiuY. LiL. QiZ. HanS. LiX. LiuB. Advances and applications of metal-organic framework nanomaterials as oral delivery carriers: A review.Mini Rev. Med. Chem.202222202564258010.2174/138955752266622033015214535362373
    [Google Scholar]
  38. Biango-DanielsM.N. HodgeK.T. Sea salts as a potential source of food spoilage fungi.Food Microbiol.201869899510.1016/j.fm.2017.07.02028941913
    [Google Scholar]
  39. SilvaI. CoimbraM.A. BarrosA.S. MarriottP.J. RochaS.M. Can volatile organic compounds be markers of sea salt?Food Chem.201516910211310.1016/j.foodchem.2014.07.12025236204
    [Google Scholar]
  40. ManoharanP. KaliaperumalK. Salt and skin.Int. J. Dermatol.202261329129810.1111/ijd.1558833890287
    [Google Scholar]
  41. NiimuraN. OkadaK. FanX-B. KaiK. AraoK. ShiG-Y. TakahashiS. Formation of Asian dust-storm particles mixed internally with sea salt in the atmosphere.J. Meteorol. Soc. Jpn.199876227528810.2151/jmsj1965.76.2_275
    [Google Scholar]
  42. JonesJ. The Salt Book: Your Guide to Salting Wisely and Well, With Recipes, Fritz Gubler and David Glynn, with Dr. Russell Keast, Whitecap Books, 2012.McGill University Library2014
    [Google Scholar]
  43. SmollL.I. BeardL.A. LanyonJ.M. Osmoregulation and electrolyte balance in a fully marine mammal, the dugong (Dugong dugon).J. Comp. Physiol. B2020190113914810.1007/s00360‑019‑01250‑831894351
    [Google Scholar]
  44. HoseyR.G. GlazerJ.L. The ergogenics of fluid and electrolyte balance.Curr. Sports Med. Rep.20043421922310.1249/00149619‑200408000‑0000815231226
    [Google Scholar]
  45. KremerM. PhillipsC.G. StanierM.W. Distribution of sulphamezathine in the body-fluids : Relation to cranial injuries.Lancet1945245634749649710.1016/S0140‑6736(45)90651‑9
    [Google Scholar]
  46. SunC.J. ZhaoL.P. WangR. Recent advances in heterostructured photocatalysts for degradation of organic pollutants.Mini Rev. Org. Chem.202118564966910.2174/1570193X17999200820161301
    [Google Scholar]
  47. WuD. ZhangW. LaiX. LiQ. SunL. ChenR. SunS. CaoF. Regulation of catechins in uric acid metabolism disorder related human diseases.Mini Rev. Med. Chem.202020181857186610.2174/138955752066620071901591932682376
    [Google Scholar]
  48. AliA.A.H. Overview of the vital roles of macro minerals in the human body.J Trace Elem Med.2023410007610.1016/j.jtemin.2023.100076
    [Google Scholar]
  49. GülçinI. BeydemirŞ. Phenolic compounds as antioxidants: Carbonic anhydrase isoenzymes inhibitors.Mini Rev. Med. Chem.201313340843023190033
    [Google Scholar]
  50. HeF.J. MarreroN.M. MacGregorG.A. Salt and blood pressure in children and adolescents.J. Hum. Hypertens.200822141110.1038/sj.jhh.100226817823599
    [Google Scholar]
  51. LaiX. LiY. FangR. DongP. ZhengY. LiZ. Experimental investigation of the influence of electrolyte loss and replenishment on the critical performances of cylindrical lithium-ion cells.J. Energy Storage20225210495110.1016/j.est.2022.104951
    [Google Scholar]
  52. OrganizationW.H. Guideline: Sodium intake for adults and children.World Health Organization2012
    [Google Scholar]
  53. NguyenT.T. DaoT.K. PanJ.S. HorngM.F. ShiehC.S. An improving data compression capability in sensor node to support sensorml-compatible for internet-of-things.J. Netw. Intell.2018327490
    [Google Scholar]
  54. HagenbuchB. DawsonP. The sodium bile salt cotransport family SLC10.Pflugers Arch.2004447556657010.1007/s00424‑003‑1130‑z12851823
    [Google Scholar]
  55. EldridgeD. LedouxM. Needs more salt: Old hydration habits are hard to break.Lancet201538599741159116010.1016/S0140‑6736(14)61741‑425472863
    [Google Scholar]
  56. DaoT-K. NguyenT-T. DoT-V. NguyenT-D. NguyenV-T. An optimal cascade reservoir operation based on multi-objective water cycle algorithm.Adv. Eng. Res. App.202360218820010.1007/978‑3‑031‑22200‑9_20
    [Google Scholar]
  57. MemonM.A. CheahJ.H. RamayahT. TingH. ChuahF. ChamT.H. Moderation analysis: Issues and guidelines.J. Appl. Struct. Equ. Model.201931ixi10.47263/JASEM.3(1)01
    [Google Scholar]
  58. ParvinF. NathJ. HannanT. TareqS.M. Proliferation of microplastics in commercial sea salts from the world longest sea beach of Bangladesh.Environ. Adv.2022710017310.1016/j.envadv.2022.100173
    [Google Scholar]
  59. FurbyE. GlueckaufE. McDonaldL.A. The solubility of calcium sulphate in sodium chloride and sea salt solutions.Desalination19684226427610.1016/S0011‑9164(00)80290‑8
    [Google Scholar]
  60. TakahashiY. Correlation between tritium and non-sea salt calcium ion concentrations in precipitation.TokyoRadioisotopes200857637538310.3769/radioisotopes.57.375
    [Google Scholar]
  61. JakšeB. JakšeB. GodnovU. PinterS. Nutritional, cardiovascular health and lifestyle status of ‘health conscious’ adult vegans and non-vegans from Slovenia: A cross-sectional self-reported survey.Int. J. Environ. Res. Public Health20211811596810.3390/ijerph1811596834199550
    [Google Scholar]
  62. BeasleyD.E. KoltzA.M. LambertJ.E. FiererN. DunnR.R. The evolution of stomach acidity and its relevance to the human microbiome.PLoS One2015107e013411610.1371/journal.pone.013411626222383
    [Google Scholar]
  63. SaxenaB. ShuklaK. GiriB. Arbuscular mycorrhizal fungi and tolerance of salt stress in plants.Arbuscular Mycorrhizas and Stress Tolerance of Plants WuQS. SpringerSingapore201710.1007/978‑981‑10‑4115‑0_4
    [Google Scholar]
  64. AllisonS. Fluid, electrolytes and nutrition.Clin. Med. (Lond.)20044657357810.7861/clinmedicine.4‑6‑57315656483
    [Google Scholar]
  65. ZhaoY. HuX. ShiC. ZhangZ. ZhuD. A review on seawater sea-sand concrete: Mixture proportion, hydration, microstructure and properties.Constr. Build. Mater.202129512360210.1016/j.conbuildmat.2021.123602
    [Google Scholar]
  66. SteadJ.L. CundyA.B. HudsonM.D. ThompsonC.E.L. WilliamsI.D. RussellA.E. PabortsavaK. Identification of tidal trapping of microplastics in a temperate salt marsh system using sea surface microlayer sampling.Sci. Rep.20201011414710.1038/s41598‑020‑70306‑532839471
    [Google Scholar]
  67. LawM. Salt, blood pressure and cardiovascular diseases.Eur. J. Cardiovasc. Prev. Rehabil.2000715810.1177/20474873000070010210785867
    [Google Scholar]
  68. U. S. F. and D. AdministrationSodium in Your Diet: Using the Nutrition Facts Label to Reduce Your Intake.US Department of Health and Human Services2014
    [Google Scholar]
  69. DaoT.K. PanJ.S. PanT.S. NguyenT.T. Optimal path planning for motion robots based on bees pollen optimization algorithm.J. Inf. Syst. Telecommun.20171435136610.1080/24751839.2017.1347765
    [Google Scholar]
  70. HeF.J. MacGregorG.A. Salt, blood pressure and cardiovascular disease.Curr. Opin. Cardiol.200722429830510.1097/HCO.0b013e32814f1d8c17556881
    [Google Scholar]
  71. YouW-C. BlotW.J. ChangY.S. ErshowA.G. YangZ.T. AnQ. HendersonB. XuG.W. FraumeniJ.F.Jr WangT.G. Diet and high risk of stomach cancer in Shandong, China.Cancer Res.19884812351835233370645
    [Google Scholar]
  72. HaS.K. Dietary salt intake and hypertension.Electrolyte Blood Press.201412171810.5049/EBP.2014.12.1.725061468
    [Google Scholar]
  73. SpeedyD.B. RogersI.R. NoakesT.D. WrightS. ThompsonJ.M.D. CampbellR. HellemansI. KimberN.E. BoswellD.R. KuttnerJ.A. SafihS. Exercise-induced hyponatremia in ultradistance triathletes is caused by inappropriate fluid retention.Clin. J. Sport Med.200010427227810.1097/00042752‑200010000‑0000911086754
    [Google Scholar]
  74. JoS.M. NamJ. ParkS. ParkG. KimB.G. JeongG.H. HurhB.S. KimJ.Y. Effect of mineral-balanced deep-sea water on kidney function and renal oxidative stress markers in rats fed a high-salt diet.Int. J. Mol. Sci.202122241341510.3390/ijms22241341534948210
    [Google Scholar]
  75. YagodkaA.A. MorozJ.V StriletsO.P. StrelnikovL.S. Microbial associations properties study-Indian rice.Nutr. Bull.20153016269
    [Google Scholar]
  76. GhimireK. MishraS.R. SatheeshG. NeupaneD. SharmaA. PandaR. KallestrupP. MclachlanC.S. Salt intake and salt‐reduction strategies in South Asia: From evidence to action.J. Clin. Hypertens.202123101815182910.1111/jch.1436534498797
    [Google Scholar]
  77. GilbertP.A. HeiserG. Salt and health: The CASH and BPA perspective.Nutr. Bull.2005301626910.1111/j.1467‑3010.2005.00484.x
    [Google Scholar]
  78. LairC. Feeding the Whole Family: Cooking with Whole Foods: More Than 200 Recipes for Feeding Babies, Young Children, and Their Parents.Sasquatch Books2016
    [Google Scholar]
  79. RosaA. LoyF. PinnaI. MasalaC. Role of aromatic herbs and spices in salty perception of patients with hyposmia.Nutrients20221423497610.3390/nu1423497636501005
    [Google Scholar]
  80. ChaurasiaP.K. BharatiS.L. KumarS. SinghS. ManiA. Potential involvement of laccases as efficient biocatalysts in the field of organic synthesis: An editorial presenting a short overview on functional applicability and fate.Mini Rev. Org. Chem.202219667668010.2174/1570193X19666220104093251
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298273343231128062213
Loading
/content/journals/mroc/10.2174/0118756298273343231128062213
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test