Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Aurones are structural isomers of flavones and flavonols with the basic C6–C3–C6 skeleton arranged as (Z)-2-benzylidenebenzofuran-3(2H)-one, which contain an exocyclic carbon-carbon double bond bridging the benzofuranone and phenyl rings. In aurone, a chalcone-like group is closed into a 5-membered ring instead of the 6-membered ring more typical of flavonoids, which forms the core for a family of derivatives that are known collectively as aurones. As a kind of flavonoids, aurones are widely distributed in many plants which provide yellow color to some popular ornamental flowers. For a long time aurones had not got enough attention, while in recent years, finally this chemical is coming into researchers' view. As the secondary metabolite in the family of flavonoids, aurones displayed various biological activities, including antioxidant, antiparasitic, antitumor, antiviral, antibacterial, anti-inflammatory, anti-SARS-CoV-2 and neuropharmacological activities. Therefore, aurones have attracted the attention of more and more chemists and pharmaceutical chemists, who realized that it is possible to get lead compounds with better activities structural modifications of aurones. In some research works, aurone and its derivatives have exhibited good activity, Xie discovered the heterocyclic variant of the (Z)-2-benzylidene-6-hydroxybenzofuran-3(2H)-one scaffold that possessed low nanomolar potency in cell proliferation assays using various cancer cell lines, potency in prostate cancer PC-3 xenograft and zebrafish models, and absence of appreciable toxicity, which proved that aurones are valuable compounds worthy of further study. Herein, the biological activities of aurone derivatives are reviewed, which covers the literature since 2000, in which the strategies to develop bioactive aurone derivatives and the structure-activity relationship are highlighted.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298277226231128032502
2024-01-08
2025-01-21
Loading full text...

Full text loading...

References

  1. OnoE. Fukuchi-MizutaniM. NakamuraN. FukuiY. Yonekura-SakakibaraK. YamaguchiM. NakayamaT. TanakaT. KusumiT. TanakaY. Yellow flowers generated by expression of the aurone biosynthetic pathway.Proc. Natl. Acad. Sci. USA200610329110751108010.1073/pnas.060424610316832053
    [Google Scholar]
  2. NakayamaT. Enzymology of aurone biosynthesis.J. Biosci. Bioeng.200294648749110.1016/S1389‑1723(02)80184‑016233339
    [Google Scholar]
  3. BoumendjelA. Aurones: a subclass of flavones with promising biological potential.Curr. Med. Chem.200310232621263010.2174/092986703345646814529476
    [Google Scholar]
  4. OkombiS. RivalD. BonnetS. MariotteA.M. PerrierE. BoumendjelA. Discovery of benzylidenebenzofuran-3(2H)-one (aurones) as inhibitors of tyrosinase derived from human melanocytes.J. Med. Chem.200649132933310.1021/jm050715i16392817
    [Google Scholar]
  5. OnoM. MayaY. HaratakeM. ItoK. MoriH. NakayamaM. Aurones serve as probes of β-amyloid plaques in Alzheimer’s disease.Biochem. Biophys. Res. Commun.2007361111612110.1016/j.bbrc.2007.06.16217644062
    [Google Scholar]
  6. RenJ. SuD. LiL. CaiH. ZhangM. ZhaiJ. LiM. WuX. HuK. Anti-inflammatory effects of Aureusidin in LPS-stimulated RAW264.7 macrophages via suppressing NF-κB and activating ROS- and MAPKs-dependent Nrf2/HO-1 signaling pathways.Toxicol. Appl. Pharmacol.202038711484610.1016/j.taap.2019.11484631790703
    [Google Scholar]
  7. YangY. ShengY. WangJ. ZhouX. GuanQ. ShenH. LiW. RuanS. Aureusidin derivative CNQX inhibits chronic colitis inflammation and mucosal barrier damage by targeting myeloid differentiation 2 protein.J. Cell. Mol. Med.202125157257726910.1111/jcmm.1675534184406
    [Google Scholar]
  8. ShresthaS. NatarajanS. ParkJ.H. LeeD.Y. ChoJ.G. KimG.S. JeonY.J. YeonS.W. YangD.C. BaekN.I. Potential neuroprotective flavonoid-based inhibitors of CDK5/p25 from Rhus parviflora.Bioorg. Med. Chem. Lett.201323185150515410.1016/j.bmcl.2013.07.02023927974
    [Google Scholar]
  9. GüçlütürkI. DetsiA. WeissE.K. IoannouE. RoussisV. KefalasP. Evaluation of anti-oxidant activity and identification of major polyphenolics of the invasive weed Oxalis pes-caprae.Phytochem. Anal.201223664264610.1002/pca.236722552843
    [Google Scholar]
  10. (a ZhangY. XuH. HuZ. YangG. YuX. ChenQ. ZhengL. YanZ. Eleocharis dulcis corm: Phytochemicals, health benefits, processing and food products.J. Sci. Food Agric.20221021194010.1002/jsfa.1150834453323
    [Google Scholar]
  11. (b LuoY.H. Method of extracting Aureusidin from Eleocharis dulcis.CN104557824A2014
  12. AbdullahZ. KnolleP.A. Liver macrophages in healthy and diseased liver.Pflugers Arch.20174693-455356010.1007/s00424‑017‑1954‑628293730
    [Google Scholar]
  13. ChurchR.J. WatkinsP.B. The transformation in biomarker detection and management of drug‐induced liver injury.Liver Int.201737111582159010.1111/liv.1344128386997
    [Google Scholar]
  14. YuM. ZhuY. CongQ. WuC. Metabonomics research progress on liver diseases.Can. J. Gastroenterol. Hepatol.2017201711010.1155/2017/846719228321390
    [Google Scholar]
  15. ArauzJ. Ramos-TovarE. MurielP. Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside.Ann. Hepatol.201615216017326845593
    [Google Scholar]
  16. Cichoż-LachH. MichalakA. Oxidative stress as a crucial factor in liver diseases.World J. Gastroenterol.201420258082809110.3748/wjg.v20.i25.808225009380
    [Google Scholar]
  17. MelloT. ZanieriF. CeniE. GalliA. Oxidative stress in the healthy and wounded hepatocyte: A cellular organelles perspective.Oxid. Med. Cell. Longev.2016201611510.1155/2016/832741026788252
    [Google Scholar]
  18. DuK. RamachandranA. JaeschkeH. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential.Redox Biol.20161014815610.1016/j.redox.2016.10.00127744120
    [Google Scholar]
  19. HuangY. LiW. SuZ. KongA.N.T. The complexity of the Nrf2 pathway: Beyond the antioxidant response.J. Nutr. Biochem.201526121401141310.1016/j.jnutbio.2015.08.00126419687
    [Google Scholar]
  20. ZengT. ZhangC.L. XiaoM. YangR. XieK.Q. Critical roles of Kupffer cells in the pathogenesis of alcoholic liver disease: From basic science to clinical trials.Front. Immunol.2016753810.3389/fimmu.2016.0053827965666
    [Google Scholar]
  21. DetsiA. MajdalaniM. KontogiorgisC.A. Hadjipavlou-LitinaD. KefalasP. Natural and synthetic 2′-hydroxy-chalcones and aurones: Synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity.Bioorg. Med. Chem.200917238073808510.1016/j.bmc.2009.10.00219853459
    [Google Scholar]
  22. TroninaT. BartmańskaA. PopłońskiJ. HuszczaE. Transformation of xanthohumol by Aspergillus ochraceus.J. Basic Microbiol.2014541667110.1002/jobm.20120032023463662
    [Google Scholar]
  23. MakhmoorT. NaheedS. ShujaatS. JalilS. HayatS. ChoudharyM.I. KhanK.M. AlamJ.M. NazirS. Hepatoprotection by chemical constituents of the marine brown alga Spatoglossum variabile : A relation to free radical scavenging potential.Pharm. Biol.201351338339010.3109/13880209.2012.73258223406359
    [Google Scholar]
  24. VenkateswarluS. PanchagnulaG.K. SubbarajuG.V. Synthesis and antioxidative activity of 3′,4′,6,7-tetrahydroxyaurone, a metabolite of Bidens frondosa.Biosci. Biotechnol. Biochem.200468102183218510.1271/bbb.68.218315502366
    [Google Scholar]
  25. XiaoC.J. ZhangY. QiuL. DongX. JiangB. Schistosomicidal and antioxidant flavonoids from Astragalus englerianus.Planta Med.201480181727173110.1055/s‑0034‑138321925371983
    [Google Scholar]
  26. PanG. LiX. ZhaoL. WuM. SuC. LiX. ZhangY. YuP. TengY. LuK. Synthesis and anti-oxidant activity evaluation of (±)-Anastatins A, B and their analogs.Eur. J. Med. Chem.201713857758910.1016/j.ejmech.2017.06.05428704760
    [Google Scholar]
  27. NakaboD. OkanoY. KandoriN. SatahiraT. KataokaN. AkamatsuJ. OkadaY. Convenient synthesis and physiological activities of flavonoids in Coreopsis lanceolata L. petals and their related compounds.Molecules2018237167110.3390/molecules2307167129987259
    [Google Scholar]
  28. MartinelliA. MoreiraR. CravoP. Malaria combination therapies: Advantages and shortcomings.Mini Rev. Med. Chem.20088320121210.2174/13895570878374409218336340
    [Google Scholar]
  29. Arav-BogerR. ShapiroT.A. Molecular mechanisms of resistance in antimalarial chemotherapy: The unmet challenge.Annu. Rev. Pharmacol. Toxicol.200545156558510.1146/annurev.pharmtox.45.120403.09594615822189
    [Google Scholar]
  30. FidockD.A. EastmanR.T. WardS.A. MeshnickS.R. Recent highlights in antimalarial drug resistance and chemotherapy research.Trends Parasitol.2008241253754410.1016/j.pt.2008.09.00518938106
    [Google Scholar]
  31. KaurK. JainM. KaurT. JainR. Antimalarials from nature.Bioorg. Med. Chem.20091793229325610.1016/j.bmc.2009.02.05019299148
    [Google Scholar]
  32. KayserO. KiderlenA.F. CroftS.L. Natural products as antiparasitic drugs.Parasitol. Res.2003900Suppl. 2S55S6210.1007/s00436‑002‑0768‑312937967
    [Google Scholar]
  33. KayserO. KiderlenA. BrunR. In vitro activity of aurones against Plasmodium falciparum strains K1 and NF54.Planta Med.200167871872110.1055/s‑2001‑1835611731912
    [Google Scholar]
  34. SouardF. OkombiS. BeneyC. ChevalleyS. ValentinA. BoumendjelA. 1-Azaaurones derived from the naturally occurring aurones as potential antimalarial drugs.Bioorg. Med. Chem.201018155724573110.1016/j.bmc.2010.06.00820630767
    [Google Scholar]
  35. CarrascoM.P. NewtonA.S. GonçalvesL. GóisA. MachadoM. GutJ. NogueiraF. HänscheidT. GuedesR.C. dos SantosD.J.V.A. RosenthalP.J. MoreiraR. Probing the aurone scaffold against Plasmodium falciparum: Design, synthesis and antimalarial activity.Eur. J. Med. Chem.20148052353410.1016/j.ejmech.2014.04.07624813880
    [Google Scholar]
  36. RamazaniA. HamidnezhadR. ForoumadiA. MirzaeiS.A. MaddahiS. HassanzadehS.M. In vitro antiplasmodial activity and cytotoxic effect of (Z)-2-Benzylidene-4, 6-Dimethoxybenzofuran-3(2H)-One derivatives.Iran. J. Parasitol.201611337137628127343
    [Google Scholar]
  37. MorimotoM. CantrellC.L. KhanS. TekwaniB.L. DukeS.O. Antimalarial and antileishmanial activities of phytophenolics and their synthetic analogues.Chem. Biodivers.20171412e170032410.1002/cbdv.20170032428990331
    [Google Scholar]
  38. KayserO. WatersW. WoodsK. UptonS. KeithlyJ. KiderlenA. Evaluation of in vitro activity of aurones and related compounds against Cryptosporidium parvum.Planta Med.200167872272510.1055/s‑2001‑1835711731913
    [Google Scholar]
  39. RoussakiM. Costa LimaS. KypreouA.M. KefalasP. Cordeiro da SilvaA. DetsiA. Aurones: A promising heterocyclic scaffold for the development of potent antileishmanial agents.Int. J. Med. Chem.201220121810.1155/2012/19692125374683
    [Google Scholar]
  40. PereiraV.R.D. da SilveiraL.S. MengardaA.C. Alves JúniorI.J. da SilvaO.O.Z. MiguelF.B. SilvaM.P. AlmeidaA.C. TorresD.S. PintoP.F. CoimbraE.S. de MoraesJ. CouriM.R.C. da Silva FilhoA.A. Antischistosomal properties of aurone derivatives against juvenile and adult worms of Schistosoma mansoni.Acta Trop.202121310574110.1016/j.actatropica.2020.10574133159900
    [Google Scholar]
  41. WalshD.M. SelkoeD.J. Deciphering the molecular basis of memory failure in Alzheimer’s disease.Neuron200444118119310.1016/j.neuron.2004.09.01015450169
    [Google Scholar]
  42. BallardC. GauthierS. CorbettA. BrayneC. AarslandD. JonesE. Alzheimer’s disease.Lancet201137797701019103110.1016/S0140‑6736(10)61349‑921371747
    [Google Scholar]
  43. FrumanD.A. RommelC. PI3K and cancer: Lessons, challenges and opportunities.Nat. Rev. Drug Discov.201413214015610.1038/nrd420424481312
    [Google Scholar]
  44. GoedertM. SpillantiniM.G. A century of Alzheimer’s disease.Science2006314580077778110.1126/science.113281417082447
    [Google Scholar]
  45. TangH. ZhaoH.T. ZhongS.M. WangZ.Y. ChenZ.F. LiangH. Novel oxoisoaporphine-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation.Bioorg. Med. Chem. Lett.20122262257226110.1016/j.bmcl.2012.01.09022341944
    [Google Scholar]
  46. LeeY.H. ShinM.C. YunY.D. ShinS.Y. KimJ.M. SeoJ.M. KimN.J. RyuJ.H. LeeY.S. Synthesis of aminoalkyl-substituted aurone derivatives as acetylcholinesterase inhibitors.Bioorg. Med. Chem.201523123124010.1016/j.bmc.2014.11.00425468034
    [Google Scholar]
  47. LiewK.F. ChanK.L. LeeC.Y. Blood–brain barrier permeable anticholinesterase aurones: Synthesis, structure–activity relationship, and drug-like properties.Eur. J. Med. Chem.20159419521010.1016/j.ejmech.2015.02.05525768702
    [Google Scholar]
  48. LiY. QiangX. LuoL. LiY. XiaoG. TanZ. DengY. Synthesis and evaluation of 4-hydroxyl aurone derivatives as multifunctional agents for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.201624102342235110.1016/j.bmc.2016.04.01227079124
    [Google Scholar]
  49. MughalE.U. SadiqA. MurtazaS. RafiqueH. ZafarM.N. RiazT. KhanB.A. HameedA. KhanK.M. Synthesis, structure–activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors.Bioorg. Med. Chem.201725110010610.1016/j.bmc.2016.10.01627780618
    [Google Scholar]
  50. (a LiY. QiangX. LuoL. YangX. XiaoG. LiuQ. AiJ. TanZ. DengY. Aurone Mannich base derivatives as promising multifunctional agents with acetylcholinesterase inhibition, anti-β-amyloid aggragation and neuroprotective properties for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.201712676277510.1016/j.ejmech.2016.12.00927951485
    [Google Scholar]
  51. (b DengY. Methods and uses for the preparation of aurone mannich base analogs.China, CN106632181B2016
  52. MehrabiF. PourshojaeiY. MoradiA. SharifzadehM. KhosravaniL. SabourianR. Rahmani-NezhadS. Mohammadi-KhanaposhtaniM. MahdaviM. AsadipourA. RahimiH.R. MoghimiS. ForoumadiA. Design, synthesis, molecular modeling and anticholinesterase activity of benzylidene-benzofuran-3-ones containing cyclic amine side chain.Future Med. Chem.20179765967110.4155/fmc‑2016‑023728485614
    [Google Scholar]
  53. LiewK.F. LeeE.H.C. ChanK.L. LeeC.Y. Multi-targeting aurones with monoamine oxidase and amyloid-beta inhibitory activities: Structure-activity relationship and translating multi-potency to neuroprotection.Biomed. Pharmacother.201911011812810.1016/j.biopha.2018.11.05430466001
    [Google Scholar]
  54. LawrenceN.J. RennisonD. McGownA.T. HadfieldJ.A. The total synthesis of an aurone isolated from Uvaria hamiltonii : Aurones and flavones as anticancer agents.Bioorg. Med. Chem. Lett.200313213759376310.1016/j.bmcl.2003.07.00314552774
    [Google Scholar]
  55. (a HuangW. LiuM.Z. LiY. TanY. YangG.F. Design, syntheses, and antitumor activity of novel chromone and aurone derivatives.Bioorg. Med. Chem.200715155191519710.1016/j.bmc.2007.05.02217524655
    [Google Scholar]
  56. (b ZhouG.C. 5-Hydroxy-2'-nitro aurone or 5-hydroxy-4'-nitro aurone derivatives and their applications.CN105037305A2015
  57. UesawaY. SakagamiH. IkezoeN. TakaoK. KagayaH. SugitaY. Quantitative structure-cytotoxicity relationship of aurones.Anticancer Res.201737116169617629061798
    [Google Scholar]
  58. XieY. KrilL.M. YuT. ZhangW. FrasinyukM.S. BondarenkoS.P. KondratyukK.M. HausmanE. MartinZ.M. WyrebekP.P. LiuX. DeaciucA. DwoskinL.P. ChenJ. ZhuH. ZhanC.G. SviripaV.M. BlackburnJ. WattD.S. LiuC. Semisynthetic aurones inhibit tubulin polymerization at the colchicine-binding site and repress PC-3 tumor xenografts in nude mice and myc-induced T-ALL in zebrafish.Sci. Rep.201991643910.1038/s41598‑019‑42917‑031015569
    [Google Scholar]
  59. SzakácsG. PatersonJ.K. LudwigJ.A. Booth-GentheC. GottesmanM.M. Targeting multidrug resistance in cancer.Nat. Rev. Drug Discov.20065321923410.1038/nrd198416518375
    [Google Scholar]
  60. RobeyR.W. PluchinoK.M. HallM.D. FojoA.T. BatesS.E. GottesmanM.M. Revisiting the role of ABC transporters in multidrug-resistant cancer.Nat. Rev. Cancer201818745246410.1038/s41568‑018‑0005‑829643473
    [Google Scholar]
  61. BorstP. Cancer drug pan-resistance: Pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what?Open Biol.20122512006610.1098/rsob.12006622724067
    [Google Scholar]
  62. TóthS. SzepesiÁ. Tran-NguyenV.K. SarkadiB. NémetK. FalsonP. Di PietroA. SzakácsG. BoumendjelA. Synthesis and anticancer cytotoxicity of azaaurones overcoming multidrug resistance.Molecules202025376410.3390/molecules2503076432050702
    [Google Scholar]
  63. LoneM.S. NabiS.A. WaniF.R. GargM. AminS. SamimM. ShafiS. KhanF. JavedK. Design, synthesis and evaluation of 5-chloro-6-methylaurone derivatives as potential anti-cancer agents.J. Biomol. Struct. Dyn.202312210.1080/07391102.2023.218371636856061
    [Google Scholar]
  64. NabiS.A. RamzanF. LoneM.S. NainwalL.M. HamidA. BatoolF. HusainM. SamimM. ShafiS. SharmaK. BanoS. JavedK. Halogen substituted aurones as potential apoptotic agents: Synthesis, anticancer evaluation, molecular docking, ADMET and DFT study.J. Biomol. Struct. Dyn.202311810.1080/07391102.2023.224089737517055
    [Google Scholar]
  65. HatzakisA. WaitS. BruixJ. ButiM. CarballoM. CavaleriM. ColomboM. Delarocque-AstagneauE. DusheikoG. EsmatG. EstebanR. GoldbergD. GoreC. LokA.S.F. MannsM. MarcellinP. PapatheodoridisG. PeterleA. PratiD. PiorkowskyN. RizzettoM. Roudot-ThoravalF. SorianoV. ThomasH.C. ThurszM. VallaD. van DammeP. VeldhuijzenI.K. WedemeyerH. WiessingL. ZanettiA.R. JanssenH.L.A. The state of hepatitis B and C in Europe: Report from the hepatitis B and C summit conference.J. Viral Hepat.201118s1Suppl. 111610.1111/j.1365‑2893.2011.01499.x21824223
    [Google Scholar]
  66. GravitzL. Introduction: A smouldering public-health crisis.Nature20114747350S2S410.1038/474S2a21666731
    [Google Scholar]
  67. HaudecoeurR. PeuchmaurM. Ahmed-BelkacemA. PawlotskyJ.M. BoumendjelA. Structure-activity relationships in the development of allosteric hepatitis C virus RNA-dependent RNA polymerase inhibitors: Ten years of research.Med. Res. Rev.201333593498410.1002/med.2127122893620
    [Google Scholar]
  68. MayhoubA.S. Hepatitis C RNA-dependent RNA polymerase inhibitors: A review of structure–activity and resistance relationships; different scaffolds and mutations.Bioorg. Med. Chem.201220103150316110.1016/j.bmc.2012.03.04922516671
    [Google Scholar]
  69. BarrecaM.L. IraciN. ManfroniG. CecchettiV. Allosteric inhibition of the hepatitis C virus NS5B polymerase: In silico strategies for drug discovery and development.Future Med. Chem.2011381027105510.4155/fmc.11.5321707403
    [Google Scholar]
  70. BeaulieuP.L. Recent advances in the development of NS5B polymerase inhibitors for the treatment of hepatitis C virus infection.Expert Opin. Ther. Pat.200919214516410.1517/1354377080267259819441916
    [Google Scholar]
  71. BeaulieuP.L. BösM. CordingleyM.G. ChabotC. FazalG. GarneauM. GillardJ.R. JolicoeurE. LaPlanteS. McKercherG. PoirierM. PoupartM.A. TsantrizosY.S. DuanJ. KukoljG. Discovery of the first thumb pocket 1 NS5B polymerase inhibitor (BILB 1941) with demonstrated antiviral activity in patients chronically infected with genotype 1 hepatitis C virus (HCV).J. Med. Chem.201255177650766610.1021/jm300678822849725
    [Google Scholar]
  72. WangM. NgK.K.S. CherneyM.M. ChanL. YannopoulosC.G. BedardJ. MorinN. Nguyen-BaN. Alaoui-IsmailiM.H. BethellR.C. JamesM.N.G. Non-nucleoside analogue inhibitors bind to an allosteric site on HCV NS5B polymerase. Crystal structures and mechanism of inhibition.J. Biol. Chem.2003278119489949510.1074/jbc.M20939720012509436
    [Google Scholar]
  73. PauwelsF. MostmansW. QuirynenL.M.M. van der HelmL. BouttonC.W. RueffA.S. CleirenE. RaboissonP. SurlerauxD. NyanguileO. SimmenK.A. Binding-site identification and genotypic profiling of hepatitis C virus polymerase inhibitors.J. Virol.200781136909691910.1128/JVI.01543‑0617459932
    [Google Scholar]
  74. LiuA.L. WangH.D. LeeS.M. WangY.T. DuG.H. Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities.Bioorg. Med. Chem.200816157141714710.1016/j.bmc.2008.06.04918640042
    [Google Scholar]
  75. HaudecoeurR. Ahmed-BelkacemA. YiW. FortunéA. BrilletR. BelleC. NicolleE. PallierC. PawlotskyJ.M. BoumendjelA. Discovery of naturally occurring aurones that are potent allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase.J. Med. Chem.201154155395540210.1021/jm200242p21699179
    [Google Scholar]
  76. MeguellatiA. Ahmed-BelkacemA. YiW. HaudecoeurR. CrouillèreM. BrilletR. PawlotskyJ.M. BoumendjelA. PeuchmaurM. B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase.Eur. J. Med. Chem.20148057959210.1016/j.ejmech.2014.04.00524835816
    [Google Scholar]
  77. MeguellatiA. Ahmed-BelkacemA. NurissoA. YiW. BrilletR. BerqouchN. ChavoutierL. FortunéA. PawlotskyJ.M. BoumendjelA. PeuchmaurM. New pseudodimeric aurones as palm pocket inhibitors of Hepatitis C virus RNA-dependent RNA polymerase.Eur. J. Med. Chem.201611521722910.1016/j.ejmech.2016.03.00527017550
    [Google Scholar]
  78. ChintakrindiA.S. GohilD.J. ChowdharyA.S. KanyalkarM.A. Design, synthesis and biological evaluation of substituted flavones and aurones as potential anti-influenza agents.Bioorg. Med. Chem.202028111519110.1016/j.bmc.2019.11519131744778
    [Google Scholar]
  79. CaleffiG.S. RosaA.S. de SouzaL.G. AvelarJ.L.S. NascimentoS.M.R. de AlmeidaV.M. TucciA.R. FerreiraV.N. da SilvaA.J.M. Santos-FilhoO.A. MirandaM.D. CostaP.R.R. Aurones: A promising scaffold to inhibit SARS-CoV-2 replication.J. Nat. Prod.20238661536154910.1021/acs.jnatprod.3c0024937257024
    [Google Scholar]
  80. BandgarB.P. PatilS.A. KorbadB.L. BiradarS.C. NileS.N. KhobragadeC.N. Synthesis and biological evaluation of a novel series of 2,2-bisaminomethylated aurone analogues as anti-inflammatory and antimicrobial agents.Eur. J. Med. Chem.20104573223322710.1016/j.ejmech.2010.03.04520430485
    [Google Scholar]
  81. SuttonC.L. TaylorZ.E. FaroneM.B. HandyS.T. Antifungal activity of substituted aurones.Bioorg. Med. Chem. Lett.201727490190310.1016/j.bmcl.2017.01.01228094180
    [Google Scholar]
  82. OlleikH. YahiaouiS. RoulierB. Courvoisier-DezordE. PerrierJ. PérèsB. HijaziA. BaydounE. RaymondJ. BoumendjelA. MarescaM. HaudecoeurR. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens.Eur. J. Med. Chem.201916513314110.1016/j.ejmech.2019.01.02230665143
    [Google Scholar]
  83. CampaniçoA. CarrascoM.P. NjorogeM. SeldonR. ChibaleK. PerdigãoJ. PortugalI. WarnerD.F. MoreiraR. LopesF. Azaaurones as potent antimycobacterial agents active against MDR‐ and XDR‐TB.ChemMedChem201914161537154610.1002/cmdc.20190028931294529
    [Google Scholar]
  84. (a AlqahtaniF.M. ArivettB.A. TaylorZ.E. HandyS.T. FaroneA.L. FaroneM.B. Chemogenomic profiling to understand the antifungal action of a bioactive aurone compound.PLoS One20191412e022606810.1371/journal.pone.022606831825988
    [Google Scholar]
  85. (b HouX.L. A heterocyclic aurone-containing derivative and antimicrobial use.CN114349743A2022
  86. WuH. ZhaoH. LuT. XieB. NiuC. AisaH.A. Synthesis and activity of aurone and indanone derivatives.Med. Chem.202319768670310.2174/157340641966623020310524636740791
    [Google Scholar]
  87. OberyszynT.M. Inflammation and wound healing.Front. Biosci.2007128-122993299910.2741/228917485276
    [Google Scholar]
  88. ShinS.Y. ShinM.C. ShinJ.S. LeeK.T. LeeY.S. Synthesis of aurones and their inhibitory effects on nitric oxide and PGE2 productions in LPS-induced RAW 264.7 cells.Bioorg. Med. Chem. Lett.201121154520452310.1016/j.bmcl.2011.05.11721723122
    [Google Scholar]
  89. KimK.H. MoonE. ChoiS.U. PangC. KimS.Y. LeeK.R. Identification of cytotoxic and anti-inflammatory constituents from the bark of Toxicodendron vernicifluum (Stokes) F.A. Barkley.J. Ethnopharmacol.201516223123710.1016/j.jep.2014.12.07125582488
    [Google Scholar]
  90. WangZ. BaeE.J. HanY.T. Synthesis and anti-inflammatory activities of novel dihydropyranoaurone derivatives.Arch. Pharm. Res.201740669570310.1007/s12272‑017‑0910‑528397193
    [Google Scholar]
  91. LiuW.J. LiZ.L. ChengN.B. HuY.M. MengZ.Q. SuZ.Z. YangB. HuangW.Z. WangZ.Z. XiaoW. A new aurone with anti-inflammatory activity from Cleistocalyx operculatus flower buds.Zhongguo Zhongyao Zazhi20184371467147029728038
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298277226231128032502
Loading
/content/journals/mroc/10.2174/0118756298277226231128032502
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test