- Home
- A-Z Publications
- Mini Reviews in Medicinal Chemistry
- Previous Issues
- Volume 14, Issue 1, 2014
Mini Reviews in Medicinal Chemistry - Volume 14, Issue 1, 2014
Volume 14, Issue 1, 2014
-
-
Donepezil: An Important Prototype to the Design of New Drug Candidates for Alzheimer’s Disease
Alzheimer’s disease (AD) is a progressive and incurable neurodegenerative disorder, with a dramatic socioeconomic impact. The progress of AD is characterized by a severe loss in memory and cognition, leading to behavioral changing, depression and death. During the last decades, only a few anticholinergic drugs were launched in the market, mainly acetylcholinesterase inhibitors (AChEIs), with indications for the treatment of initial and moderate stages of AD. The search for new AChEIs, capable to overcome the limitations observed for rivastigmine and tacrine, led Sugimoto and co-workers to the discovery of donepezil. Besides its high potency, donepezil also exhibited high selectivity for AChE and a very low toxicity. In this review, we discuss the main structural and pharmacological attributes that have made donepezil the first choice medicine for AD, and a versatile structural model for the design of novel AChEIs, in spite of multipotent and multitarget-directed ligands. Many recent data from literature transdue great efforts worldwide to produce modifications in the donepezil structure that could result in new bioactive chemical entities with innovative structural pattern. Furthermore, multi-potent ligands have also been designed by molecular hybridization, affording rivastigmine-, tacrine- and huperzine-donepezil potent and selective AChEIs. In a more recent strategy, structural features of donepezil have been used as a model to design multitarget-directed ligands, aiming at the discovery of new effective drug candidates that could exhibit concomitant pharmacological activities as dual or multi- enzymatic inhibitors as genuine innovative therapeutic alternatives for the treatment of AD.
-
-
-
New Approaches to Target Cancer Stem Cells: Current Scenario
Authors: Mayank Bashyal Insan and Vikas JaitakResistance towards chemotherapy and radiotherapy as well as relapse of cancer is the major obstacle in the treatment of cancer. The main factor behind is cancer stem cells (CSCs) which are more resistant to conventional chemotherapy, radiotherapy and are quite able to regenerate whole new tumor again if remain alive during treatment. Targeting CSCs along with actively dividing cancer cells may significantly contribute to the solution of the problem of resistance and relapse. Various approaches are implemented to eradicate CSCs which include CSC markers specific compounds, Drugs which disturb niche and various inhibitors/modulators of signaling pathways. Hedgehog (Hh), Wnt and Notch pathways are modulated/inhibited using various agents and shown beneficial results in multiple forms of cancer. Many inhibitors/modulators of these pathways have been entered in the clinical trials. MicroRNAs have also been developed as anti CSCs agents. In this review, we have covered current status of CSC targeting therapy based on CSC markers, CSC niche, Hedgehog, Wnt, Notch pathway along with MicroRNA based targeting strategies and possibility of implementation multi-targeted anti-CSC therapy for the better outcome of the results.
-
-
-
Recent Advances in Multidimensional QSAR (4D-6D): A Critical Review
The quantitative structure activity relationship (QSAR) study is the most cited and reliable computational technique used for decades to obtain information about a substituent’s physicochemical property and biological activity. There is step-by-step development in the concept of QSAR from 0D to 2D. These models suffer various limitations that led to the development of 3D-QSAR. There are large numbers of literatures available on the utility of 3D-QSAR for drug design. Three-dimensional properties of molecules with non-covalent interactions are served as important tool in the selection of bioactive confirmation of compounds. With this view, 3D-QSAR has been explored with different advancements like COMFA, COMSA, COMMA, etc. Some reports are also available highlighting the limitations of 3D-QSAR. In a way, to overcome the limitations of 3D-QSAR, more advanced QSAR approaches like 4D, 5D and 6D-QSAR have been evolved. Here, in this present review we have focused more on the present and future of more predictive models of QSAR studies. The review highlights the basics of 3D to 6D-QSAR and mainly emphasizes the advantages of one dimension over the other. It covers almost all recent reports of all these multidimensional QSAR approaches which are new paradigms in drug discovery.
-
-
-
Naturally Occurring Methyl Salicylate Glycosides
Authors: Ping Mao, Zizhen Liu, Meng Xie, Rui Jiang, Weirui Liu, Xiaohong Wang, Shen Meng and Gaimei SheAs an important part of non steroids anti-inflammation drug (NSAIDs), salicylate has developed from natural substance salicylic acid to natrium salicylicum, to aspirin. Now, methyl salicylate glycoside, a new derivative of salicylic acid, is modified with a -COOH group integrated one methyl radical into formic ether, and a -OH linked with a monosaccharide, a disaccharide or a trisaccharide unit by glycosidic linkage. It has the similar pharmacological activities, anti-inflammatory, analgesic, antipyretic and antithrombotic as the previous salicylates’ without resulting in serious side effects, particularly the gastrointestinal toxicity. Owing to the superiority of those significant bioactivities, methyl salicylate glycosides have became a hot research area in NSAIDs for several years. This paper compiles all 9 naturally occurring methyl salicylate glycosides, their distribution of the resource and pharmacological mechanism, which could contribute to the new drug discovery.
-
-
-
Synthesis and Pain Perception of New Analogues of Phencyclidine in NMRI Male Mice
Authors: Abbas Ahmadi, Mohsen Khalili, Sara Marami, Afsane Ghadiri and Babak Nahri-NiknafsPhencyclidine (PCP, I) and many of its derivatives have demonstrated many pharmacological effects. They interact with a number of neurotransmitter systems within the central nervous system. For example, Phencyclidine is a noncompetitive antagonist of the N-methyl-d-aspartate (NMDA) subtype of the glutamate receptor, and it causes the release and inhibits the reuptake of monoaminergic neurotransmitters, including dopamine, serotonin and norepinephrine. In this study, new thienyl (TCP, II), as well as benzothiophen (BTCP, III) derivatives (IV-VII) were synthesized. The acute and chronic pain activities of these drugs were studied using the tail immersion and formalin tests on mice and the results were compared with PCP, TCP and control groups at dosage of 10 mg/kg. The results indicated that the drug VII produced more analgesic effects on acute chemical pain in formalin test compared with other drugs. In addition, this analgesic effect was remarkably seen for drugs II, VI and VII in chronic pain in the mentioned test in comparison with other drugs. Also, the results showed that acute thermal pain could be diminished by drugs VI, II and I compared with other drugs in tail immersion test. It can be concluded that more analgesic effects of new BTCP analogues (VI and VII) may be concerned with antinociception activities of benzothiophene group and also with binding to cocaine site on the dopamine transporter receptor which seems to be more potent than PCP receptor in decreasing pain.
-
-
-
1,2,3-Triazine Scaffold as a Potent Biologically Active Moiety: A Mini Review
Authors: Rajeev Kumar, Amar Deep Singh, Jitendra Singh, Hariram Singh, R.K. Roy and Anurag Chaudhary1,2,3-Triazine is an interesting class of heterocyclic compounds. Various synthetic analogs of 1,2,3-triazine have been prepared and evaluated for many pharmacological activities in different models with desired findings. Some analogs have shown potent pharmacological activity and may be considered as lead molecule for the development of future drugs. This review is an attempt to organize the chemical and pharmacological aspects of 1,2,3-triazine analogs reported till date systematically since 1970.
-
-
-
Surface Binding of Toxins and Heavy Metals by Probiotics
Authors: Alaleh Zoghi, Kianoush Khosravi-Darani and Sara SohrabvandiRemoval of toxic metals and toxins using microbial biomass has been introduced as an inexpensive, new promising method on top of conventional methods for decontamination of food, raw material and concentrated. In this article the potential application of lactic acid bacteria and yeasts as the most familiar probiotics to eliminate, inactivate or reduce bioavailability of contamination in foods and feed has been reviewed. After fast glance to beneficial health effects and preservative properties of lactic acid bacteria, the mechanisms which explain antibacterial and antifungal efficiency as well as their antifungal metabolites are mentioned. Then the article has been focused on potential application of single strain or combination of lactic acid bacteria for removal of heavy metals (copper, lead, cadmium, chromium, arsenic), cyanotoxins (microcystin-LR, -RR, -LF) and mycotoxins (aflatoxin B1, B2, B2a, M1, M2, G1, G2, patulin, ochratoxin A, deoxynivalenol, fumonisin B1 and B2, 3-acetyldeoxynivalenol, deoxynivalenol, fusarenon, nivalenol, diacetoxyscirpenol, HT-2 and T-2 toxin, zearalenone and its derivative, etc) from aqueous solutions in vitro. Wherever possible the mechanism of decontamination and the factors influencing yield of removal are discussed. Some factors which can facilitate metal removal capacity of lactic acid bacteria including the strains, surface charge, pH, temperature, presence of other cations are introduced. The cell wall structure of lactic acid bacteria and yeasts are also introduced for further explanation of mechanism of action in complex binding of probiotic to contaminants and strength of mycotoxin– bacterium interaction.
-
Volumes & issues
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)