Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Objectives

Thiophene is one of the most important heterocyclic scaffolds with notable pharmacological properties. Thiophene and its derivatives are of particular interest among sulphur-containing heterocycles because of their similarities to numerous natural and synthetic compounds with identified potential. The purpose of this study is to extensively analyse the synthetic pathways adopted for synthesising thiophene derivatives and investigate their various biological functions.

Methods

A comprehensive review of the existing literature was conducted to collect data pertaining to the methods that are employed for the synthesis of thiophene derivatives. A comprehensive search was carried out through relevant databases, including work published in 2024. A variety of synthesis procedures were identified and arranged, encompassing both traditional approaches like the Gewald reaction and contemporary ones like microwave-assisted synthesis and green synthesis. In addition, a comprehensive compilation of and studies was conducted to investigate the biological effects of 50 distinct thiophene derivatives. The primary focus of the studies was on various activities such as anti-cancer, anti-inflammatory, antiprotozoal, antibacterial, antioxidant, and antiviral functions.

Results

Diverse methodologies have been employed in the synthesis of thiophene derivatives, encompassing both conventional and modern methods. Furthermore, the biological potential of thiophene derivatives was investigated, demonstrating a broad range of actions. Key structural elements necessary for biological activity were clarified by investigations of the structure-activity relationship.

Conclusion

The biological potential and flexible synthesis pathways of thiophene derivatives make them attractive candidates for use in medicinal and pharmaceutical chemistry. Understanding the different synthesis methods and biological actions of thiophene derivatives may assist rational design and create novel treatments for a variety of conditions. The potential for these compounds to be further explored and optimised is considerable for the next drug development initiatives.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064326879240801043412
2024-08-08
2024-12-26
Loading full text...

Full text loading...

References

  1. da Cunha XavierJ. dos SantosH.S. Machado MarinhoM. Nunes da RochaM. Rodrigues TeixeiraA.M. CoutinhoH.D.M. MarinhoE.S. Sucheta; Kumar, N.; Mishra, R. Chalcones as potent agents against Staphylococcus aureus: A computational approach.Lett. Drug Des. Discov.202421468470010.2174/1570180820666230120145921
    [Google Scholar]
  2. MittalR.K. PurohitP. Quinoline-3-carboxylic acids: A step toward highly selective antiproliferative agent.Anticancer. Agents Med. Chem.202121131708171610.2174/187152062099920112421411233238852
    [Google Scholar]
  3. MishraR. ChaudharyK. MishraI. Weapons and strategies against COVID-19: A perspective.Curr. Pharm. Biotechnol.202325214415810.2174/138920102466623052516143237231727
    [Google Scholar]
  4. MishraR. ChaudharyK. MishraI. AI in health science: A perspective.Curr. Pharm. Biotechnol.20232491149116310.2174/138920102366622092914522036177622
    [Google Scholar]
  5. Kanupriya; Mittal, R.K.; Sharma, V.; Biswas, T.; Mishra, I. Recent advances in nitrogen-containing heterocyclic scaffolds as antiviral agents.Med. Chem.202420548750210.2174/0115734064280150231212113012
    [Google Scholar]
  6. BiswasT. MittalR.K. SharmaV. Kanupriya; Mishra, I. Nitrogen-fused heterocycles: Empowering anticancer drug discovery.Med. Chem.202420436938410.2174/011573406427833423121105405338192143
    [Google Scholar]
  7. PurohitP. MittalR.K. AggarwalM. KhatanaK. Quinoline: synthesis to application.Med. Chem.2023191314610.2174/157340641866622030315191935240965
    [Google Scholar]
  8. MishraI. MishraR. DubeyA. DhakadP.K. A perspective on various facets of nanoemulsions and its commercial utilities.Assay Drug Dev. Technol.20242239711710.1089/adt.2023.04238489509
    [Google Scholar]
  9. MittalR.K. MishraR. SharmaV. MishraI. 1,3,4-thiadiazole: A versatile scaffold for drug discovery.Lett. Org. Chem.202421540041310.2174/0115701786274678231124101033
    [Google Scholar]
  10. MishraR. KaushalS. MishraI. Flavonoids as pyruvate kinase M2 inhibitor: An in silico analysis.Lett. Drug Des. Discov.20232010.2174/1570180820666230816090541
    [Google Scholar]
  11. UpadhyayP.K. PathakS. MishraR. KumarR. JainA. A multifaceted scaffold for building bioactive compounds: Phenothiazine.Lett. Org. Chem.202320761863110.2174/1570178620666221202100529
    [Google Scholar]
  12. MishraR. KumarN. SachanN. Thiophene and its analogs as prospective antioxidant agents: A retrospective study.Mini Rev. Med. Chem.202222101420143710.2174/138955752166621102214545834719361
    [Google Scholar]
  13. MishraR. H1N1 infection complications and potential moieties for treatment: A systematic review.Int. J. Pharmaceut. Res.202012sp110.31838/ijpr/2020.SP1.139
    [Google Scholar]
  14. MishraI. MishraR. MujwarS. ChandraP. SachanN. A retrospect on antimicrobial potential of thiazole scaffold.J. Heterocycl. Chem.20205762304232910.1002/jhet.3970
    [Google Scholar]
  15. MishraR. SachanN. KumarN. MishraI. ChandP. Thiophene scaffold as prospective antimicrobial agent: A review.J. Heterocycl. Chem.20185592019203410.1002/jhet.3249
    [Google Scholar]
  16. MishraR. SharmaP.K. VermaP.K. TomerI. MathurG. DhakadP.K. Biological potential of thiazole derivatives of synthetic origin.J. Heterocycl. Chem.20175442103211610.1002/jhet.2827
    [Google Scholar]
  17. MishraR. TomarI. ChemInform Abstract: pyrimidine: The molecule of diverse biological and medicinal importance.ChemInform20114240) chin.20114023510.1002/chin.201140235
    [Google Scholar]
  18. AgrawalN. MishraR. PathakS. GoyalA.; Shah, K. Hydrazides and hydrazones: Robust scaffolds in neurological and neurodegenerative disorders.Lett. Org. Chem.202320212313610.2174/1570178619666220831122614
    [Google Scholar]
  19. MishraI. ChandraP. SachanN. Thiazole derivatives as RORγt inhibitors: Synthesis, biological evaluation, and docking analysis.Lett. Drug Des. Discov.202421590591710.2174/1570180820666230217123456
    [Google Scholar]
  20. MishraI. SachanN. Thiazole scaffold: An overview on its synthetic and pharmaceutical aspects.ECS Trans.20221071177451776810.1149/10701.17745ecst
    [Google Scholar]
  21. García-TojalJ. PizarroJ.L. García-OradA. Pérez-SanzA.R. UgaldeM. Alvarez DíazA. SerraJ.L. ArriortuaM.I. RojoT. Biological activity of complexes derived from thiophene-2-carbaldehyde thiosemicarbazone. Crystal structure of [Ni(C6H6N3S2)2].J. Inorg. Biochem.2001862-362763310.1016/S0162‑0134(01)00210‑011566336
    [Google Scholar]
  22. da SilvaS.A. LeiteC.Q.F. PavanF.R. MasciocchiN. CuinA. Coordinative versatility of a Schiff base containing thiophene: Synthesis, characterization and biological activity of zinc(II) and silver(I) complexes.Polyhedron20147917017710.1016/j.poly.2014.04.043
    [Google Scholar]
  23. JouleK. Heterocyclic Chemistry, Fifth, Wiley-Blackwell.New YorkWiley-Blackwell2010
    [Google Scholar]
  24. da CruzR.M.D. Mendonça-JuniorF.J.B. de MéloN.B. ScottiL. de AraújoR.S.A. de AlmeidaR.N. de MouraR.O. Thiophene-based compounds with potential anti-inflammatory activity.Pharmaceuticals (Basel)202114769210.3390/ph1407069234358118
    [Google Scholar]
  25. WangB. ShiY. ZhanY. ZhangL. ZhangY. WangL. ZhangX. LiY. LiZ. LiB. Synthesis and biological activity of novel furan/thiophene and piperazine‐containing (Bis)1,2,4‐triazole mannich bases.Chin. J. Chem.201533101124113410.1002/cjoc.201500436
    [Google Scholar]
  26. MabkhotY. AlatibiF. El-SayedN. KhederN. Al-ShowimanS. Synthesis and structure-activity relationship of some new thiophene-based heterocycles as potential antimicrobial agents.Molecules2016218103610.3390/molecules2108103627517888
    [Google Scholar]
  27. Shah, R.; Verma, P.K. Synthesis of thiophene derivatives and their antimicrobial, antioxidant, anticorrosion and anticancer activity.BMC Chem.20191315410.1186/s13065‑019‑0569‑831384802
    [Google Scholar]
  28. IbrahimS.R.M. OmarA.M. BagalagelA.A. DiriR.M. NoorA.O. AlmasriD.M. MohamedS.G.A. MohamedG.A. Thiophenes—naturally occurring plant metabolites: biological activities and in silico evaluation of their potential as cathepsin D inhibitors.Plants202211453910.3390/plants1104053935214871
    [Google Scholar]
  29. KhadriM.J.N. RamuR. SimhaN.A. KhanumS.A. Synthesis, molecular docking, analgesic, anti-inflammatory, and ulcerogenic evaluation of thiophenepyrazole candidates as COX, 5-LOX, and TNF-α inhibitors.Inflammopharmacology202432169371310.1007/s10787‑023‑01364‑037985602
    [Google Scholar]
  30. AkolkarH.N. DengaleS.G. DeshmukhK.K. KaraleB.K. DarekarN.R. KhedkarV.M. ShaikhM.H. Design, synthesis and biological evaluation of novel furan & thiophene containing pyrazolyl pyrazolines as antimalarial agents.Polycycl. Aromat. Compd.20224251959197110.1080/10406638.2020.1821231
    [Google Scholar]
  31. El-SharkawyK. Uses of 2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile in the synthesis of heterocyclic compounds with anticonvulsant, behavioral and CNS antidepressant activities.Int. Res. J. Pure Appl. Chem.2012219110410.9734/IRJPAC/2012/1222
    [Google Scholar]
  32. AbeleE. LukevicsE. Cheminform abstract: furan and thiophene oximes: synthesis, reactions, and biological activity.ChemInform2010324610.1002/chin.200146276
    [Google Scholar]
  33. NayakS.G. PoojaryB. KamatV. PuthranD. Novel thiazolidin‐4‐one clubbed thiophene derivatives via Gewald synthesis as anti‐tubercular and anti‐inflammatory agents.J. Chin. Chem. Soc. (Taipei)20216861116112710.1002/jccs.202000166
    [Google Scholar]
  34. SoujanyaM. RajithaG. Microwave assisted synthesis, characterization, molecular docking, antiinflammatory and analgesic activity of acylhydrazones bearing thiophene moiety.Asian J. Chem.201729112479248410.14233/ajchem.2017.20785
    [Google Scholar]
  35. PillaiA.D. RathodP.D. FranklinP.X. PadhH. VasuK.K. SudarsanamV. Design, synthesis, and SAR studies of some 5-aliphatic oximino esters of thiophene as potential anti-inflammatory leads: comparative biological activity profile of aliphatic oximes vs aromatic oximes.Biochem. Biophys. Res. Commun.200431741067107410.1016/j.bbrc.2004.03.14815094377
    [Google Scholar]
  36. TlidjaneH. ChafaiN. ChafaaS. BensouiciC. BenbouguerraK. New thiophene-derived α-aminophosphonic acids: Synthesis under microwave irradiations, antioxidant and antifungal activities, DFT investigations and SARS-CoV-2 main protease inhibition.J. Mol. Struct.2022125013185313185310.1016/j.molstruc.2021.13185336341473
    [Google Scholar]
  37. BerradeL. AisaB. RamirezM.J. GalianoS. GuccioneS. MoltzauL.R. LevyF.O. NicolettiF. BattagliaG. MolinaroG. AldanaI. MongeA. Perez-SilanesS. Novel benzo[b]thiophene derivatives as new potential antidepressants with rapid onset of action.J. Med. Chem.20115483086309010.1021/jm200077321469694
    [Google Scholar]
  38. KellyT.R. FuY. SieglenJ.T.Jr De SilvaH. Synthesis of an orange anthrathiophene pigment isolated from a Japanese bryozoan.Org. Lett.20002152351235210.1021/ol006127a10930281
    [Google Scholar]
  39. QinZ. KastratiI. ChandrasenaR.E.P. LiuH. YaoP. PetukhovP.A. BoltonJ.L. ThatcherG.R.J. Benzothiophene selective estrogen receptor modulators with modulated oxidative activity and receptor affinity.J. Med. Chem.200750112682269210.1021/jm070079j17489582
    [Google Scholar]
  40. MishraR. KumarN. MishraI. SachanN. A review on anticancer activities of thiophene and its analogs.Mini Rev. Med. Chem.202020191944196510.2174/138955752066620071510455532669077
    [Google Scholar]
  41. DallemagneP. KhanhL.P. AlsaïdiA. RenaultO. VarletI. CollotV. BureauR. RaultS. Synthesis and biological evaluation of cyclopenta[c]thiophene related compounds as new antitumor agents.Bioorg. Med. Chem.20021072185219110.1016/S0968‑0896(02)00070‑611983515
    [Google Scholar]
  42. GonzálezI.C. DavisL.N. SmithC.K. II Novel thiophenes and analogues with anthelmintic activity against Haemonchus contortus.Bioorg. Med. Chem. Lett.200414154037404310.1016/j.bmcl.2004.05.04415225722
    [Google Scholar]
  43. ShaoH. LiD. YangY. GuoH.F. LiuZ.Y. SiS.Y. YangZ. LiZ.R. The effect of substituted thiophene and benzothiophene derivates on PPARγ expression and glucose metabolism.J. Enzyme Inhib. Med. Chem.201025228228910.3109/1475636090317936919663652
    [Google Scholar]
  44. MabkhotY.N. BarakatA. Al-MajidA.M. Alshahrani, S.; Yousuf, S.; Choudhary, M.I. Synthesis, reactions and biological activity of some new bisheterocyclic ring compounds containing sulphur atom.Chem. Cent. J.20137111210.1186/1752‑153X‑7‑11223829861
    [Google Scholar]
  45. BoniniC. ChiummientoL. BonisM.D. FunicelloM. LupattelliP. SuannoG. BertiF. CampanerP. Synthesis, biological activity and modelling studies of two novel anti HIV PR inhibitors with a thiophene containing hydroxyethylamino core.Tetrahedron200561276580658910.1016/j.tet.2005.04.048
    [Google Scholar]
  46. GuoT. XiaR. ChenM. SuS. HeJ. HeM. WangH. XueW. Biological activity evaluation and action mechanism of 1,4-Pentadien-3-one derivatives containing thiophene sulfonate.Phosphorus Sulfur Silicon Relat. Elem.2020195212313010.1080/10426507.2019.1655418
    [Google Scholar]
  47. AlyH.M. SalehN.M. ElhadyH.A. Design and synthesis of some new thiophene, thienopyrimidine and thienothiadiazine derivatives of antipyrine as potential antimicrobial agents.Eur. J. Med. Chem.20114694566457210.1016/j.ejmech.2011.07.03521840088
    [Google Scholar]
  48. MabkhotY.N. Al-ShowimanS.S. SolimanS.M. GhabbourH.A. AlDamenM.A. MubarakM.S. Synthesis, characterization, X-ray structure, computational studies, and bioassay of novel compounds combining thiophene and benzimidazole or 1,2,4-triazole moieties.Chem. Cent. J.20171115110.1186/s13065‑017‑0280‑629086844
    [Google Scholar]
  49. PintoE. QueirozM.J.R.P. Vale-SilvaL.A. OliveiraJ.F. BegouinA. BegouinJ.M. KirschG. Antifungal activity of synthetic di(hetero)arylamines based on the benzo[b]thiophene moiety.Bioorg. Med. Chem.200816178172817710.1016/j.bmc.2008.07.04218678498
    [Google Scholar]
  50. Abdel-RahmanS.A. El-GoharyN.S. El-BendaryE.R. El-AshryS.M. ShaabanM.I. Synthesis, antimicrobial, antiquorum-sensing, antitumor and cytotoxic activities of new series of cyclopenta(hepta)[ b]thiophene and fused cyclohepta[b]thiophene analogs.Eur. J. Med. Chem.201714020021110.1016/j.ejmech.2017.08.06628926764
    [Google Scholar]
  51. Figueroa-ValverdeL. Rosas-NexticapaM. Alvarez-RamirezM. López-RamosM. Díaz-CedilloF. Mateu-ArmadM.V. Evaluation of biological activity exerted by dibenzo[b,e]thiophene-11(6H)-one on left ventricular pressure using an isolated rat heart model.Drug Res. (Stuttg.)202373526327010.1055/a‑1995‑635136858071
    [Google Scholar]
  52. ÇelikF. BektaşK.İ. GülerH.İ. DirekelŞ. ÜnverY. New schiff bases with thiophene ring: Synthesis, biological activities, and molecular docking study.Russ. J. Gen. Chem.202393240941710.1134/S107036322302024X
    [Google Scholar]
  53. MarlesR.J. CompadreR.L. CompadreC.M. Soucy-BreauC. RedmondR.W. DuvalF. MehtaB. MorandP. ScaianoJ.C. ArnasonJ.T. Thiophenes as mosquito larvicides: Structure-toxicity relationship analysis.Pestic. Biochem. Physiol.19914118910010.1016/0048‑3575(91)90063‑R
    [Google Scholar]
  54. LiJ.J. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications3rd ed; Springer: Berlin, Germany,2007
    [Google Scholar]
  55. MishraR. KumarN. SachanN. Synthesis, biological evaluation, and docking analysis of novel tetrahydrobenzothiophene derivatives.Lett. Drug Des. Discov.202219653054010.2174/1570180819666220117123958
    [Google Scholar]
  56. ChaturbhujG.U. GavaliK.D. Truly catalytic gewald synthesis of 2-aminothiophenes using piperidinium borate (pip borate), a conjugate acid–base pair.SynOpen20237467467910.1055/a‑2189‑3334
    [Google Scholar]
  57. GoudaM.A. BerghotM.A. El-GhaniG.A. ElattarK.M. KhalilA.E.G.M. Chemistry of 2-aminothiophene-3-carboxamide and related compounds.Turk. J. Chem.201135681583710.3906/kim‑1011‑813
    [Google Scholar]
  58. El-AalH.A.K.A. Diversity-oriented synthesis of benzo[b]thiophenes fused to medium-sized N-heterocycles via Friedel–Crafts cyclization processes.ARKIVOC20232023710.24820/ark.5550190.p011.986
    [Google Scholar]
  59. YıldızE. KöseM. TümerM. PurtaşS. TümerF. Thio-phene based imine compounds: Structural characterization, electrochemical, photophysical and thermal properties.J. Mol. Struct.20171150556010.1016/j.molstruc.2017.08.042
    [Google Scholar]
  60. WenM. SunP.P. LuoX. DengW.P. Cu(II)-catalyzed one-pot synthesis of fully substituted dihydrothiophenes and thiophenes from thioamides and enynones.Tetrahedron201874314168417310.1016/j.tet.2018.02.035
    [Google Scholar]
  61. WeiZ. LiX. WudlF. ZhengY. Facile synthesis of thiophene/selenophene-fused acene and their optoelectronic properties.Tetrahedron201773507100710410.1016/j.tet.2017.10.072
    [Google Scholar]
  62. MoriguchiT. YakeyaD. TsugeA. JalliV. Synthesis of three new thiophene condensed pyrene derivatives, crystal structure and evaluation of their photophysical properties.J. Mol. Struct.2018115734835410.1016/j.molstruc.2017.12.081
    [Google Scholar]
  63. KesharwaniT. KornmanC. TonnaerA. HayesA. KimS. DahalN. RomeroR. RoyappaA. Sodium halides as the source of electrophilic halogens in green synthesis of 3-halo- and 3, n -dihalobenzo[ b]thiophenes.Tetrahedron201874242973298410.1016/j.tet.2018.04.08030886445
    [Google Scholar]
  64. LiuY. GeW. HanJ. ZhuY. ShiY. WuH. DABCO-catalyzed three-component reaction for the synthesis of naphtho[2,3-b]thiophene-4,9-diones.Tetrahedron Lett.201758272665266910.1016/j.tetlet.2017.05.081
    [Google Scholar]
  65. HaritT. BellaouchiR. AsehraouA. RahalM. BouabdallahI. MalekF. Synthesis, characterization, antimicrobial activity and theoretical studies of new thiophene-based tripodal ligands.J. Mol. Struct.20171133747910.1016/j.molstruc.2016.11.051
    [Google Scholar]
  66. ElantabliF.M. RadebeM.P. MotswainyanaW.M. OwagaB.O. El-MedaniS.M. EkengardE. HaukkaM. NordlanderE. OnaniM.O. Thiophene based imino-pyridyl palladium(II) complexes: Synthesis, molecular structures and Heck coupling reactions.J. Organomet. Chem.2017843404710.1016/j.jorganchem.2017.04.022
    [Google Scholar]
  67. MoharebR.M. ZakiM.Y. AbbasN.S. Synthesis, anti-inflammatory and antiulcer evaluations of thiazole, thiophene, pyridine and pyran derivatives derived from androstenedione.Steroids201598809110.1016/j.steroids.2015.03.00125759119
    [Google Scholar]
  68. CetinA. KorkmazA. KayaE. Synthesis, characterization and optical studies of conjugated Schiff base polymer containing thieno[3,2-b]thiophene and 1,2,4-triazole groups.Opt. Mater.201876758010.1016/j.optmat.2017.12.022
    [Google Scholar]
  69. MahiA. BelbachirM. AmmariA. MeghaberR. FerrahiM.I. Synthesis and characterization of poly(N-phenyl succinimidethiophene) conducting polymer catalyzed by Maghnite-H+.J. Electroanal. Chem. (Lausanne)20188239297[Lausanne Switz10.1016/j.jelechem.2018.05.039
    [Google Scholar]
  70. GulipalliK.C. BodigeS. RavulaP. EndooriS. VanajaG.R. Suresh BabuG. Narendra Sharath ChandraJ.N. SeelamN. Design, synthesis, in silico and in vitro evaluation of thiophene derivatives: A potent tyrosine phosphatase 1B inhibitor and anticancer activity.Bioorg. Med. Chem. Lett.201727153558356410.1016/j.bmcl.2017.05.04728579122
    [Google Scholar]
  71. RomagnoliR. BaraldiP.G. Lopez-CaraC. SalvadorM.K. PretiD. TabriziM.A. BalzariniJ. NussbaumerP. BassettoM. BrancaleA. FuX.H. Yang-Gao; Li, J.; Zhang, S.Z.; Hamel, E.; Bortolozzi, R.; Basso, G.; Viola, G. Design, synthesis and biological evaluation of 3,5-disubstituted 2-amino thiophene derivatives as a novel class of antitumor agents.Bioorg. Med. Chem.201422185097510910.1016/j.bmc.2013.12.03024398384
    [Google Scholar]
  72. RomagnoliR. BaraldiP.G. Cruz-LopezO. TolomeoM. CristinaA.D. PipitoneR.M. GrimaudoS. BalzariniJ. BrancaleA. HamelE. Synthesis of novel antimitotic agents based on 2-amino-3-aroyl-5-(hetero)arylethynyl thiophene derivatives.Bioorg. Med. Chem. Lett.20112192746275110.1016/j.bmcl.2010.11.08321146985
    [Google Scholar]
  73. ZhangB. LiY.H. LiuY. ChenY.R. PanE.S. YouW.W. ZhaoP.L. Design, synthesis and biological evaluation of novel 1,2,4-triazolo[3,4-b][1,3,4] thiadiazines bearing furan and thiophene nucleus.Eur. J. Med. Chem.201510333534210.1016/j.ejmech.2015.08.05326363869
    [Google Scholar]
  74. MartoranaA. GentileC. PerriconeU. PiccionelloA.P. BartolottaR. TerenziA. PaceA. MingoiaF. AlmericoA.M. LauriaA. Synthesis, antiproliferative activity, and in silico insights of new 3-benzoylamino-benzo[b]thiophene derivatives.Eur. J. Med. Chem.20159053754610.1016/j.ejmech.2014.12.00225486425
    [Google Scholar]
  75. SchmittC. KailD. MarianoM. EmptingM. WeberN. PaulT. HartmannR.W. EngelM. Design and synthesis of a library of lead-like 2,4-bisheterocyclic substituted thiophenes as selective Dyrk/Clk inhibitors.PLoS One201493e8785110.1371/journal.pone.008785124676346
    [Google Scholar]
  76. MetwallyH.M. YounisN.M. Abdel-LatifE. El-RayyesA. New thiazole, thiophene and 2-pyridone compounds incorporating dimethylaniline moiety: synthesis, cytotoxicity, ADME and molecular docking studies.BMC Chem.20241815210.1186/s13065‑024‑01136‑z38486282
    [Google Scholar]
  77. MishraR. KumarN. SachanN. Synthesis, pharmacological evaluation, and in-silico studies of thiophene derivatives.Oncologie202123449351410.32604/oncologie.2021.018532
    [Google Scholar]
  78. PopsavinM. DjokićS. KovačevićI. StanisavljevićS.M. KojićV. RodićM.V. AleksićL. KesićJ. Srećo Zelenović, B.; Popsavin, V.; Jakimov, D.S. Synthesis and biological activity of thiophene bioisosteres of natural styryl lactone goniofufurone and related compounds.Eur. J. Med. Chem.202426911634011634010.1016/j.ejmech.2024.11634038527380
    [Google Scholar]
  79. LiaoW. WangZ. HanY. QiY. LiuJ. XieJ. TianY. LeiQ. ChenR. SunM. TangL. GongG. ZhaoY. Design, synthesis and biological activity of novel 2,3,4,5-tetra-substituted thiophene derivatives as PI3Kα inhibitors with potent antitumor activity.Eur. J. Med. Chem.202019711230911230910.1016/j.ejmech.2020.11230932375077
    [Google Scholar]
  80. FaddaA.A. BerghotM.A. AmerF.A. BadawyD.S. BayoumyN.M. Synthesis and antioxidant and antitumor activity of novel pyridine, chromene, thiophene and thiazole derivatives.Arch. Pharm. (Weinheim)2012345537838510.1002/ardp.20110033522189501
    [Google Scholar]
  81. DoC.V. FaouziA. BaretteC. FarceA. FauvarqueM.O. ColombE. CatryL. Berthier-VergnesO. HaftekM. BarretR. LombergetT. Synthesis and biological evaluation of thiophene and benzo[b]thiophene analogs of combretastatin A-4 and isocombretastatin A-4: A comparison between the linkage positions of the 3,4,5-trimethoxystyrene unit.Bioorg. Med. Chem. Lett.201626117418010.1016/j.bmcl.2015.11.01026602281
    [Google Scholar]
  82. GopiC. DhanarajuM.D. Synthesis, spectroscopy characterization and biological activities of some novel 1-(3-(N,N-dimethylamino)-1-(5-substituted thiophene-2-yl) propylidene semicarbazone Mannich base derivatives.Beni. Suef Univ. J. Basic Appl. Sci.20187329129810.1016/j.bjbas.2018.02.004
    [Google Scholar]
  83. ZeniG. NogueiraC.W. PanatieriR.B. SilvaD.O. MenezesP.H. BragaA.L. SilveiraC.C. StefaniH.A. RochaJ.B.T. Synthesis and anti-inflammatory activity of acetylenic thiophenes.Tetrahedron Lett.200142457921792310.1016/S0040‑4039(01)01703‑8
    [Google Scholar]
  84. FakhrI.M.I. RadwanM.A.A. El-BatranS. Abd El-SalamO.M.E. El-ShenawyS.M. Synthesis and pharmacological evaluation of 2-substituted benzo[b]thiophenes as anti-inflammatory and analgesic agents.Eur. J. Med. Chem.20094441718172510.1016/j.ejmech.2008.02.03418433939
    [Google Scholar]
  85. MahnashiM.H. RashidU. AlmasoudiH.H. NahariM.H. AhmadI. BinshayaA.S. AbdulazizO. AlsuwatM.A. JanM.S. SadiqA. Modification of 4-(4-chlorothiophen-2-yl)thiazol-2-amine derivatives for the treatment of analgesia and inflammation: synthesis and in vitro, in vivo, and in silico studies.Front. Pharmacol.202415136669510.3389/fphar.2024.136669538487174
    [Google Scholar]
  86. SaeedK. RafiqM. KhalidM. HussainA. SiddiqueF. HanifM. HussainS. MahmoodK. AmeerN. AhmedM.M. Ali KhanM. YaqubM. JabeenM. Synthesis, characterization, computational assay and anti-inflammatory activity of thiosemicarbazone derivatives: Highly potent and efficacious for COX inhibitors.Int. Immunopharmacol.202412611125911125910.1016/j.intimp.2023.11125937992446
    [Google Scholar]
  87. FerreiraM. K. A. FreitasW. P. O. BarbosaI. M. da RochaM. N. da SilvaA. W. de Lima RebouçasE. da Silva MendesF. R. AlvesC. R. NunesP. I. G. MarinhoM. M. FurtadoR. F. SantosF. A. MarinhoE. S. de MenezesJ. E. S. A. dos SantosH. S. Heterocyclic chalcone (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(thiophen-2-Yl) Prop-2-En-1-One derived from a natural product with antinociceptive, anti-inflammatory, and hypoglycemic effect in adult zebrafish.3 Biotech202313827610.1007/s13205‑023‑03696‑8
    [Google Scholar]
  88. SousaJ.P.A. SousaJ.M.S. RodriguesR.R.L. NunesT.A.L. MachadoY.A.A. AraujoA.C. da SilvaI.G.M. Barros-Cordeiro, K.B.; Báo, S.N.; Alves, M.M.M.; Mendonça-Junior, F.J.B.; Rodrigues, K.A.F. Antileishmanial activity of 2-amino-thiophene derivative SB-200.Int. Immunopharmacol.202312311075011075010.1016/j.intimp.2023.11075037536181
    [Google Scholar]
  89. JacominiA.P. SilvaM.J.V. SilvaR.G.M. GonçalvesD.S. VolpatoH. BassoE.A. PaulaF.R. NakamuraC.V. SarragiottoM.H. RosaF.A. Synthesis and evaluation against Leishmania amazonensis of novel pyrazolo[3,4- d]pyridazinone- N -acylhydrazone-(bi)thiophene hybrids.Eur. J. Med. Chem.201612434034910.1016/j.ejmech.2016.08.04827597410
    [Google Scholar]
  90. GonzalezJ.L. StephensC.E. WenzlerT. BrunR. TaniousF.A. WilsonW.D. BarszczT. WerbovetzK.A. BoykinD.W. Synthesis and antiparasitic evaluation of bis-2,5-[4-guanidinophenyl]thiophenes.Eur. J. Med. Chem.200742455255710.1016/j.ejmech.2006.11.00617178177
    [Google Scholar]
  91. FélixM.B. de SouzaE.R. de LimaM.C.A. FradeD.K.G. SerafimV.L. RodriguesK.A.F. NérisP.L.N. RibeiroF.F. ScottiL. ScottiM.T. de AquinoT.M. MendonçaJuniorF.J.B. de OliveiraM.R. Antileishmanial activity of new thiophene–indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric studies.Bioorg. Med. Chem.201624183972397710.1016/j.bmc.2016.04.05727515718
    [Google Scholar]
  92. ÜnverY. TulukM. KahrimanN. EmirikM. BektaşE. DirekelŞ. New chalcone derivatives with schiff base-thiophene: synthesis, biological activity, and molecular docking studies.Russ. J. Gen. Chem.201989479479910.1134/S107036321904025X
    [Google Scholar]
  93. SaaymanM. KannigaduC. AucampJ. Janse van Rensburg, H.D.; Joseph, C.; Swarts, A.J.; N’Da, D.D. Design, synthesis, electrochemistry and anti-trypanosomatid hit/lead identification of nitrofuranylazines.RSC Med. Chem.202314102012202910.1039/D3MD00220A37859713
    [Google Scholar]
  94. PulipatiL. SrideviJ.P. YogeeswariP. SriramD. KantevariS. Synthesis and antitubercular evaluation of novel dibenzo[b,d] thiophene tethered imidazo[1,2-a]pyridine-3-carboxamides.Bioorg. Med. Chem. Lett.201626133135314010.1016/j.bmcl.2016.04.08827184765
    [Google Scholar]
  95. NasrT. BondockS. EidS. Design, synthesis, antimicrobial evaluation and molecular docking studies of some new thiophene, pyrazole and pyridone derivatives bearing sulfisoxazole moiety.Eur. J. Med. Chem.20148449150410.1016/j.ejmech.2014.07.05225050881
    [Google Scholar]
  96. MingL.S. JamalisJ. Al-MaqtariH.M. RosliM.M. SankaranarayananM. ChanderS. FunH.K. Synthesis, characterization, antifungal activities and crystal structure of thiophene-based heterocyclic chalcones.Chem. Data Collec.20179-1010411310.1016/j.cdc.2017.04.004
    [Google Scholar]
  97. NayabS. AlamA. AhmadN. KhanS.W. KhanW. ShamsD.F. Shah, M.I.A.; Ateeq, M.; Shah, S.K.; Lee, H. Thiophene-derived schiff base complexes: Synthesis, characterization, antimicrobial properties, and molecular docking.ACS Omega2023820176201763310.1021/acsomega.2c0826637251197
    [Google Scholar]
  98. Ali MohamedH. AmmarY.A. A.M.Elhagali G.; A Eyada, H.; S Aboul-Magd, D.; Ragab, A. In vitro antimicrobial evaluation, single-point resistance study, and radiosterilization of novel pyrazole incorporating thiazol-4-one/thiophene derivatives as dual DNA gyrase and DHFR inhibitors against MDR pathogens.ACS Omega2022764970499010.1021/acsomega.1c0580135187315
    [Google Scholar]
  99. OduseluG.O. AderohunmuD.V. AjaniO.O. ElebijuO.F. OgunnupebiT.A. AdebiyiE. Synthesis, in silico and in vitro antimicrobial efficacy of substituted arylidene-based quinazolin-4(3H)-one motifs.Front Chem.202311126482410.3389/fchem.2023.126482437818483
    [Google Scholar]
  100. GodhaniD. R. MehtaU. P. MehtaJ. P. SaiyadA. H. Design, synthesis, and biological evaluation studies of novel thiophene substituted thiazolidinones scaffold as promising antimicrobial agents.Vietnam Chem. (Vietnam Acad. Sci. Technol.)202462113314010.1002/vjch.202300116
    [Google Scholar]
  101. AbualnajaM.M. AlalawyA.I. AlatawiO.M. AlessaA.H. Fawzi QarahA. AlqahtaniA.M. BamagaM.A. El-MetwalyN.M. Synthesis of tetrazole hybridized with thiazole, thiophene or thiadiazole derivatives, molecular modelling and antimicrobial activity.Saudi Pharm. J.202432310196210.1016/j.jsps.2024.10196238318318
    [Google Scholar]
  102. YahayaI. ChemchemM. AydınerB. SeferoğluN. Erva TepeF. AçıkL. Aytuna ÇerçiN. TürkM. SeferoğluZ. Novel fluorescent coumarin-thiophene-derived Schiff bases: Synthesis, effects of substituents, photophysical properties, DFT calculations, and biological activities.J. Photochem. Photobiol. Chem.201936829630610.1016/j.jphotochem.2018.09.041
    [Google Scholar]
  103. MishraR. KumarN. SachanN. Synthesis and pharmacological study of thiophene derivatives.Int. J. Pharm. Qual. Assur2021123282291
    [Google Scholar]
  104. AbedN.A. HammoudaM.M. IsmailM.A. Abdel-LatifE. Synthesis of new heterocycles festooned with thiophene and evaluating their antioxidant activity.J. Heterocycl. Chem.202057124153416310.1002/jhet.4122
    [Google Scholar]
  105. KamalS. DerbalaH.A. AlteraryS.S. Ben BachaA. AlonaziM. El-AshreyM.K. Eid El-SayedN.N. Synthesis, biological, and molecular docking studies on 4,5,6,7-tetrahydrobenzo[ b]thiophene derivatives and their nanoparticles targeting colorectal cancer.ACS Omega2021643289922900810.1021/acsomega.1c0406334746589
    [Google Scholar]
  106. GulerA. KaratepeA. KoparirP. PekdemirS. KaratepeM. Investigation of the antioxidant and antitumour properties of some cyclobutane ring containing 2,5-thiophene diacyl compounds.Biointerface Res. Appl. Chem.20211222450246110.33263/BRIAC122.24502461
    [Google Scholar]
  107. SalehA. SaeedA. Abdel-GhaniE.G. El-RayyesA. Abdul-LatifE. Synthesis of some new antipyrine-thiophene hybrids and their evaluations as antioxidant and antibacterial agents.Bull. Chem. Soc. Ethiop.202237112314010.4314/bcse.v37i1.11
    [Google Scholar]
  108. KiranK. SarasijaM. Ananda RaoB. NamrathaV. AshokD. Srinivasa RaoA. Design, synthesis, and biological activity of new Bis-1,2,3-triazole derivatives bearing thiophene-chalcone moiety.Russ. J. Gen. Chem.20198991859186610.1134/S1070363219090214
    [Google Scholar]
  109. ÜnverY. DenizS. ÇelikF. AkarZ. KüçükM. SancakK. Synthesis of new 1,2,4-triazole compounds containing Schiff and Mannich bases (morpholine) with antioxidant and antimicrobial activities. J. Enzyme Inhib. Med. Chem.201631sup3899510.1080/14756366.2016.120608827430189
    [Google Scholar]
  110. YarovayaO.I. FilimonovA.S. BaevD.S. BorisevichS.S. ZaykovskayaA.V. ChirkovaV.Y. MareninaM.K. MeshkovaY.V. BelenkayaS.V. ShcherbakovD.N. GureevM.A. LuzinaO.A. PyankovO.V. SalakhutdinovN.F. KhvostovM.V. The potential of usnic-acid-based thiazolothiophenes as inhibitors of the main protease of SARS-CoV-2 viruses.Viruses202416221510.3390/v1602021538399993
    [Google Scholar]
  111. AzzamR.A. GadN.M. ElgemeieG.H. Novel thiophene thioglycosides substituted with the benzothiazole moiety: Synthesis, characterization, antiviral and anticancer evaluations, and NS3/4A and USP7 enzyme inhibitions.ACS Omega2022740356563566710.1021/acsomega.2c0344436249371
    [Google Scholar]
  112. ZhongZ.J. HuX.T. ChengL.P. ZhangX.Y. ZhangQ. ZhangJ. Discovery of novel thiophene derivatives as potent neuraminidase inhibitors.Eur. J. Med. Chem.202122511376211376210.1016/j.ejmech.2021.11376234411893
    [Google Scholar]
  113. WazirS. ParviainenT.A.O. PfannenstielJ.J. DuongM.T.H. CluffD. SowaS.T. Galera-PratA. FerrarisD. MaksimainenM.M. FehrA.R. HeiskanenJ.P. LehtiöL. Discovery of 2-amide-3-methylester thiophenes that target SARS-CoV-2 Mac1 and repress coronavirus replication, validating Mac1 as an antiviral target.bioRxiv202310.1101/2023.08.28.555062
    [Google Scholar]
  114. Barnes-SeemanD. BoiselleC. Capacci-DanielC. ChopraR. HoffmasterK. JonesC.T. KatoM. LinK. MaS. PanG. ShuL. WangJ. WhitemanL. XuM. ZhengR. FuJ. Design and synthesis of lactam–thiophene carboxylic acids as potent hepatitis C virus polymerase inhibitors.Bioorg. Med. Chem. Lett.201424163979398510.1016/j.bmcl.2014.06.03124986660
    [Google Scholar]
  115. GóraM. CzopekA. RapaczA. DziubinaA. Głuch-LutwinM. MordylB. ObniskaJ. Synthesis, anticonvulsant and antinociceptive activity of new hybrid compounds: derivatives of 3-(3-methylthiophen-2-yl)-pyrrolidine-2,5-dione.Int. J. Mol. Sci.20202116575010.3390/ijms2116575032796594
    [Google Scholar]
  116. WannbergJ. GisingJ. HenrikssonM. VoD.D. SävmarkerJ. SallanderJ. Gutiérrez-de-TeránH. LarssonJ. HamidS. AblahadH. SpizzoI. GaspariT.A. WiddopR.E. GrönbladhA. PetersenN.N. BacklundM. HallbergM. LarhedM.N. -(Heteroaryl)thiophene sulfonamides as angiotensin AT2 receptor ligands.Eur. J. Med. Chem.202426511612211612210.1016/j.ejmech.2024.11612238199164
    [Google Scholar]
  117. TariqS. AvecillaF. SharmaG.P. MondalN. AzamA. Design, synthesis and biological evaluation of quinazolin-4(3 H)-one Schiff base conjugates as potential antiamoebic agents.J. Saudi Chem. Soc.201822330631510.1016/j.jscs.2016.05.006
    [Google Scholar]
  118. MathewB. SureshJ. AnbazhaganS. Synthesis, preclinical evaluation and antidepressant activity of 5-substituted phenyl-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazole-1-carbothioamides.EXCLI J.20141343744526417270
    [Google Scholar]
  119. SilanesS.P. OrúsL. OficialdeguiA.M. Martínez EsparzaJ. LasherasB. Del RíoJ. MongeA. New 3-[4-(2,3-dihydro-14-benzodioxin-5-yl)piperazin-1-yl]-1-(5-substituted benzo[b]thiophen-3-yl)propanol derivatives with dual action at 5-HT(1A) serotonin receptors and serotonin transporter as a new class of antidepressants.Pharmazie200459749950115296084
    [Google Scholar]
  120. SanfilippoP.J. McNallyJ.J. PressJ.B. FaloticoR. GiardinoE. KatzL.B. Thiopene systems. 15. Synthesis and antihypertensive activity of 7- (subsituted benzamido)-6-hydroxythieno[3,2,-b]pyrans as nwe potassium channel activitors.Bioorg. Med. Chem. Lett.1993361385138810.1016/S0960‑894X(00)80354‑6
    [Google Scholar]
/content/journals/mc/10.2174/0115734064326879240801043412
Loading
/content/journals/mc/10.2174/0115734064326879240801043412
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test