Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background

Globally, parasitic diseases are considered among the neglected diseases. Clinically, several drugs are used in treatment, however due to drug resistance and multidrug resistance and the low investment in new research lines, there has been a failure in the treatment of parasitic illnesses.

Objectives

The present mini-review is a comprehensive review of the use of platinum group metals as biological agents. It aims to establish the actual state of the art of these metal elements in the antiparasitic activity-specific area and define the future possibilities of action.

Methods

The review comprises more than 100 research works done in this field. The differences between platinum group metals chemistry and their use as metal complexes with biological activity have been discussed.

Results

This review highlighted the platinum group metal's potential as an antiparasitic agent for different diseases.

Conclusion

The review will be helpful for the researchers involved in targeted drugs for parasitic disease therapy.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064324855240806052735
2024-08-23
2025-04-12
Loading full text...

Full text loading...

References

  1. ChristakiE. Classification of Parasitic Diseases. The Surgical Management of Parasitic DiseasesTsoulfas, G.; Hoballah, J.J.; Velmahos, G.C.; Ho, Y-H., Eds.; Springer International Publishing: Cham,2020234510.1007/978‑3‑030‑47948‑0_2
    [Google Scholar]
  2. NunesM.C.P. Guimarães JúniorM.H. DiamantinoA.C. GelapeC.L. FerrariT.C.A. Cardiac manifestations of para-sitic diseases.Heart2017103965165810.1136/heartjnl‑2016‑30987028285268
    [Google Scholar]
  3. HalliezM.C.M. BuretA.G. Gastrointestinal parasites and the neural control of gut functions.Front. Cell. Neurosci.2015945210.3389/fncel.2015.0045226635531
    [Google Scholar]
  4. Silva PereiraS. TrindadeS. De NizM. FigueiredoL.M. Tissue tropism in parasitic diseases.Open Biol.20199519003610.1098/rsob.19003631088251
    [Google Scholar]
  5. NorganA.P. PrittB.S. Parasitic infections of the skin and subcutaneous tissues.Adv. Anat. Pathol.201825210612310.1097/PAP.000000000000018329351090
    [Google Scholar]
  6. FikaduM. AshenafiE. Malaria: An overview.Infect. Drug Resist.2023163339334710.2147/IDR.S40566837274361
    [Google Scholar]
  7. MolyneuxD.H. HotezP.J. FenwickA. “Rapid-impact interventions”: How a policy of integrated control for Africa’s neglected tropical diseases could benefit the poor.PLoS Med.2005211e33610.1371/journal.pmed.002033616212468
    [Google Scholar]
  8. WHONeglected tropical diseases.2024Available From https://www.who.int/news-room/questions-and-answers/item/neglected-tropical-diseases
    [Google Scholar]
  9. Ruang-areerateT. SukphattanaudomchokeC. ThitaT. LeelayoovaS. PiyarajP. MungthinM. SuwanninP. PolpanichD. TangchaikeereeT. JangpatarapongsaK. ChoowongkomonK. SiripattanapipongS. Development of loop-mediated isothermal amplification (LAMP) assay using SYBR safe and gold-nanoparticle probe for detection of Leishmania in HIV patients.Sci. Rep.20211111215210.1038/s41598‑021‑91540‑534108543
    [Google Scholar]
  10. WeinbergE.D. Roles of metallic ions in host-parasite interactions.Bacteriol. Rev.196630113615110.1128/br.30.1.136‑151.19665324644
    [Google Scholar]
  11. TurnerR.J. The good, the bad, and the ugly of metals as antimicrobials.Biometals202337354555910.1007/s10534‑023‑00565‑y38112899
    [Google Scholar]
  12. SierraE.J.T. CordeiroC.F. de Figueiredo DinizL. CaldasI.S. HawkesJ.A. CarvalhoD.T. Coumarins as potential antiprotozoal agents: Biological activities and mechanism of ac-tion.Rev. Bras. Farmacogn.202131559261110.1007/s43450‑021‑00169‑y
    [Google Scholar]
  13. KucharskiD.J. JaszczakM.K. BoratyńskiP.J. A review of modifications of quinoline antimalarials: Mefloquine and (hydroxy)Chloroquine.Molecules2022273100310.3390/molecules2703100335164267
    [Google Scholar]
  14. MbabaM. GoldingT.M. SmithG.S. Recent advances in the biological investigation of organometallic platinum-group metal (Ir, Ru, Rh, Os, Pd, Pt) complexes as antimalarial agents.Molecules20202522527610.3390/molecules2522527633198217
    [Google Scholar]
  15. ZhangC. XuC. GaoX. YaoQ. Platinum-based drugs for cancer therapy and anti-tumor strategies.Theranostics20221252115213210.7150/thno.6942435265202
    [Google Scholar]
  16. BonnetS. Ruthenium-based photoactivated chemotherapy.J. Am. Chem. Soc.202314543233972341510.1021/jacs.3c0113537846939
    [Google Scholar]
  17. BajwaH.U.R. KhanM.K. AbbasZ. RiazR. RehmanT. AbbasR.Z. AleemM.T. AbbasA. AlmutairiM.M. Al-shammariF.A. AlraeyY. AlouffiA. Nanoparticles: Synthesis and their role as potential drug candidates for the treatment of parasitic diseases.Life (Basel)202212575010.3390/life1205075035629416
    [Google Scholar]
  18. StringerT. QuinteroM.A.S. WiesnerL. SmithG.S. NordlanderE. Evaluation of PTA-derived ruthenium(II) and iridium(III) quinoline complexes against chloroquine-sensitive and resistant strains of the Plasmodium falciparum malaria parasite.J. Inorg. Biochem.201919116417310.1016/j.jinorgbio.2018.11.01830529881
    [Google Scholar]
  19. KumariG. GuptaA. SahR.K. GautamA. SainiM. GuptaA. KushawahaA.K. SinghS. SasmalP.K. Development of mitochondria targeting AIE‐active cyclometalated iridium complexes as potent antimalarial agents.Adv. Healthc. Mater.2023129220241110.1002/adhm.20220241136515128
    [Google Scholar]
  20. ChellanP. LandK.M. ShokarA. AuA. AnS.H. TaylorD. SmithP.J. ChibaleK. SmithG.S. Di- and trinuclear ruthenium-, rhodium-, and iridium-functionalized pyridyl aromatic ethers: A new class of antiparasitic agents.Organometallics201332174793480410.1021/om400493k
    [Google Scholar]
  21. LoiseauP.M. MbongoN. BoriesC. BoulardY. CraciunescuD.G. In vivo antileishmanial action of Ir-(COD)-pentamidine tetraphenylborate on Leishmania donovani and Leishmania major mouse models.Parasite20007210310810.1051/parasite/200007210310887656
    [Google Scholar]
  22. MbongoN. LoiseauP.M. CraciunescuD.G. Robert-GeroM. Synergistic effect of Ir-(COT)-pentamidine alizarin red and pentamidine, amphotericin B, and paromomycin on Leishmania donovani.Acta Trop.199870223924510.1016/S0001‑706X(98)00018‑79698271
    [Google Scholar]
  23. DavisK.M. BittingA.L. MarkwalterC.F. BauerW.S. WrightD.W. Iridium(III) luminescent probe for detection of the malarial protein biomarker histidine rich protein-II. J. Vis. Exp.2015e52856101e5285610.3791/5285626273845
    [Google Scholar]
  24. DavisK.M. BittingA.L. WrightD.W. On-particle detection of Plasmodium falciparum histidine-rich protein II by a “switch-on” iridium(III) probe.Anal. Biochem.2014445606610.1016/j.ab.2013.10.00724129120
    [Google Scholar]
  25. QuinsonJ. Iridium and IrOx nanoparticles: An overview and review of syntheses and applications.Adv. Colloid Interface Sci.202230310264310.1016/j.cis.2022.10264335334351
    [Google Scholar]
  26. ZhenW. LiuY. LinL. BaiJ. JiaX. TianH. JiangX. BSA‐IrO 2: Catalase‐like nanoparticles with high photothermal conversion efficiency and a high x‐ray absorption coefficient for anti‐inflammation and antitumor theranostics.Angew. Chem. Int. Ed.20185732103091031310.1002/anie.20180446629888846
    [Google Scholar]
  27. ShinJ. ChoiS.J. YounD.Y. KimI.D. Exhaled VOCs sensing properties of WO3 nanofibers functionalized by Pt and IrO2 nanoparticles for diagnosis of diabetes and halitosis.J. Electroceram.201229210611610.1007/s10832‑012‑9755‑y
    [Google Scholar]
  28. KangX. LiuJ. TianH. YangB. NuLi, Y.; Yang, C. Sputtered iridium oxide modified flexible parylene microelectrodes array for electrical recording and stimulation of muscles.Sens. Actuators B Chem.201622526727810.1016/j.snb.2015.11.050
    [Google Scholar]
  29. BrittenN.S. ButlerJ.A. Ruthenium metallotherapeutics: Novel approaches to combatting parasitic infections.Curr. Med. Chem.202229315159517810.2174/092986732966622040110544435366762
    [Google Scholar]
  30. StuderV. AnghelN. DesiatkinaO. FelderT. BoubakerG. AmdouniY. RamseierJ. HungerbühlerM. KempfC. HeverhagenJ.T. HemphillA. RuprechtN. FurrerJ. PăunescuE. Conjugates containing two and three trithiolato-bridged Dinuclear Ruthenium(II)-arene units as in vitro antiparasitic and anticancer agents.Pharmaceuticals (Basel)2020131247110.3390/ph1312047133339451
    [Google Scholar]
  31. Al NasrI.S. KokoW.S. KhanT.A. GürbüzN. ÖzdemirI. HamdiN. Evaluation of ruthenium(II) N-heterocyclic carbene complexes as enzymatic inhibitory agents with antioxidant, antimicrobial, antiparasitical and antiproliferative activity.Molecules2023283135910.3390/molecules2803135936771026
    [Google Scholar]
  32. SouzaN.B. AguiarA.C.C. OliveiraA.C. TopS. PigeonP. JaouenG. GoulartM.O.F. KrettliA.U. Antiplasmodial activity of iron(II) and ruthenium(II) organometallic complexes against Plasmodium falciparum blood parasites.Mem. Inst. Oswaldo Cruz2015110898198810.1590/0074‑0276015016326602875
    [Google Scholar]
  33. AnchuriS.S. ThotaS. BongoniR.N. YerraR. ReddyR.N. DhulipalaS. Antimicrobial and antimalarial activity of novel synthetic Mononuclear Ruthenium(II) Compounds.J. Chin. Chem. Soc. (Taipei)201360215315910.1002/jccs.201200301
    [Google Scholar]
  34. Colina-VegasL. da CruzB. Silva, M.; de Souza Pereira, C.; Isis Barros, A.; Araújo Nobrega, J.; Navarro, M.; Rottmann, M.; D’Alessandro, S.; Basilico, N.; Azevedo Batista, A.; Moreira, D.R.M. Antimalarial agents derived from metal-amodiaquine complexes with activity in multiple stages of the plasmodium life cycle.Chemistry20232955e20230164210.1002/chem.20230164237427863
    [Google Scholar]
  35. CostaM.S. GonçalvesY.G. NunesD.C.O. NapolitanoD.R. MaiaP.I.S. RodriguesR.S. RodriguesV.M. Von PoelhsitzG. YoneyamaK.A.G. Anti-Leishmania activity of new ruthenium(II) complexes: Effect on parasite-host interaction.J. Inorg. Biochem.201717522523110.1016/j.jinorgbio.2017.07.02328783554
    [Google Scholar]
  36. FandzlochM. ArriagaJ.M.M. Sánchez-MorenoM. WojtczakA. JezierskaJ. SitkowskiJ. WiśniewskaJ. SalasJ.M. ŁakomskaI. Strategies for overcoming tropical disease by ruthenium complexes with purine analog: Application against Leishmania spp. and Trypanosoma cruzi.J. Inorg. Biochem.201717614415510.1016/j.jinorgbio.2017.08.01828910663
    [Google Scholar]
  37. RivasF. Del MármolC. ScaleseG. Pérez-DíazL. MachadoI. BlacqueO. MedeirosA. CominiM. GambinoD. New multifunctional Ru(II) organometallic compounds show activity against Trypanosoma brucei and Leishmania infantum.J. Inorg. Biochem.202223711201610.1016/j.jinorgbio.2022.11201636244312
    [Google Scholar]
  38. LakshmiB.A. ReddyA.S. SangubotlaR. HongJ.W. KimS. Ruthenium(II)-curcumin liposome nanoparticles: Synthesis, characterization, and their effects against cervical cancer.Colloids Surf. B Biointerfaces202120411177310.1016/j.colsurfb.2021.11177333933878
    [Google Scholar]
  39. Martínez-CarmonaM. HoQ.P. MorandJ. GarcíaA. OrtegaE. ErthalL.C.S. Ruiz-HernandezE. SantanaM.D. RuizJ. Vallet-RegíM. Gun’koY.K. Amino-functionalized mesoporous silica nanoparticle-encapsulated octahedral organoruthenium complex as an efficient platform for combatting cancer.Inorg. Chem.20205914102751028410.1021/acs.inorgchem.0c0143632628466
    [Google Scholar]
  40. LuY. ZhuD. LeQ. WangY. WangW. Ruthenium-based antitumor drugs and delivery systems from monother-apy to combination therapy.Nanoscale20221444163391637510.1039/D2NR02994D36341705
    [Google Scholar]
  41. SolimanN. SolV. OukT.S. ThomasC.M. GasserG. Encapsulation of a Ru(II) polypyridyl complex into polylactide nanoparticles for antimicrobial photodynamic therapy.Pharmaceutics2020121096110.3390/pharmaceutics1210096133066200
    [Google Scholar]
  42. YinC. WangZ. DingX. ChenX. WangJ. YangE. WangW. MartinL.L. SunD. Crystalline ruthenium polypyridine nanoparticles: A targeted treatment of bacterial infection with multifunctional antibacterial, adhesion and surface-anchoring photosensitizer properties.J. Mater. Chem. B Mater. Biol. Med.20219183808382510.1039/D1TB00103E33979422
    [Google Scholar]
  43. MikheenkoI.P. Gomez-BolivarJ. MerrounM. SharmaS. MacaskieL.E. High Resolution electron microscopy study of biologically derived ruthenium and palladium/ruthenium nanoparticles.Proceedings of the 2016 International Conference on Nanomaterials: Application & Properties (NAP)14-19 September 2016Lviv, Ukraine201610.1109/NAP.2016.7757229
    [Google Scholar]
  44. Soldevila-BarredaJ.J. HabtemariamA. Romero-CanelónI. SadlerP.J. Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD+ and pyruvate, and antipro-liferative activity.J. Inorg. Biochem.201515332233310.1016/j.jinorgbio.2015.10.00826601938
    [Google Scholar]
  45. ZhuW. GunnoeT.B. Advances in rhodium-catalyzed oxidative arene alkenylation.Acc. Chem. Res.202053492093610.1021/acs.accounts.0c0003632239913
    [Google Scholar]
  46. LiuC.X. YinS.Y. ZhaoF. YangH. FengZ. GuQ. YouS.L. Rhodium-Catalyzed Asymmetric C–H Functionalization Reactions.Chem. Rev.202312316100791013410.1021/acs.chemrev.3c0014937527349
    [Google Scholar]
  47. KatsarosN. AnagnostopoulouA. Rhodium and its compounds as potential agents in cancer treatment.Crit. Rev. Oncol. Hematol.200242329730810.1016/S1040‑8428(01)00222‑012050021
    [Google Scholar]
  48. SohrabiM. SaeediM. LarijaniB. MahdaviM. Recent advances in biological activities of rhodium complexes: Their applications in drug discovery research.Eur. J. Med. Chem.202121611330810.1016/j.ejmech.2021.11330833713976
    [Google Scholar]
  49. KnollJ.D. TurroC. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy.Coord. Chem. Rev.2015282-28311012610.1016/j.ccr.2014.05.01825729089
    [Google Scholar]
  50. MálikováK. MasarykL. ŠtarhaP. Anticancer half-sandwich rhodium(III) Complexes.Inorganics (Basel)2021942610.3390/inorganics9040026
    [Google Scholar]
  51. CuiP.F. LiuX.R. JinG.X. Supramolecular architectures bearing half-sandwich iridium- or rhodium-based carboranes: Design, synthesis, and applications.J. Am. Chem. Soc.202314536194401945710.1021/jacs.3c0556337643971
    [Google Scholar]
  52. GeldmacherY. SplithK. KitanovicI. AlborziniaH. CanS. RubbianiR. NazifM.A. WefelmeierP. ProkopA. OttI. WölflS. NeundorfI. SheldrickW.S. Cellular impact and selectivity of half-sandwich organorhodium(III) anticancer complexes and their organoiridium(III) and trichloridorhodium(III) counterparts.J. Biol. Inorg. Chem.201217463164610.1007/s00775‑012‑0883‑222358334
    [Google Scholar]
  53. SharmaV. Therapeutic drugs for targeting chloroquine resistance in malaria.Mini Rev. Med. Chem.20055433735110.2174/138955705354402915853624
    [Google Scholar]
  54. StringerT. TaylorD. GuzgayH. ShokarA. AuA. SmithP.J. HendricksD.T. LandK.M. EganT.J. SmithG.S. Polyamine quinoline rhodium complexes: Synthesis and pharmacological evaluation as antiparasitic agents against Plasmodium falciparum and Trichomonas vaginalis.Dalton Trans.20154433149061491710.1039/C5DT02378E26226082
    [Google Scholar]
  55. Rodriguez-CabezasM.N. Mesa-ValleC.M. AzzouzS. Moraleda-LindezV. CraciunescuD. Gutierrez-RiosM.T. De FrutosM.I. OsunaA. In vitro and in vivo activity of New Rhodium (III) Complexes against Leishmania donovani.Pharmacology200163211211910.1159/00005612111490204
    [Google Scholar]
  56. BaartzesN. JordaanA. WarnerD.F. CombrinckJ. TaylorD. ChibaleK. SmithG.S. Antimicrobial evaluation of neutral and cationic iridium(III) and rhodium(III) aminoquin-oline-benzimidazole hybrid complexes.Eur. J. Med. Chem.202020611269410.1016/j.ejmech.2020.11269432861176
    [Google Scholar]
  57. JordaanL. NdlovuM.T. MkhizeS. NgubaneS. LootsL. DuffyS. AveryV.M. ChellanP. Investigating the antiplasmodial activity of substituted cyclopentadienyl rhodium and iridium complexes of 2-(2-pyridyl)benzimidazole.J. Organomet. Chem.202296212227310.1016/j.jorganchem.2022.122273
    [Google Scholar]
  58. XuL. LiuD. ChenD. LiuH. YangJ. Size and shape controlled synthesis of rhodium nanoparticles.Heliyon201951e0116510.1016/j.heliyon.2019.e0116530723833
    [Google Scholar]
  59. KangS. ShinW. ChoiM.H. AhnM. KimY.K. KimS. MinD.H. JangH. Morphology-controlled synthesis of rhodium nanoparticles for cancer phototherapy.ACS Nano20181276997700810.1021/acsnano.8b0269829901981
    [Google Scholar]
  60. NabiyevaT. MarschnerC. BlomB. Synthesis, structure and anti-cancer activity of osmium complexes bearing π-bound arene substituents and phosphane Co-Ligands: A review.Eur. J. Med. Chem.202020111248310.1016/j.ejmech.2020.11248332592914
    [Google Scholar]
  61. ManiA. FengT. GandiosoA. VinckR. NotaroA. GourdonL. BurckelP. SaubaméaB. BlacqueO. CariouK. BelgaiedJ.E. ChaoH. GasserG. Structurally simple osmium(II) polypyridyl complexes as photosensitizers for photodynamic therapy in the near infrared**.Angew. Chem. Int. Ed.20236220e20221834710.1002/anie.20221834736917074
    [Google Scholar]
  62. CastillaJ.J. Mesa-ValleC.M. Sanchez-MorenoM. ArnedoT. RosalesM.J. MascaroC. CraciunescuD. OsunaA. In vitro activity and biochemical effectiveness of new organometallic complexes of osmium(III) against Leishmania donovani and Trypanosoma cruzi.Arzneimittelforschung199646109909968931894
    [Google Scholar]
  63. GavrilutaA. BüchelG.E. FreitagL. NovitchiG. Tom-masinoJ.B. JeanneauE. KuhnP.S. GonzálezL. ArionV.B. LuneauD. Mechanism elucidation of the cis-trans isomerization of an azole ruthenium-nitrosyl complex and its osmium counterpart.Inorg. Chem.201352116260627210.1021/ic400482423675748
    [Google Scholar]
  64. TrindadeJ.D.A.S. Freire-de-LimaC.G. Côrte-RealS. Decote-RicardoD. Freire de LimaM.E. Drug repurposing for Chagas disease: In vitro assessment of nimesulide against Trypanosoma cruzi and insights on its mechanisms of action.PLoS One20211610e025829210.1371/journal.pone.025829234679091
    [Google Scholar]
  65. CarneiroF.M. da CruzA.B. MaiaM.M. TaniwakiN.N. PereiraI.S. NamiyamaG.M. GavaR. HiramotoR.M. Vi-centeB. MidlejV. MarianteR.M. Pereira-ChioccolaV.L. Extracellular vesicles from Leishmania (Leishmania) infantum contribute in stimulating immune response and immunosuppression in hosts with visceral leishmaniasis.Microorganisms202412227010.3390/microorganisms1202027038399674
    [Google Scholar]
  66. HairM. YanaseR. Moreira-LeiteF. WheelerR.J. SádlováJ. VolfP. VaughanS. SunterJ.D. Whole cell reconstructions of Leishmania mexicana through the cell cycle.PLoS Pathog.2024202e101205410.1371/journal.ppat.101205438416776
    [Google Scholar]
  67. RiceK.M. GinjupalliG.K. ManneN.D.P.K. JonesC.B. BloughE.R. A review of the antimicrobial potential of precious metal derived nanoparticle constructs.Nanotechnology2019303737200110.1088/1361‑6528/ab0d3830840941
    [Google Scholar]
  68. RosenbergB. Van CampL. KrigasT. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode.Nature1965205497269869910.1038/205698a014287410
    [Google Scholar]
  69. RosenbergB. VanCampL. The successful regression of large solid sarcoma 180 tumors by platinum compounds.Cancer Res.1970306179918025457941
    [Google Scholar]
  70. DasariS. Bernard TchounwouP. Cisplatin in cancer therapy: Molecular mechanisms of action.Eur. J. Pharmacol.201474036437810.1016/j.ejphar.2014.07.02525058905
    [Google Scholar]
  71. RomaniA.M.P. Cisplatin in cancer treatment.Biochem. Pharmacol.202220611532310.1016/j.bcp.2022.11532336368406
    [Google Scholar]
  72. HavasiA. CainapS.S. HavasiA.T. CainapC. Ovarian cancer—insights into platinum resistance and overcoming it.Medicina (Kaunas)202359354410.3390/medicina5903054436984544
    [Google Scholar]
  73. RichardsonD.L. EskanderR.N. O’MalleyD.M. Advances in ovarian cancer care and unmet treatment needs for patients with platinum resistance.JAMA Oncol.20239685185910.1001/jamaoncol.2023.019737079311
    [Google Scholar]
  74. Mesa-ValleC.M. CraciunescuD. Parrondo-IglesiasE. OsunaA. In vitro action of platinum (II) and platinum (IV) complexes on Trypanosoma cruzi and Leishmania donovani.Arzneimittelforschung19893988388422684173
    [Google Scholar]
  75. NavarroM. GabbianiC. MessoriL. GambinoD. Metal-based drugs for malaria, trypanosomiasis and leishmaniasis: Recent achievements and perspectives.Drug Discov. Today20101523-241070107810.1016/j.drudis.2010.10.00520974285
    [Google Scholar]
  76. Sánchez-DelgadoR.A. AnzellottiA. Metal complexes as chemotherapeutic agents against tropical diseases: Trypanosomiasis, malaria and leishmaniasis.Mini Rev. Med. Chem.200441233010.2174/138955704348749314754440
    [Google Scholar]
  77. VieitesM. OteroL. SantosD. TolozaJ. FigueroaR. NorambuenaE. Olea-AzarC. AguirreG. CerecettoH. GonzálezM. MorelloA. MayaJ.D. GaratB. GambinoD. Platinum(II) metal complexes as potential anti-Trypanosoma cruzi agents.J. Inorg. Biochem.20081025-61033104310.1016/j.jinorgbio.2007.12.00518226837
    [Google Scholar]
  78. O’SullivanM. The battle against trypanosomiasis and leishmaniasis: Metal-based and natural product inhibitors of trypanothione reductase.Curr. Med. Anti Infect. Agents20054435537810.2174/156801205774322241
    [Google Scholar]
  79. VisbalG. MarchánE. MaldonadoA. SimoniZ. NavarroM. Synthesis and characterization of platinum–sterol hydrazone complexes with biological activity against Leishmania (L.) mexicana.J. Inorg. Biochem.2008102354755410.1016/j.jinorgbio.2007.11.00218164763
    [Google Scholar]
  80. YadavM.K. RajputG. SrivastavaK. SinghR.K. MishraR. DrewM.G.B. SinghN. Anti-leishmanial activity of Ni(II), Pd(II) and Pt(II) β-oxodithioester complexes.New J. Chem.20153986358636610.1039/C5NJ00765H
    [Google Scholar]
  81. TabriziL. ChiniforoshanH. New platinum(II) complexes of CCC-pincer N-heterocyclic carbene ligand: Synthesis, characterization, cytotoxicity and antileishmanial activity.J. Organomet. Chem.20168189810510.1016/j.jorganchem.2016.06.013
    [Google Scholar]
  82. PatraS.C. Saha RoyA. BanerjeeS. BanerjeeA. Das SahaK. BhadraR. PramanikK. GhoshP. Palladium(II) and platinum(II) complexes of glyoxalbis(N-aryl)osazone: Molecular and electronic structures, anti-microbial activities and DNA-binding study.New J. Chem.201943259891990110.1039/C9NJ00223E
    [Google Scholar]
  83. LapasamA. KolliparaM.R. A survey of crystal structures and biological activities of platinum group metal complexes containing N -acylthiourea ligands.Phosphorus Sulfur Silicon Relat. Elem.20201951077980410.1080/10426507.2020.1764956
    [Google Scholar]
  84. SilvaG.L. DiasJ.S.M. SilvaH.V.R. TeixeiraJ.D.S. De SouzaI.R.B. GuimarãesE.T. de Magalhães MoreiraD.R. SoaresM.B.P. BarbosaM.I.F. DoriguettoA.C. Synthesis, crystal structure and leishmanicidal activity of new trimethoprim Ru(III), Cu(II) and Pt(II) metal complexes.J. Inorg. Biochem.202020511100210.1016/j.jinorgbio.2020.11100232007697
    [Google Scholar]
  85. ZhangJ.J. XuQ.J. ZhangY. ZhouQ. LvR. ChenZ. HeW. Recent advances in nanocarriers for clinical platinum(II) anticancer drugs.Coord. Chem. Rev.202450521567610.1016/j.ccr.2024.215676
    [Google Scholar]
  86. ChenJ. ZhangZ. MaJ. Nezamzadeh-EjhiehA. LuC. PanY. LiuJ. BaiZ. Current status and prospects of MOFs in controlled delivery of Pt anticancer drugs.Dalton Trans.202352196226623810.1039/D3DT00413A37070759
    [Google Scholar]
  87. MalodeU. PatilY.S. SelokarY.N. YadavP.R. BhagatR.P. NikoseV.M. ThakareR.U. NimbarteS. Sustainable approaches for the synthesis of biogenic platinum nanoparticles.Bull. Natl. Res. Cent.202347113010.1186/s42269‑023‑01104‑y
    [Google Scholar]
  88. BlochK. PardesiK. SatrianoC. GhoshS. Bacteriogenic platinum nanoparticles for application in nanomedicine.Front Chem.2021962434410.3389/fchem.2021.62434433763405
    [Google Scholar]
  89. CzarnomysyR. RadomskaD. SzewczykO.K. RoszczenkoP. BielawskiK. Platinum and palladium complexes as promising sources for antitumor treatments.Int. J. Mol. Sci.20212215827110.3390/ijms2215827134361037
    [Google Scholar]
  90. SavićA. MarzoT. ScalettiF. MassaiL. BartoliG. HoogenboomR. MessoriL. Van DeunR. Van HeckeK. New platinum(II) and palladium(II) complexes with substituted terpyridine ligands: Synthesis and characterization, cytotoxicity and reactivity towards biomolecules.Biometals2019321334710.1007/s10534‑018‑0155‑x30367340
    [Google Scholar]
  91. KazimirA. SchwarzeB. LönneckeP. JelačaS. MijatovićS. Maksimović-IvanićD. Hey-HawkinsE. Metallodrugs against breast cancer: Combining the tamoxifen vector with platinum(II) and palladium(II) complexes.Pharmaceutics202315268210.3390/pharmaceutics1502068236840003
    [Google Scholar]
  92. CairesA.C.F. Recent advances involving palladium (II) complexes for the cancer therapy.Anticancer. Agents Med. Chem.20077548449110.2174/18715200778166866117896909
    [Google Scholar]
  93. ArugueteD. MillerK. WallaceA. BlakneyT. MuccioD. PellR. WilliamsonC. The effects of palladium coordination complex speciation and concentration upon the ubiquitous bacterial species Pseudomonas aeruginosa.Ecotoxicol. Environ. Saf.202325111451210.1016/j.ecoenv.2023.11451236634480
    [Google Scholar]
  94. PlutínA.M. AlvarezA. MoceloR. RamosR. CastellanoE.E. da SilvaM.M. VillarrealW. PavanF.R. MeiraC.S. FilhoJ.S.R. MoreiraD.R.M. SoaresM.B.P. BatistaA.A. Palladium(II)/N,N-disubstituted-N′-acylthioureas complexes as anti-Mycobacterium tuberculosis and anti- Trypanosoma cruzi agents.Polyhedron2017132707710.1016/j.poly.2017.05.003
    [Google Scholar]
  95. Al-JanabiA.S.M. AlheetyM.A. Al-SamraiO.A.Y. ShaabanS. KibarB. CacanE. Anti-cancer and anti-fungal evaluation of novel palladium(II) 1-phenyl-1H-tetrazol-5-thiol complexes.Inorg. Chem. Commun.202012110819310.1016/j.inoche.2020.108193
    [Google Scholar]
  96. GenovaP. VaradinovaT. MatesanzA.I. MarinovaD. SouzaP. Toxic effects of bis(thiosemicarbazone) compounds and its palladium(II) complexes on herpes simplex virus growth.Toxicol. Appl. Pharmacol.2004197210711210.1016/j.taap.2004.02.00615163546
    [Google Scholar]
  97. ChellanP. Shunmoogam-GoundenN. HendricksD.T. GutJ. RosenthalP.J. LateganC. SmithP.J. ChibaleK. SmithG.S. Synthesis, structure and in vitro biological screening of palladium(II) complexes of functionalised salicylaldimine thiosemicarbazones as antimalarial and anticancer agents.Eur. J. Inorg. Chem.20102010223520352810.1002/ejic.201000317
    [Google Scholar]
  98. RostánS. PortoS. BarbosaC.L.N. AssisD. AlvarezN. MachadoF.S. MahlerG. OteroL. A novel palladium complex with a coumarin-thiosemicarbazone hybrid ligand inhibits Trypanosoma cruzi release from host cells and lowers the parasitemia in vivo.Eur. J. Biochem.202328871172310.1007/s00775‑023‑02020‑237768364
    [Google Scholar]
  99. VelásquezA.M.A. RibeiroW.C. VennV. CastelliS. CamargoM.S. de AssisR.P. de SouzaR.A. RibeiroA.R. PassalacquaT.G. da RosaJ.A. BavieraA.M. MauroA.E. DesideriA. Almeida-AmaralE.E. GraminhaM.A.S. Efficacy of a binuclear cyclopalladated compound therapy for cutaneous leishmaniasis in the murine model of infection with leishmania amazonensis and its inhibitory effect on topoisomerase 1B.Antimicrob. Agents Chemother.2017618e00688e1710.1128/AAC.00688‑1728507113
    [Google Scholar]
  100. FrancoL.P. de GóisE.P. CodonhoB.S. PavanA.L.R. de Oliveira PereiraI. MarquesM.J. de AlmeidaE.T. Palladium(II) imine ligands cyclometallated complexes with a potential leishmanicidal activity on Leishmania (L.) amazonensis.Med. Chem. Res.20132231049105610.1007/s00044‑012‑0095‑x
    [Google Scholar]
  101. PaladiC.S. PimentelI.A.S. KatzS. CunhaR.L.O.R. JudiceW.A.S. CairesA.C.F. BarbiériC.L. In vitro and in vivo activity of a palladacycle complex on Leishmania (Leishmania) amazonensis.PLoS Negl. Trop. Dis.201265e162610.1371/journal.pntd.000162622616018
    [Google Scholar]
  102. NavarroM. BetancourtA. HernándezC. MarchánE. Palladium polypyridyl complexes: Synthesis, characterization, DNA interaction and biological activity on Leishmania (L.) mexicana.J. Braz. Chem. Soc.20081971355136010.1590/S0103‑50532008000700018
    [Google Scholar]
  103. CunhaL.C. LageD.P. FerreiraL.S. Saboia-VahiaL. CoelhoE.A.F. BeloV.S. Teixeira-NetoR.G. SoaresL.F. ChagasR.C.R. da SilvaE.S. Leishmanicidal activity of ibuprofen and its complexes with Ni(II), Mn(II) and Pd(II).Inorg. Chem. Commun.202011310775610.1016/j.inoche.2019.107756
    [Google Scholar]
  104. JoudehN. SaragliadisA. KosterG. MikheenkoP. LinkeD. Synthesis methods and applications of palladium nanoparticles: A review.Front. Nanotechnol.202241062608
    [Google Scholar]
  105. TrzeciakA.M. AugustyniakA.W. The role of palladium nanoparticles in catalytic C–C cross-coupling reactions.Coord. Chem. Rev.201938412010.1016/j.ccr.2019.01.008
    [Google Scholar]
  106. NarayananK.B. SakthivelN. Biological synthesis of metal nanoparticles by microbes.Adv. Colloid Interface Sci.20101561-211310.1016/j.cis.2010.02.00120181326
    [Google Scholar]
  107. DasR.K. PachapurV.L. LonappanL. NaghdiM. PulicharlaR. MaitiS. CledonM. DalilaL.M.A. SarmaS.J. BrarS.K. Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects.Nanotechnol Environ Eng2017211810.1007/s41204‑017‑0029‑4
    [Google Scholar]
  108. FathyA.A. ButlerI.S. Abd ElrahmanM. Jean-ClaudeB.J. MostafaS.I. Anticancer evaluation and drug delivery of new palladium(II) complexes based on the chelate of alen-dronate onto hydroxyapatite nanoparticles.Inorg. Chim. Acta2018473445010.1016/j.ica.2017.12.015
    [Google Scholar]
/content/journals/mc/10.2174/0115734064324855240806052735
Loading
/content/journals/mc/10.2174/0115734064324855240806052735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test