Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction

Furoxan and benzofuroxan are compounds containing an -oxide function, known for their diverse pharmacological properties, including antimicrobial and anti-inflammatory effects. This study aimed to investigate these activities using an in-house library of -oxide compounds.

Methods

Twenty compounds were tested against both Gram-positive and Gram-negative bacteria, including (), a microorganism implicated in the development of acne vulgaris. One compound, (E)-4-(3-((2-(3-hydroxybenzoyl)hydrazone)methyl)phenoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazol-2-N-oxide (compound ), exhibited selective antimicrobial activity against , with a Minimum Inhibitory Concentration (MIC) value of 2 µg/mL. Indirect measurement of Nitric Oxide (NO) release showed that compound and isosorbide dinitrate, when treated with -cysteine, produced nitrite levels of 20.1% and 9.95%, respectively. Using a NO scavenger (PTIO) in combination with compound in a culture of resulted in reduced antimicrobial activity, indicating that NO release is part of its mechanism of action. Cytotoxicity assessments using murine macrophages showed cellular viability above 70% at concentrations up to 0.78 μg/mL.

Results

Measurements of Interleukin-1 beta (IL1-β) and Tumor Necrosis Factor-alpha (TNF-α) indicated that compound did not reduce the levels of these pro-inflammatory cytokines. Sustained NO production by inducible Nitric Oxide Synthase (iNOS) in macrophages or neutrophils has been found to be involved in the inflammatory process in acne vulgaris and lead to toxicity in surrounding tissues. Nitrite levels in the supernatant of murine macrophages were found to be decreased at a concentration of 0.78 μg/mL of compound , indicating an anti-inflammatory effect. studies were conducted using Balb/c nude mice inoculated subcutaneously with . Cream and gel formulations of compound were applied to treat the animals, along with commercially available anti-acne drugs, for 14 days. Animals treated with a cream base containing 5% of compound exhibited less acanthosis with mild inflammatory infiltration compared to other groups, highlighting its anti-inflammatory properties.

Conclusion

Similar results were observed in the benzoyl peroxide group, demonstrating that compound presented comparable anti-inflammatory activity to the FDA-approved drug. These promising results suggest that compound has a dual mechanism of action, with selective antimicrobial activity against and notable anti-inflammatory properties, making it a potential prototype for developing new treatments for acne vulgaris.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064306187240722070225
2024-07-30
2024-12-27
Loading full text...

Full text loading...

References

  1. VosT. FlaxmanA.D. NaghaviM. LozanoR. MichaudC. EzzatiM. ShibuyaK. SalomonJ.A. AbdallaS. AboyansV. AbrahamJ. AckermanI. AggarwalR. AhnS.Y. AliM.K. AlMazroaM.A. AlvaradoM. AndersonH.R. AndersonL.M. AndrewsK.G. AtkinsonC. BaddourL.M. BahalimA.N. Barker-ColloS. BarreroL.H. BartelsD.H. BasáñezM-G. BaxterA. BellM.L. BenjaminE.J. BennettD. BernabéE. BhallaK. BhandariB. BikbovB. AbdulhakA.B. BirbeckG. BlackJ.A. BlencoweH. BloreJ.D. BlythF. BolligerI. BonaventureA. BoufousS. BourneR. BoussinesqM. BraithwaiteT. BrayneC. BridgettL. BrookerS. BrooksP. BrughaT.S. Bryan-HancockC. BucelloC. BuchbinderR. BuckleG. BudkeC.M. BurchM. BurneyP. BursteinR. CalabriaB. CampbellB. CanterC.E. CarabinH. CarapetisJ. CarmonaL. CellaC. CharlsonF. ChenH. ChengA.T-A. ChouD. ChughS.S. CoffengL.E. ColanS.D. ColquhounS. ColsonK.E. CondonJ. ConnorM.D. CooperL.T. CorriereM. CortinovisM. de VaccaroK.C. CouserW. CowieB.C. CriquiM.H. CrossM. DabhadkarK.C. DahiyaM. DahodwalaN. Damsere-DerryJ. DanaeiG. DavisA. De LeoD. DegenhardtL. DellavalleR. DelossantosA. DenenbergJ. DerrettS. Des JarlaisD.C. DharmaratneS.D. DheraniM. Diaz-TorneC. DolkH. DorseyE.R. DriscollT. DuberH. EbelB. EdmondK. ElbazA. AliS.E. ErskineH. ErwinP.J. EspindolaP. EwoigbokhanS.E. FarzadfarF. FeiginV. FelsonD.T. FerrariA. FerriC.P. FèvreE.M. FinucaneM.M. Flax-manS. FloodL. ForemanK. ForouzanfarM.H. FowkesF.G.R. FranklinR. FransenM. FreemanM.K. GabbeB.J. GabrielS.E. GakidouE. GanatraH.A. GarciaB. GaspariF. GillumR.F. GmelG. GosselinR. GraingerR. GroegerJ. GuilleminF. GunnellD. GuptaR. HaagsmaJ. HaganH. HalasaY.A. HallW. HaringD. HaroJ.M. HarrisonJ.E. HavmoellerR. HayR.J. HigashiH. HillC. HoenB. HoffmanH. HotezP.J. HoyD. HuangJ.J. IbeanusiS.E. JacobsenK.H. JamesS.L. JarvisD. JasrasariaR. JayaramanS. JohnsN. JonasJ.B. KarthikeyanG. KassebaumN. KawakamiN. KerenA. KhooJ-P. KingC.H. KnowltonL.M. KobusingyeO. KorantengA. KrishnamurthiR. LallooR. LaslettL.L. LathleanT. LeasherJ.L. LeeY.Y. LeighJ. LimS.S. LimbE. LinJ.K. LipnickM. LipshultzS.E. LiuW. LoaneM. OhnoS.L. LyonsR. MaJ. MabweijanoJ. MacIntyreM.F. Ma-lekzadehR. MallingerL. ManivannanS. MarcenesW. MarchL. MargolisD.J. MarksG.B. MarksR. MatsumoriA. MatzopoulosR. MayosiB.M. McAnultyJ.H. McDermottM.M. McGillN. McGrathJ. Medina-MoraM.E. MeltzerM. MemishZ.A. MensahG.A. MerrimanT.R. MeyerA-C. MiglioliV. MillerM. MillerT.R. MitchellP.B. MocumbiA.O. MoffittT.E. MokdadA.A. MonastaL. MonticoM. Moradi-LakehM. MoranA. MorawskaL. MoriR. MurdochM.E. MwanikiM.K. NaidooK. NairM.N. NaldiL. NarayanK.M.V. NelsonP.K. NelsonR.G. NevittM.C. NewtonC.R. NolteS. NormanP. NormanR. O’DonnellM. O’HanlonS. Ol-ivesC. OmerS.B. OrtbladK. OsborneR. OzgedizD. PageA. PahariB. PandianJ.D. RiveroA.P. PattenS.B. PearceN. PadillaR.P. Perez-RuizF. PericoN. PesudovsK. PhillipsD. PhillipsM.R. PierceK. PionS. PolanczykG.V. PolinderS. PopeC.A.III PopovaS. PorriniE. PourmalekF. PrinceM. PullanR.L. RamaiahK.D. RanganathanD. RazaviH. ReganM. RehmJ.T. ReinD.B. RemuzziG. RichardsonK. RivaraF.P. RobertsT. RobinsonC. De LeònF.R. RonfaniL. RoomR. RosenfeldL.C. RushtonL. SaccoR.L. SahaS. SampsonU. Sanchez-RieraL. SanmanE. SchwebelD.C. ScottJ.G. Segui-GomezM. ShahrazS. ShepardD.S. ShinH. ShivakotiR. SilberbergD. SinghD. SinghG.M. SinghJ.A. SingletonJ. SleetD.A. SliwaK. SmithE. SmithJ.L. StapelbergN.J.C. SteerA. SteinerT. StolkW.A. StovnerL.J. SudfeldC. SyedS. TamburliniG. TavakkoliM. TaylorH.R. TaylorJ.A. TaylorW.J. ThomasB. ThomsonW.M. ThurstonG.D. TleyjehI.M. TonelliM. TowbinJ.A. TruelsenT. TsilimbarisM.K. UbedaC. UndurragaE.A. van der WerfM.J. van OsJ. VavilalaM.S. VenketasubramanianN. WangM. WangW. WattK. WeatherallD.J. WeinstockM.A. WeintraubR. WeisskopfM.G. WeissmanM.M. WhiteR.A. WhitefordH. WiersmaS.T. WilkinsonJ.D. WilliamsH.C. WilliamsS.R.M. WittE. WolfeF. WoolfA.D. WulfS. YehP-H. ZaidiA.K.M. ZhengZ-J. ZoniesD. LopezA.D. MurrayC.J.L. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010.Lancet201238098592163219610.1016/S0140‑6736(12)61729‑223245607
    [Google Scholar]
  2. ThiboutotD. GollnickH. BettoliV. DrénoB. KangS. LeydenJ.J. ShalitaA.R. LozadaV.T. BersonD. FinlayA. GohC.L. HeraneM.I. KaminskyA. KubbaR. LaytonA. MiyachiY. PerezM. MartinJ.P. Ramos-e-SilvaM. SeeJ.A. ShearN. WolfJ.Jr New insights into the management of acne: An update from the Global Alliance to Improve Outcomes in Acne group.J. Am. Acad. Dermatol.2009605Suppl.S1S5010.1016/j.jaad.2009.01.01919376456
    [Google Scholar]
  3. WilliamsH.C. DellavalleR.P. GarnerS. Acne vulgaris.Lancet2012379981336137210.1016/S0140‑6736(11)60321‑821880356
    [Google Scholar]
  4. MavranezouliI. DalyC.H. WeltonN.J. DeshpandeS. BergL. BromhamN. ArnoldS. PhillippoD.M. WilcockJ. XuJ. RavenscroftJ.C. WoodD. RafiqM. FouL. DworzynskiK. HealyE. A systematic review and network meta-analysis of topical pharmacological, oral pharmacological, physical and combined treatments for acne vulgaris.Br. J. Dermatol.2022187563964910.1111/bjd.2173935789996
    [Google Scholar]
  5. AhleC.M. FeidenhanslC. BrüggemannH. Cutibacterium acnes.Trends Microbiol.202331441942010.1016/j.tim.2022.10.00636328874
    [Google Scholar]
  6. ItohT. TsuchidaA. MuramatsuY. NinomiyaM. AndoM. TsukamasaY. KoketsuM. Antimicrobial and anti-inflammatory properties of nostocionone isolated from Nostoc commune Vauch and its derivatives against Propionibacterium acnes.Anaerobe201427566310.1016/j.anaerobe.2014.03.00624699048
    [Google Scholar]
  7. BoyanovaL. Cutibacterium acnes (formerly Propionibacterium acnes): friend or foe?Future Microbiol.202318423524410.2217/fmb‑2022‑019137042433
    [Google Scholar]
  8. OttavianiM. AlestasT. FloriE. MastrofrancescoA. ZouboulisC.C. PicardoM. Peroxidated squalene induces the production of inflammatory mediators in HaCaT keratinocytes: A possible role in acne vulgaris.J. Invest. Dermatol.2006126112430243710.1038/sj.jid.570043416778793
    [Google Scholar]
  9. AshbyN.S. JohnsonT.J. Castillo-RonquilloY. PayneC.J. DavenportC. HoopesP.C. MoshirfarM. Cutibacterium (Formerly Propionibacterium) acnes Keratitis: A Review.Eye Contact Lens202349521221810.1097/ICL.000000000000097536888541
    [Google Scholar]
  10. MiasC. MengeaudV. Bessou-TouyaS. DuplanH. Recent advances in understanding inflammatory acne: Deciphering the relationship between Cutibacterium acnes and Th17 inflammatory pathway.J. Eur. Acad. Dermatol. Venereol.202337S2)(231110.1111/jdv.1879436729400
    [Google Scholar]
  11. VowelsB.R. YangS. LeydenJ.J. Induction of proinflammatory cytokines by a soluble factor of Propionibacterium acnes: Implications for chronic inflammatory acne.Infect. Immun.19956383158316510.1128/iai.63.8.3158‑3165.19957542639
    [Google Scholar]
  12. GrahamG.M. FarrarM.D. Cruse-SawyerJ.E. HollandK.T. InghamE. Proinflammatory cytokine production by human keratinocytes stimulated with Propionibacterium acnes and P. acnes GroEL.Br. J. Dermatol.2004150342142810.1046/j.1365‑2133.2004.05762.x15030323
    [Google Scholar]
  13. CapitanioB. LoraV. LudoviciM. SinagraJ.L. OttavianiM. MastrofrancescoA. ArdigòM. CameraE. Modulation of sebum oxidation and interleukin‐1α levels associates with clinical improvement of mild comedonal acne.J. Eur. Acad. Dermatol. Venereol.201428121792179710.1111/jdv.1243124628899
    [Google Scholar]
  14. SandovalA.G.W. VaughnL.T. HuangJ.T. BarbieriJ.S. role of tumor necrosis factor–α inhibitors in the treatment and occurrence of acne.JAMA Dermatol.2023159550450910.1001/jamadermatol.2023.026936930143
    [Google Scholar]
  15. CorcoranL. MullerI. LaytonA.M. RucinskiG. VenkatessV. SufrazA. DoveS. LownM. StuartB. FrancisN. SanterM. Systematic review of clinical practice guidelines for acne vulgaris published between January 2017 and July 2021.Skin Health Dis.202334e24010.1002/ski2.24037538340
    [Google Scholar]
  16. TobiaszA. NowickaD. SzepietowskiJ.C. Acne vulgaris—novel treatment options and factors affecting therapy adherence: A narrative review.J. Clin. Med.20221124753510.3390/jcm1124753536556150
    [Google Scholar]
  17. DessiniotiC. KatsambasA. Antibiotics and antimicrobial resistance in acne: Epidemiological trends and clinical practice considerations.Yale J. Biol. Med.202295442944336568833
    [Google Scholar]
  18. ZhangJ. YuF. FuK. MaX. HanY. AliC.C. ZhouH. XuY. ZhangT. KangS. XuY. LiZ. ShiJ. GaoS. ChenY. ChenL. ZhangJ. ZhuF.C. acnes qPCR-based antibiotics resistance assay (ACQUIRE) reveals widespread macrolide resistance in acne patients and can eliminate macrolide misuse in acne treatment.Front. Public Health20221078729910.3389/fpubh.2022.78729935372231
    [Google Scholar]
  19. Abu YousefM. MatsubaraR. Recent progress in synthesis and application of furoxan.RSC Advances20231385228524810.1039/D3RA00189J36777951
    [Google Scholar]
  20. ClementinoL.C. FernandesG.F.S. ProkopczykI.M. LaurindoW.C. ToyamaD. MottaB.P. BavieraA.M. Henrique-SilvaF. SantosJ.L. GraminhaM.A.S. Design, synthesis and biological evaluation of N-oxide derivatives with potent in vivo antileishmanial activity.PLoS One20211611e025900810.1371/journal.pone.025900834723989
    [Google Scholar]
  21. FernandesG.F.S. de SouzaP.C. MarinoL.B. ChegaevK. GuglielmoS. LazzaratoL. FrutteroR. ChungM.C. PavanF.R. dos SantosJ.L. Synthesis and biological activity of furoxan derivatives against Mycobacterium tuberculosis.Eur. J. Med. Chem.201612352353110.1016/j.ejmech.2016.07.03927508879
    [Google Scholar]
  22. de MeloT.R.F. DulmovitsB.M. FernandesG.F.S. de SouzaC.M. LanaroC. HeM. Al AbedY. ChungM.C. BlancL. CostaF.F. dos SantosJ.L. Synthesis and pharmacological evaluation of pomalidomide derivatives useful for sickle cell disease treatment.Bioorg. Chem.202111410507710.1016/j.bioorg.2021.10507734130111
    [Google Scholar]
  23. BosquesiP.L. MelchiorA.C.B. PavanA.R. LanaroC. de SouzaC.M. RusinovaR. ChelucciR.C. BarbieriK.P. FernandesG.F.S. CarlosI.Z. AndersenO.S. CostaF.F. Dos SantosJ.L. Synthesis and evaluation of resveratrol derivatives as fetal hemoglobin inducers.Bioorg. Chem.202010010394810.1016/j.bioorg.2020.10394832450391
    [Google Scholar]
  24. LiS.M. ChouJ.Y. TsaiS.E. TsengC.C. ChungC.Y. ZengW.Z. HuY.P. UramaruN. HuangG.J. WongF.F. Synthesis and anti-inflammatory activity evaluation of NO-releasing furoxan/1,2,4-triazole hybrid derivatives.Eur. J. Med. Chem.202325711549610.1016/j.ejmech.2023.11549637224762
    [Google Scholar]
  25. de CarvalhoP.S. MarósticaM. GamberoA. PedrazzoliJ.Jr Synthesis and pharmacological characterization of a novel nitric oxide-releasing diclofenac derivative containing a benzofuroxan moiety.Eur. J. Med. Chem.20104562489249310.1016/j.ejmech.2010.02.03420227145
    [Google Scholar]
  26. DutraL.A. de AlmeidaL. PassalacquaT.G. ReisJ.S. TorresF.A.E. MartinezI. PeccininiR.G. ChinC.M. ChegaevK. GuglielmoS. FrutteroR. GraminhaM.A.S. dos SantosJ.L. Leishmanicidal activities of novel synthetic furoxan and benzofuroxan derivatives.Antimicrob. Agents Chemother.20145884837484710.1128/AAC.00052‑1424913171
    [Google Scholar]
  27. dos Santos FernandesG.F. de SouzaP.C. Moreno-ViguriE. Santivañez-VelizM. PaucarR. Pérez-SilanesS. ChegaevK. GuglielmoS. LazzaratoL. FrutteroR. Man ChinC. da SilvaP.B. ChorilliM. SolciaM.C. RibeiroC.M. SilvaC.S.P. MarinoL.B. BosquesiP.L. HuntD.M. de CarvalhoL.P.S. de Souza CostaC.A. ChoS.H. WangY. FranzblauS.G. PavanF.R. dos SantosJ.L. Design, synthesis, and characterization of N-oxide-containing heterocycles with in vivo sterilizing antitubercular activity.J. Med. Chem.201760208647866010.1021/acs.jmedchem.7b0133228968083
    [Google Scholar]
  28. Clinical and Laboratory Standarts Institute Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. Methods for antimicrobial susceptibility testing of anaerobic bacteria.Wayne, PAClinical and Laboratory Standarts Institute201864
    [Google Scholar]
  29. RyuS. ParkY. KimB. ChoS.M. LeeJ. LeeH.H. GurleyC. SongK. JohnsonA. ArmstrongC.A. SongP.I. Inhibitory and anti-inflammatory effects of the Helicobacter pylori -derived antimicrobial peptide HPA3NT3 against Propionibacterium acnes in the skin.Br. J. Dermatol.201417161358136710.1111/bjd.1348025313444
    [Google Scholar]
  30. RyuS. HanH.M. SongP.I. ArmstrongC.A. ParkY. Suppression of propionibacterium acnes infection and the associated inflammatory response by the antimicrobial peptide P5 in mice.PLoS One2015107e013261910.1371/journal.pone.013261926197393
    [Google Scholar]
  31. TyrrellK.L. CitronD.M. WarrenY.A. FernandezH.T. MerriamC.V. GoldsteinE.J.C. In vitro activities of daptomycin, vancomycin, and penicillin against Clostridium difficile, C. perfringens, Finegoldia magna, and Propionibacterium acnes.Antimicrob. Agents Chemother.20065082728273110.1128/AAC.00357‑0616870765
    [Google Scholar]
  32. PalominoJ.C. MartinA. CamachoM. GuerraH. SwingsJ. PortaelsF. Resazurin microtiter assay plate: Simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis.Antimicrob. Agents Chemother.20024682720272210.1128/AAC.46.8.2720‑2722.200212121966
    [Google Scholar]
  33. ThyssenJ.P. KezicS. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis.J. Allergy Clin. Immunol.2014134479279910.1016/j.jaci.2014.06.01425065719
    [Google Scholar]
  34. Dos SantosJ.L. LanaroC. ChelucciR.C. GamberoS. BosquesiP.L. ReisJ.S. LimaL.M. CerecettoH. GonzálezM. CostaF.F. ChungM.C. Design, synthesis, and pharmacological evaluation of novel hybrid compounds to treat sickle cell disease symptoms. part II: Furoxan derivatives.J. Med. Chem.201255177583759210.1021/jm300602n22889416
    [Google Scholar]
  35. CaoB.J. ReithM.E.A. Nitric oxide scavenger carboxy-PTIO potentiates the inhibition of dopamine uptake by nitric oxide donors.Eur. J. Pharmacol.20024481273010.1016/S0014‑2999(02)01908‑812126967
    [Google Scholar]
  36. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑46606682
    [Google Scholar]
  37. BarbieriK. ErcolinL. LouatT. PolesiM. ChinC. ZepponeI. SantosJ. Synthesis and immunosuppressive activity of new mycophenolic acid derivatives.Med. Chem.201713215916710.2174/157340641266616120712122627924728
    [Google Scholar]
  38. JangY.H. LeeK.C. LeeS.J. KimD.W. LeeW.J. HR-1 Mice: A new inflammatory acne mouse model.Ann. Dermatol.201527325726410.5021/ad.2015.27.3.25726082581
    [Google Scholar]
  39. Valente Duarte De SousaI.C. New and emerging drugs for the treatment of acne vulgaris in adolescents.Expert Opin. Pharmacother.20192081009102410.1080/14656566.2019.158418230848961
    [Google Scholar]
  40. YangJ.H. YoonJ.Y. KwonH.H. MinS. MoonJ. SuhD.H. Seeking new acne treatment from natural products, devices and synthetic drug discovery.Dermatoendocrinol201791e135652010.1080/19381980.2017.135652029484092
    [Google Scholar]
  41. HabeshianK.A. CohenB.A. Current issues in the treatment of acne vulgaris.Pediatrics2020145Suppl. 2S225S23010.1542/peds.2019‑2056L32358215
    [Google Scholar]
  42. WalshT.R. EfthimiouJ. DrénoB. Systematic review of antibiotic resistance in acne: An increasing topical and oral threat.Lancet Infect. Dis.2016163e23e3310.1016/S1473‑3099(15)00527‑726852728
    [Google Scholar]
  43. Aslan KayiranM. KaradagA.S. Al-KhuzaeiS. ChenW. ParishL.C. Antibiotic resistance in acne: Mechanisms, complications and management.Am. J. Clin. Dermatol.202021681381910.1007/s40257‑020‑00556‑632889707
    [Google Scholar]
  44. AuffretN. ClaudelJ.P. LecciaM-T. BallangerF. DrenoB. Novel and emerging treatment options for.Eur. J. Dermatol.202232445145810.1684/ejd.2022.430636301760
    [Google Scholar]
  45. WiegellS.R. WulfH.C. SzeimiesR.M. Basset-SeguinN. BissonnetteR. GerritsenM.J.P. GilaberteY. Calzavara-PintonP. MortonC.A. SidoroffA. BraathenL.R. Daylight photodynamic therapy for actinic keratosis: An international consensus.J. Eur. Acad. Dermatol. Venereol.201226667367910.1111/j.1468‑3083.2011.04386.x22211665
    [Google Scholar]
  46. Ray JalianH. TamJ. VuongL.N. FisherJ. GaribyanL. MihmM.C. ZurakowskiD. EvansC.L. Rox AndersonR. Selective cryolysis of sebaceous glands.J. Invest. Dermatol.201513592173218010.1038/jid.2015.14825860384
    [Google Scholar]
  47. MinS. ParkS. YoonJ. KwonH. SuhD. Fractional microneedling radiofrequency treatment for acne-related post-inflammatory erythema.Acta Derm. Venereol.2016961879110.2340/00015555‑216426059315
    [Google Scholar]
  48. YangY. HuangZ. LiL.L. Advanced nitric oxide donors: Chemical structure of NO drugs, NO nanomedicines and biomedical applications.Nanoscale202113244445910.1039/D0NR07484E33403376
    [Google Scholar]
  49. Del RossoJ.Q. KircikL.H. Spotlight on the use of nitric oxide in dermatology: What is it? what does it do? can it become an important addition to the therapeutic armamentarium for skin disease?J. Drugs Dermatol.2017161s4s1028095537
    [Google Scholar]
  50. HyunE. BollaM. SteinhoffM. WallaceJ.L. Del SoldatoP. VergnolleN. Anti‐inflammatory effects of nitric oxide‐releasing hydrocortisone NCX 1022, in a murine model of contact dermatitis.Br. J. Pharmacol.2004143561862510.1038/sj.bjp.070585415313880
    [Google Scholar]
  51. QinM. LandriscinaA. RosenJ.M. WeiG. KaoS. OlcottW. AgakG.W. PazK.B. BonventreJ. ClendanielA. HarperS. AdlerB.L. KrauszA.E. FriedmanJ.M. NosanchukJ.D. KimJ. FriedmanA.J. Nitric oxide–releasing nanoparticles prevent propionibacterium acnes– induced inflammation by both clearing the organism and inhibiting microbial stimulation of the innate immune response.J. Invest. Dermatol.2015135112723273110.1038/jid.2015.27726172313
    [Google Scholar]
  52. FriedmanA.J. HanG. NavatiM.S. ChackoM. GuntherL. AlfieriA. FriedmanJ.M. Sustained release nitric oxide releasing nanoparticles: Characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites.Nitric Oxide2008191122010.1016/j.niox.2008.04.00318457680
    [Google Scholar]
  53. SettelmeierS. RassafT. Hendgen-CottaU.B. StoffelsI. Nitric oxide generating formulation as an innovative approach to topical skin care: An open-label pilot study.Cosmetics2021811610.3390/cosmetics8010016
    [Google Scholar]
  54. BaldwinH. BlancoD. McKeeverC. PazN. VasquezY.N. QuiringJ. EnloeC. De LeónE. StaskoN. Results of a phase 2 efficacy and safety study with SB204, an investigational topical nitric oxide-releasing drug for the treatment of acne vulgaris.J. Clin. Aesthet. Dermatol.201698121827672413
    [Google Scholar]
  55. HetrickE.M. ShinJ.H. StaskoN.A. JohnsonC.B. WespeD.A. HolmuhamedovE. SchoenfischM.H. Bactericidal efficacy of nitric oxide-releasing silica nanoparticles.ACS Nano20082223524610.1021/nn700191f19206623
    [Google Scholar]
  56. MeloT.R.F. KumkhaekC. FernandesG.F.S. Lopes PiresM.E. ChelucciR.C. BarbieriK.P. CoelhoF. CapoteT.S.O. LanaroC. CarlosI.Z. MarcondesS. ChegaevK. GuglielmoS. FrutteroR. ChungM.C. CostaF.F. RodgersG.P. dos SantosJ.L. Discovery of phenylsulfonylfuroxan derivatives as gamma globin inducers by histone acetylation.Eur. J. Med. Chem.201815434135310.1016/j.ejmech.2018.05.00829852459
    [Google Scholar]
  57. FershtatL.L. MakhovaN.N. Molecular hybridization tools in the development of furoxan‐based NO‐donor prodrugs.ChemMedChem201712962263810.1002/cmdc.20170011328371340
    [Google Scholar]
  58. SharmaR. JoubertJ. MalanS.F. Recent developments in drug design of no-donor hybrid compounds.Mini Rev. Med. Chem.201818141175119810.2174/138955751866618041615000529663881
    [Google Scholar]
  59. JovenéC. ChugunovaE.A. GoumontR. The properties and the use of substituted benzofuroxans in pharmaceutical and medicinal chemistry: A comprehensive review.Mini Rev. Med. Chem.20131381089113610.2174/138955751131308000123544466
    [Google Scholar]
  60. ChugunovaE. BurilovA. Novel structural hybrids on the base of benzofuroxans and furoxans.Curr. Top. Med. Chem.2017179986100510.2174/156802661666616092714582227697059
    [Google Scholar]
  61. CerecettoH. PorcalW. Pharmacological properties of furoxans and benzofuroxans: Recent developments.Mini Rev. Med. Chem.200551577110.2174/138955705340286415638792
    [Google Scholar]
  62. JorgeS.D. Palace-BerlF. MasunariA. CechinelC.A. IshiiM. PasqualotoK.F.M. TavaresL.C. Novel benzofuroxan derivatives against multidrug-resistant Staphylococcus aureus strains: Design using Topliss’ decision tree, synthesis and biological assay.Bioorg. Med. Chem.201119165031503810.1016/j.bmc.2011.06.03421757359
    [Google Scholar]
  63. ChugunovaE. BogaC. SazykinI. CinoS. MichelettiG. MazzantiA. SazykinaM. BurilovA. KhmelevtsovaL. KostinaN. Synthesis and antimicrobial activity of novel structural hybrids of benzofuroxan and benzothiazole derivatives.Eur. J. Med. Chem.20159334935910.1016/j.ejmech.2015.02.02325707015
    [Google Scholar]
  64. Van VuurenS. HollD. Antimicrobial natural product research: A review from a South African perspective for the years 2009–2016.J. Ethnopharmacol.201720823625210.1016/j.jep.2017.07.01128694104
    [Google Scholar]
  65. EloffJ.N. A proposal towards a rational classification of the antimicrobial activity of acetone tree leaf extracts in a search for new antimicrobials.Planta Med.20218710/1183684010.1055/a‑1482‑141033957700
    [Google Scholar]
  66. SatrianoJ. Arginine pathways and the inflammatory response: Interregulation of nitric oxide and polyamines: Review article.Amino Acids200426432132910.1007/s00726‑004‑0078‑415290337
    [Google Scholar]
  67. MoilanenE. VapaataloH. Nitric oxide in inflammation and immune response.Ann. Med.199527335936710.3109/078538995090025897546626
    [Google Scholar]
  68. MacMickingJ. XieQ. NathanC. Nitric oxide and macrophage function.Annu. Rev. Immunol.199715132335010.1146/annurev.immunol.15.1.3239143691
    [Google Scholar]
  69. RiddM.J. SanterM. MacNeillS.J. SandersonE. WellsS. WebbD. BanksJ. SuttonE. RobertsA. LiddiardL. WilkinsZ. ClaytonJ. GarfieldK. BarrettT.J. LaneJ.A. BaxterH. HowellsL. TaylorJ. HayA.D. WilliamsH.C. ThomasK.S. Effectiveness and safety of lotion, cream, gel, and ointment emollients for childhood eczema: A pragmatic, randomised, phase 4, superiority trial.Lancet Child Adolesc. Health20226852253210.1016/S2352‑4642(22)00146‑835617974
    [Google Scholar]
  70. AllenO.G.E. MacNeillS. RiddM.J. Parent satisfaction with lotion, cream, gel and ointment emollient types: Secondary analysis of best emollients for eczema study.Clin. Exp. Dermatol.20232023llad45210.1093/ced/llad45238113393
    [Google Scholar]
/content/journals/mc/10.2174/0115734064306187240722070225
Loading
/content/journals/mc/10.2174/0115734064306187240722070225
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test