Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Raloxifene hydrochloride belongs to the selective estrogen receptor modulator category. Initially, US FDA approved its use for the prevention and treatment of osteoporosis in post-menopausal women. Later, raloxifene hydrochloride was also approved for the prevention of invasive breast carcinoma in post-menopausal women under the high-risk category. Despite its immense and diverse therapeutic potential, the oral bioavailability of raloxifene hydrochloride is only ~ 2%. The factors responsible for the poor bioavailability of raloxifene hydrochloride include its amphiphobic nature, para-glycoprotein pump-mediated efflux in the intestine, and high pre-systemic glucuronidation. In the past two decades, multiple novel delivery systems, . lipid-based nanocarriers, polymeric nanoparticles, polymer-lipid hybrid nanoparticles, micelles, and mixed micelles, have been developed to overcome its drawbacks. Moreover, inclusion complex, phospholipid complex, and solid dispersion have also been developed to improve its solubility and dissolution rate. Further, some research groups successfully explored non-peroral routes like nasal and transdermal for augmenting the raloxifene hydrochloride bioavailability and its therapeutic efficacy. Hence, the principal objective of this review paper is to critically analyze all the delivery systems developed for raloxifene hydrochloride with their advantages and limitations. In addition, a detailed discussion of the physicochemical and pharmacokinetic parameters of raloxifene hydrochloride has been included in this paper. An in-depth understanding of these parameters will assist formulation scientists in developing efficient delivery systems in the future. In conclusion, the literature review revealed that the nanoparticulate systems successfully augmented the raloxifene hydrochloride bioavailability and therapeutic efficacy in pre-clinical experiments. However, future clinical trials should be conducted to assess their safety and therapeutic efficacy for rapid pre-clinical to clinical translation.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031332806240930112452
2024-10-07
2025-05-08
Loading full text...

Full text loading...

References

  1. BryantH.U. GlasebrookA.L. YangN.N. SatoM. A pharmacological review of raloxifene.J. Bone Miner. Metab.19961411910.1007/BF01771666
    [Google Scholar]
  2. ClemettD. SpencerC.M. Raloxifene: A review of its use in postmenopausal osteoporosis.Drugs200060237941110.2165/00003495‑200060020‑0001310983739
    [Google Scholar]
  3. DealC.L. DraperM.W. Raloxifene: A selective estrogen-receptor modulator for postmenopausal osteoporosis - A clinical update on efficacy and safety.Womens Health (Lond. Engl.)20062219921010.2217/17455057.2.2.19919803890
    [Google Scholar]
  4. KumarV. GreenS. StackG. BerryM. JinJ.R. ChambonP. Functional domains of the human estrogen receptor.Cell198751694195110.1016/0092‑8674(87)90581‑23690665
    [Google Scholar]
  5. YangN.N. VenugopalanM. HardikarS. GlasebrookA. Identification of an estrogen response element activated by metabolites of 17beta-estradiol and raloxifene.Science199627352791222122510.1126/science.273.5279.12228703055
    [Google Scholar]
  6. EttingerB. BlackD.M. MitlakB.H. KnickerbockerR.K. NickelsenT. GenantH.K. ChristiansenC. DelmasP.D. ZanchettaJ.R. StakkestadJ. GlüerC.C. KruegerK. CohenF.J. EckertS. EnsrudK.E. AvioliL.V. LipsP. CummingsS.R. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: Results from a 3-year randomized clinical trial.JAMA1999282763764510.1001/jama.282.7.63710517716
    [Google Scholar]
  7. Lufkin E.G. WhitakerM.D. NickelsenT. ArguetaR. CaplanR.H. KnickerbockerR.K. RiggsB.L. Treatment of established postmenopausal osteoporosis with raloxifene: A randomized trial.J. Bone Miner. Res.199813111747175410.1359/jbmr.1998.13.11.17479797484
    [Google Scholar]
  8. GreseT.A. SlukaJ.P. BryantH.U. CullinanG.J. GlasebrookA.L. JonesC.D. MatsumotoK. PalkowitzA.D. SatoM. TermineJ.D. WinterM.A. YangN.N. DodgeJ.A. Molecular determinants of tissue selectivity in estrogen receptor modulators.Proc. Natl. Acad. Sci. USA19979425141051411010.1073/pnas.94.25.141059391160
    [Google Scholar]
  9. VogelV.G. CostantinoJ.P. WickerhamD.L. CroninW.M. CecchiniR.S. AtkinsJ.N. BeversT.B. FehrenbacherL. PajonE.R. WadeJ.L. RobidouxA. MargoleseR.G. JamesJ. LippmanS.M. RunowiczC.D. GanzP.A. ReisS.E. McCaskill-StevensW. FordL.G. JordanV.C. WolmarkN. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial.JAMA2006295232727274110.1001/jama.295.23.joc6007416754727
    [Google Scholar]
  10. WatersE.A. McNeelT.S. StevensW.M. FreedmanA.N. Use of tamoxifen and raloxifene for breast cancer chemoprevention in 2010.Breast Cancer Res. Treat.2012134287588010.1007/s10549‑012‑2089‑222622807
    [Google Scholar]
  11. PalombaS. OrioF. RussoT. FalboA. TolinoA. LombardiG. CiminiV. ZulloF. Antiproliferative and proapoptotic effects of raloxifene on uterine leiomyomas in postmenopausal women.Fertil. Steril.200584115416110.1016/j.fertnstert.2004.12.05816009171
    [Google Scholar]
  12. AlmutairiF.M. Abd-RabouA.A. MohamedM.S. Raloxifene-encapsulated hyaluronic acid-decorated chitosan nanoparticles selectively induce apoptosis in lung cancer cells.Bioorg. Med. Chem.20192781629163810.1016/j.bmc.2019.03.00430879864
    [Google Scholar]
  13. NeubauerB.L. BestK.L. CountsD.F. GoodeR.L. HooverD.M. JonesC.D. SarosdyM.F. ShaarC.J. TanzerL.R. MerrimanR.L. Raloxifene (LY156758) produces antimetastatic responses and extends survival in the paiii rat prostatic adenocarcinoma model.Prostate199527422022910.1002/pros.29902704077479389
    [Google Scholar]
  14. PuroD. AthawaleR. PandyaA. Design, optimization and characterization of nanostructured lipid carriers of raloxifene hydrochloride for transdermal delivery.Nanosci. Nanotechnol. Asia2020101576710.2174/2210681208666181106124337
    [Google Scholar]
  15. JainA. SainiS. KumarR. SharmaT. SwamiR. KatareO.P. SinghB. Phospholipid-based complex of raloxifene with enhanced biopharmaceutical potential: Synthesis, characterization and preclinical assessment.Int. J. Pharm.201957111869810.1016/j.ijpharm.2019.11869831539555
    [Google Scholar]
  16. KempD.C. FanP.W. StevensJ.C. Characterization of raloxifene glucuronidation in vitro : Contribution of intestinal metabolism to presystemic clearance.Drug Metab. Dispos.200230669470010.1124/dmd.30.6.69412019197
    [Google Scholar]
  17. ElsheikhM.A. ElnaggarY.S.R. GoharE.Y. AbdallahO.Y. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: Optimization and in vivo appraisal.Int. J. Nanomedicine201273787380222888234
    [Google Scholar]
  18. Hochner-CelnikierD. Pharmacokinetics of raloxifene and its clinical application.Eur. J. Obstet. Gynecol. Reprod. Biol.1999851232910.1016/S0301‑2115(98)00278‑410428318
    [Google Scholar]
  19. DaviesG.C. HusterW.J. LuY. PlouffeL. LakshmananM. Adverse events reported by postmenopausal women in controlled trials with raloxifene.Obstet. Gynecol.199993455856510214833
    [Google Scholar]
  20. TeixeiraF.V. AlvesG.L. FerreiraM.H. TaveiraS.F. da Cunha-FilhoM.S.S. MarretoR.N. Preformulation studies to guide the development of raloxifene lipid-based delivery systems.J. Therm. Anal. Calorim.2018132136537110.1007/s10973‑018‑6964‑x
    [Google Scholar]
  21. JainA. SharmaT. KumarR. KatareO.P. SinghB. Raloxifene-loaded SLNs with enhanced biopharmaceutical potential: QbD-steered development, in vitro evaluation, in vivo pharmacokinetics, and IVIVC.Drug Deliv. Transl. Res.20221251136116010.1007/s13346‑021‑00990‑x33966178
    [Google Scholar]
  22. NekkantiV. VenkateshwarluV. PillaiR. Preparation, characterization and in-vivo evaluation of raloxifene hydrochloride solid lipid nanoparticles.Pharm. Nanotechnol.201211687710.2174/2211738511301010068
    [Google Scholar]
  23. ThakkarH. NangeshJ. ParmarM. PatelD. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system.J. Pharm. Bioallied Sci.20113344244810.4103/0975‑7406.8446321966167
    [Google Scholar]
  24. MuhindoD. AshourE.A. AlmutairiM. JoshiP.H. RepkaM.A. Continuous production of raloxifene hydrochloride loaded nanostructured lipid carriers using hot-melt extrusion technology.J. Drug Deliv. Sci. Technol.20216510267310.1016/j.jddst.2021.10267334306183
    [Google Scholar]
  25. ShahN.V. SethA.K. BalaramanR. AundhiaC.J. MaheshwariR.A. ParmarG.R. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study.J. Adv. Res.20167342343410.1016/j.jare.2016.03.00227222747
    [Google Scholar]
  26. AğardanN.B.M. DeğimZ. YılmazŞ. AltıntaşL. TopalT. The effectiveness of Raloxifene-loaded liposomes and cochleates in breast cancer therapy.AAPS PharmSciTech201617496897710.1208/s12249‑015‑0429‑326729527
    [Google Scholar]
  27. AğardanN.B.M. DeğimZ. YılmazŞ. AltıntaşL. TopalT. Tamoxifen/raloxifene loaded liposomes for oral treatment of breast cancer.J. Drug Deliv. Sci. Technol.20205710161210.1016/j.jddst.2020.101612
    [Google Scholar]
  28. YeJ.Y. ChenZ.Y. HuangC.L. HuangB. ZhengY.R. ZhangY.F. LuB.Y. HeL. LiuC.S. LongX.Y. A non-lipolysis nanoemulsion improved oral bioavailability by reducing the first-pass metabolism of raloxifene, and related absorption mechanisms being studied.Int. J. Nanomedicine2020156503651810.2147/IJN.S25999332922013
    [Google Scholar]
  29. JhaR.K. TiwariS. MishraB. Bioadhesive microspheres for bioavailability enhancement of raloxifene hydrochloride: Formulation and pharmacokinetic evaluation.AAPS PharmSciTech201112265065710.1208/s12249‑011‑9619‑921562721
    [Google Scholar]
  30. KalaS.G. ChinniS. Development of raloxifene hydrochloride loaded mPEG-PLA nanoparticles for oral delivery.Indian J Pharm Educ Res.2021551ss135s14810.5530/ijper.55.1s.44
    [Google Scholar]
  31. SainiD. FazilM. AliM.M. BabootaS. AliJ. Formulation, development and optimization of raloxifene-loaded chitosan nanoparticles for treatment of osteoporosis.Drug Deliv.201522682383610.3109/10717544.2014.90015324725026
    [Google Scholar]
  32. KavasA. KeskinD. AltunbaşK. TezcanerA. Raloxifene-/raloxifene-poly(ethylene glycol) conjugate-loaded microspheres: A novel strategy for drug delivery to bone forming cells.Int. J. Pharm.2016510116818310.1016/j.ijpharm.2016.06.05327343363
    [Google Scholar]
  33. YadavA.S. RadharaniN.N.V. GorainM. BulbuleA. ShettiD. RoyG. BabyT. KunduG.C. RGD functionalized chitosan nanoparticle mediated targeted delivery of raloxifene selectively suppresses angiogenesis and tumor growth in breast cancer.Nanoscale20201219106641068410.1039/C9NR10673A32374338
    [Google Scholar]
  34. YangS.J. ChangC.H. YoungT.H. WangC.H. TsengT.H. WangM.L. Human serum albumin-based nanoparticles alter raloxifene administration and improve bioavailability.Drug Deliv.20222912685269310.1080/10717544.2022.211147935975329
    [Google Scholar]
  35. MurthyA. RaviP.R. KathuriaH. VatsR. Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifene.Int. J. Pharm.202058811973110.1016/j.ijpharm.2020.11973132763388
    [Google Scholar]
  36. DuX. GaoN. SongX. Bioadhesive polymer/lipid hybrid nanoparticles as oral delivery system of raloxifene with enhancive intestinal retention and bioavailability.Drug Deliv.202128125226010.1080/10717544.2021.187274233501870
    [Google Scholar]
  37. VarshosazJ. ZiaeiV. MinaiyanM. Jahanian-NajafabadiA. Sayed-TabatabaeiL. Enhanced solubility, oral bioavailability and anti-osteoporotic effects of raloxifene HCl in ovariectomized rats by Igepal CO-890 nanomicelles.Pharm. Dev. Technol.201924213314410.1080/10837450.2018.142881529338533
    [Google Scholar]
  38. SethiS. BhatiaS. KambojS. RanaV. Exploring the feasibility of carbamoylethyl pullulan-g-palmitic acid polymeric micelles for the effective targeting of raloxifene to breast tumor: Optimization and preclinical evaluation.Int. J. Pharm.202160312072010.1016/j.ijpharm.2021.12072034019973
    [Google Scholar]
  39. PritchardT. RosengrenR.J. GreishK. TaurinS. Raloxifene nanomicelles reduce the growth of castrate-resistant prostate cancer.J. Drug Target.201624544144910.3109/1061186X.2015.108636026373825
    [Google Scholar]
  40. KanadeR. BocheM. PokharkarV. Self-assembling raloxifene loaded mixed micelles: Formulation optimization, in vitro cytotoxicity and in vivo pharmacokinetics.AAPS PharmSciTech20181931105111510.1208/s12249‑017‑0919‑629181706
    [Google Scholar]
  41. WangZ. LiY. Raloxifene/SBE-β-CD Inclusion complexes formulated into nanoparticles with chitosan to overcome the absorption barrier for bioavailability enhancement.Pharmaceutics20181037610.3390/pharmaceutics1003007629958389
    [Google Scholar]
  42. LiH. LuS. LuoM. LiX. LiuS. ZhangT. A matrix dispersion based on phospholipid complex system: Preparation, lymphatic transport, and pharmacokinetics.Drug Dev. Ind. Pharm.202046455756510.1080/03639045.2020.173540832126844
    [Google Scholar]
  43. ElkanayatiR.M. OmariS. YoussefA.A.A. AlmutairiM. AlmotairyA. RepkaM. AshourE.A. Multilevel categoric factorial design for optimization of raloxifene hydrochloride solid dispersion in PVP K30 by hot-melt extrusion technology.J. Drug Deliv. Sci. Technol.20249210536210.1016/j.jddst.2024.105362
    [Google Scholar]
  44. AlhalmiA. AminS. KhanZ. BegS. Al kamalyO. SalehA. KohliK. Nanostructured lipid carrier-based codelivery of raloxifene and naringin: Formulation, optimization, in vitro, ex- vivo, in vivo assessment, and acute toxicity studies.Pharmaceutics2022149177110.3390/pharmaceutics1409177136145519
    [Google Scholar]
  45. NagaiN. OgataF. OtakeH. NakazawaY. KawasakiN. Design of a transdermal formulation containing raloxifene nanoparticles for osteoporosis treatment.Int. J. Nanomedicine2018135215522910.2147/IJN.S17321630233182
    [Google Scholar]
  46. ThakkarH.P. SavsaniH. KumarP. Ethosomal hydrogel of raloxifene HCl: Statistical optimization & ex-vivo permeability evaluation across microporated pig ear skin.Curr. Drug Deliv.20161371111112210.2174/156720181366616012015181626787414
    [Google Scholar]
  47. ZakirF. AhmadA. MirzaM.A. KohliK. AhmadF.J. Exploration of a transdermal nanoemulgel as an alternative therapy for postmenopausal osteoporosis.J. Drug Deliv. Sci. Technol.20216510274510.1016/j.jddst.2021.102745
    [Google Scholar]
  48. AnsariM.D. khanI. SolankiP. PanditJ. JahanR.N. AqilM. SultanaY. Fabrication and optimization of raloxifene loaded spanlastics vesicle for transdermal delivery.J. Drug Deliv. Sci. Technol.20226810310210.1016/j.jddst.2022.103102
    [Google Scholar]
  49. WaheedA. AqilM. AhadA. ImamS.S. MoolakkadathT. IqbalZ. AliA. Improved bioavailability of raloxifene hydrochloride using limonene containing transdermal nano-sized vesicles.J. Drug Deliv. Sci. Technol.20195246847610.1016/j.jddst.2019.05.019
    [Google Scholar]
  50. SalemH.F. GamalA. SaeedH. TulbahA.S. The impact of improving dermal permeation on the efficacy and targeting of liposome nanoparticles as a potential treatment for breast cancer.Pharmaceutics20211310163310.3390/pharmaceutics1310163334683926
    [Google Scholar]
  51. MahmoodS. TaherM. MandalU.K. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application.Int. J. Nanomedicine201494331434625246789
    [Google Scholar]
  52. JoshiA. KaurJ. KulkarniR. ChaudhariR. in-vitro and ex- vivo evaluation of Raloxifene hydrochloride delivery using nano- transfersome based formulations.J. Drug Deliv. Sci. Technol.20184515115810.1016/j.jddst.2018.02.006
    [Google Scholar]
  53. MahmoodS. ChatterjeeB. MandalU.K. Pharmacokinetic evaluation of the synergistic effect of raloxifene loaded transfersomes for transdermal delivery.J. Drug Deliv. Sci. Technol.20216310254510.1016/j.jddst.2021.102545
    [Google Scholar]
  54. AlhakamyN.A. FahmyU.A. AhmedO.A.A. Vitamin E TPGS based transferosomes augmented TAT as a promising delivery system for improved transdermal delivery of raloxifene.PLoS One20191412e022663910.1371/journal.pone.022663931881053
    [Google Scholar]
  55. PatelA. TyagiA. SharmaR.K. ThakkarH. A gamma scintigraphy study to investigate uterine targeting efficiency of raloxifene-loaded liposomes administered intravaginally in New Zealand white female rabbits.Drug Deliv.20162393330333810.1080/10717544.2016.117713727072061
    [Google Scholar]
  56. PatelA. DhandeR. ThakkarH. Development of intravaginal rod insert bearing liposomal raloxifene hydrochloride and Leuprolide acetate as a potential carrier for uterine targeting.J. Pharm. Pharmacol.202173565366310.1093/jpp/rgab00333772288
    [Google Scholar]
  57. TeeterJ.S. MeyerhoffR.D. Environmental fate and chemistry of raloxifene hydrochloride.Environ. Toxicol. Chem.200221472973610.1002/etc562021040711951945
    [Google Scholar]
  58. TronteljJ. VovkT. BogatajM. MrharA. HPLC analysis of raloxifene hydrochloride and its application to drug quality control studies.Pharmacol. Res.200552433433910.1016/j.phrs.2005.05.00715979892
    [Google Scholar]
  59. CzockD. KellerF. HeringaM. RascheF.M. Raloxifene pharmacokinetics in males with normal and impaired renal function.Br. J. Clin. Pharmacol.200559447948210.1111/j.1365‑2125.2004.02326.x15801944
    [Google Scholar]
  60. WempeM.F. WacherV.J. RubleK.M. RamseyM.G. EdgarK.J. BuchananN.L. BuchananC.M. Pharmacokinetics of raloxifene in male Wistar–Hannover rats: Influence of complexation with hydroxybutenyl-beta-cyclodextrin.Int. J. Pharm.20083461-2253710.1016/j.ijpharm.2007.06.00217644287
    [Google Scholar]
  61. JeongE.J. LinH. HuM. Disposition mechanisms of raloxifene in the human intestinal Caco-2 model.J. Pharmacol. Exp. Ther.2004310137638510.1124/jpet.103.06392515020665
    [Google Scholar]
  62. BikiarisD. KaravelidisV. KaravasE. Novel biodegradable polyesters. Synthesis and application as drug carriers for the preparation of raloxifene HCl loaded nanoparticles.Molecules20091472410243010.3390/molecules1407241019633613
    [Google Scholar]
  63. AhadA. ShakeelF. AlfaifiO.A. RaishM. AhmadA. Al- JenoobiF.I. Al-MohizeaA.M. Solubility determination of raloxifene hydrochloride in ten pure solvents at various temperatures: Thermodynamics-based analysis and solute–solvent interactions.Int. J. Pharm.2018544116517110.1016/j.ijpharm.2018.04.02429679751
    [Google Scholar]
  64. SubramanianP. KurekM.A. JensenI-J. Lipid-based nanocarrier system for the effective delivery of nutraceuticals.Molecules20212618551010.3390/molecules2618551034576981
    [Google Scholar]
  65. GargA. TomarD.S. BhalalaK. WahajuddinM. Development and investigation of Artemether loaded binary solid lipid nanoparticles: Physicochemical characterization and in-situ single-pass intestinal permeability.J. Drug Deliv. Sci. Technol.20206010207210.1016/j.jddst.2020.102072
    [Google Scholar]
  66. GargR. GargA. Tacrolimus loaded nanostructured lipid carriers using Moringa oleifera seed oil: Design, optimization and in-vitro evaluations.J. Microencapsul.202340750251610.1080/02652048.2023.223107537366651
    [Google Scholar]
  67. WangS. ChenY. GuoJ. HuangQ. Liposomes for tumor targeted therapy: A review.Int. J. Mol. Sci.2023243264310.3390/ijms2403264336768966
    [Google Scholar]
  68. ChaturvediS. GargA. VermaA. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models.J. Drug Deliv. Sci. Technol.20205910189910.1016/j.jddst.2020.101899
    [Google Scholar]
  69. YangT. CuiF.D. ChoiM.K. LinH. ChungS.J. ShimC.K. KimD.D. Liposome formulation of paclitaxel with enhanced solubility and stability.Drug Deliv.200714530130810.1080/1071754060109879917613018
    [Google Scholar]
  70. YangT. CuiF.D. ChoiM.K. ChoJ.W. ChungS.J. ShimC.K. KimD.D. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation.Int. J. Pharm.20073381-231732610.1016/j.ijpharm.2007.02.01117368984
    [Google Scholar]
  71. SilliE.K. LiM. ShaoY. ZhangY. HouG. DuJ. LiangJ. WangY. Liposomal nanostructures for Gemcitabine and Paclitaxel delivery in pancreatic cancer.Eur. J. Pharm. Biopharm.2023192132410.1016/j.ejpb.2023.09.01437758121
    [Google Scholar]
  72. TardiP. BomanN. CullisP. Liposomal Doxorubicin.J. Drug Target.19964312914010.3109/106118696090159708959485
    [Google Scholar]
  73. SwensonC.E. PerkinsW.R. RobertsP. JanoffA.S. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate).Breast2001101710.1016/S0960‑9776(01)80001‑1
    [Google Scholar]
  74. ShahrakiN. MehrabianA. Amiri-DarbanS. MoosavianS.A. JaafariM.R. Preparation and characterization of PEGylated liposomal Doxorubicin targeted with leptin-derived peptide and evaluation of their anti-tumor effects, in vitro and in vivo in mice bearing C26 colon carcinoma.Colloids Surf. B Biointerfaces202120011158910.1016/j.colsurfb.2021.11158933545570
    [Google Scholar]
  75. RohillaS. AwasthiR. MehtaM. ChellappanD.K. GuptaG. GulatiM. SinghS.K. AnandK. OliverB.G. DuaK. DurejaH. Preparation and evaluation of gefitinib containing nanoliposomal formulation for lung cancer therapy.Bionanoscience202212124125510.1007/s12668‑022‑00938‑6
    [Google Scholar]
  76. HuY. ZhangJ. HuH. XuS. XuL. ChenE. Gefitinib encapsulation based on nano-liposomes for enhancing the curative effect of lung cancer.Cell Cycle202019243581359410.1080/15384101.2020.185275633300430
    [Google Scholar]
  77. LiuY. ZhaoZ. ZhuS. ChengY. LiuJ. YeT. WangS. Docetaxel liposomes for lung targeted delivery: Development and evaluation.Pharm. Dev. Technol.202328985686410.1080/10837450.2023.226547237842809
    [Google Scholar]
  78. ZawilskaP. MachowskaM. WisniewskiK. GrynkiewiczG. HrynykR. RzepeckiR. GubernatorJ. Novel pegylated liposomal formulation of docetaxel with 3-n-pentadecylphenol derivative for cancer therapy.Eur. J. Pharm. Sci.202116310583810.1016/j.ejps.2021.10583833845119
    [Google Scholar]
  79. Vakili-GhartavolR. RezayatS.M. Faridi-MajidiR. SadriK. JaafariM.R. Optimization of docetaxel loading conditions in liposomes: Proposing potential products for metastatic breast carcinoma chemotherapy.Sci. Rep.2020101556910.1038/s41598‑020‑62501‑132221371
    [Google Scholar]
  80. BorgesO. Cordeiro-da-SilvaA. RomeijnS.G. AmidiM. de SousaA. BorchardG. JungingerH.E. Uptake studies in rat Peyer’s patches, cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosal vaccination.J. Control. Release2006114334835810.1016/j.jconrel.2006.06.01116905219
    [Google Scholar]
  81. ChaturvediS. MishraR. Insight into delivery approaches for biopharmaceutics classification system class II and IV drugs.Drug Deliv. Lett.202010425527710.2174/2210303110999200712185109
    [Google Scholar]
  82. O’DriscollC.M. Lipid-based formulations for intestinal lymphatic delivery.Eur. J. Pharm. Sci.200215540541510.1016/S0928‑0987(02)00051‑912036717
    [Google Scholar]
  83. SinghS. KushwahaA.K. VuddandaP.R. KarunanidhiP. SinghS.K. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability.Biomed. Res. Int.2013201358454910.1155/2013/58454924228255
    [Google Scholar]
  84. XieY. BagbyT.R. CohenM.S. ForrestM.L. Drug delivery to the lymphatic system: Importance in future cancer diagnosis and therapies.Expert Opin. Drug Deliv.20096878579210.1517/1742524090308512819563270
    [Google Scholar]
  85. ČerpnjakK. ZvonarA. GašperlinM. VrečerF. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs.Acta Pharm.201363442744510.2478/acph‑2013‑004024451070
    [Google Scholar]
  86. SureshG. ManjunathK. VenkateswarluV. SatyanarayanaV. Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles.AAPS PharmSciTech200781E162E17010.1208/pt080102417408223
    [Google Scholar]
  87. PorterC.J.H. PoutonC.W. CuineJ.F. CharmanW.N. Enhancing intestinal drug solubilisation using lipid-based delivery systems.Adv. Drug Deliv. Rev.200860667369110.1016/j.addr.2007.10.01418155801
    [Google Scholar]
  88. RaviP.R. AdityaN. KathuriaH. MalekarS. VatsR. Lipid nanoparticles for oral delivery of raloxifene: Optimization, stability, in vivo evaluation and uptake mechanism.Eur. J. Pharm. Biopharm.201487111412410.1016/j.ejpb.2013.12.01524378615
    [Google Scholar]
  89. BagasariyaD. CharankumarK. ShahS. FamtaP. FernandesV. ShahrukhS. KhatriD.K. SinghS.B. SrivastavaS. Quality by design endorsed atorvastatin-loaded nanostructured lipid carriers embedded in pH-responsive gel for melanoma.J. Microencapsul.2024411274410.1080/02652048.2023.228297137982590
    [Google Scholar]
  90. ThakurS. AnjumM.M. JaiswalS. GautamA.K. RajinikanthP.S. Tazarotene-calcipotriol loaded nanostructured lipid carrier enriched hydrogel: A novel dual drug synergistic approach towards Psoriasis management.J. Drug Deliv. Sci. Technol.20238810494410.1016/j.jddst.2023.104944
    [Google Scholar]
  91. MurthyA. Rao RaviP. KathuriaH. MalekarS. Oral bioavailability enhancement of raloxifene with nanostructured lipid carriers.Nanomaterials (Basel)2020106108510.3390/nano1006108532486508
    [Google Scholar]
  92. SharmaA. StreetsJ. BhattP. PatelP. SutariyaV. Varghese GuptaS. Formulation and characterization of raloxifene nanostructured lipid carriers for permeability and uptake enhancement applications.Assay Drug Dev. Technol.202220416417410.1089/adt.2022.00435617693
    [Google Scholar]
  93. BhagurkarA.M. RepkaM.A. MurthyS.N. A novel approach for the development of a nanostructured lipid carrier formulation by hot-melt extrusion technology.J. Pharm. Sci.201710641085109110.1016/j.xphs.2016.12.01528040458
    [Google Scholar]
  94. BagdeA. PatelK. KutlehriaS. ChowdhuryN. SinghM. Formulation of topical ibuprofen solid lipid nanoparticle (SLN) gel using hot melt extrusion technique (HME) and determining its anti-inflammatory strength.Drug Deliv. Transl. Res.20199481682710.1007/s13346‑019‑00632‑330924025
    [Google Scholar]
  95. ThakkarR. KomanduriN. DudhipalaN. TripathiS. RepkaM.A. MajumdarS. Development and optimization of hot-melt extruded moxifloxacin hydrochloride inserts, for ocular applications, using the design of experiments.Int. J. Pharm.202160312067610.1016/j.ijpharm.2021.12067633961956
    [Google Scholar]
  96. BagdeA. KouagouE. SinghM. Formulation of topical flurbiprofen solid lipid nanoparticle gel formulation using hot melt extrusion technique.AAPS PharmSciTech202223725710.1208/s12249‑022‑02410‑w36114430
    [Google Scholar]
  97. ElzoghbyA.O. El-LakanyS.A. HelmyM.W. Abu-SerieM.M. ElgindyN.A. Shell-crosslinked zein nanocapsules for oral codelivery of exemestane and resveratrol in breast cancer therapy.Nanomedicine (Lond.)201712242785280510.2217/nnm‑2017‑024729094642
    [Google Scholar]
  98. AzimiS. Esmaeil LashgarianH. GhorbanzadehV. MoradipourA. PirzehL. DariushnejadH. 5-FU and the dietary flavonoid carvacrol: A synergistic combination that induces apoptosis in MCF-7 breast cancer cells.Med. Oncol.2022391225310.1007/s12032‑022‑01863‑036224408
    [Google Scholar]
  99. LiskovaA. SamecM. KoklesovaL. BrockmuellerA. ZhaiK. AbdellatifB. SiddiquiM. BiringerK. KudelaE. PecM. GadanecL.K. ŠudomováM. HassanS.T.S. ZulliA. ShakibaeiM. GiordanoF.A. BüsselbergD. GolubnitschajaO. KubatkaP. Flavonoids as an effective sensitizer for anti-cancer therapy: Insights into multi-faceted mechanisms and applicability towards individualized patient profiles.EPMA J.202112215517610.1007/s13167‑021‑00242‑534025826
    [Google Scholar]
  100. CharmanS.A. CharmanW.N. RoggeM.C. WilsonT.D. DutkoF.J. PoutonC.W. Self-emulsifying drug delivery systems: Formulation and biopharmaceutic evaluation of an investigational lipophilic compound.Pharm. Res.199291879310.1023/A:10189879289361589415
    [Google Scholar]
  101. ConstantinidesP.P. Lipid microemulsions for improving drug dissolution and oral absorption: Physical and biopharmaceutical aspects.Pharm. Res.199512111561157210.1023/A:10162683118678592652
    [Google Scholar]
  102. Manish KumarC.P. JainC.P. ShuklaA.K. VermaG. YadavV.K. Terminology and mechanisms of self-emulsifying systems for biomedical applications: A comprehensive review.Colloid J.202385691792910.1134/S1061933X23600719
    [Google Scholar]
  103. ChaturvediS. VermaA. SaharanV.A. Lipid drug carriers for cancer therapeutics: An insight into lymphatic targeting, P-gp, CYP3A4 modulation and bioavailability enhancement.Adv. Pharm. Bull.202010452454110.34172/apb.2020.06433072532
    [Google Scholar]
  104. CherniakovI. DombA.J. HoffmanA. Self-nano-emulsifying drug delivery systems: An update of the biopharmaceutical aspects.Expert Opin. Drug Deliv.20151271121113310.1517/17425247.2015.99903825556987
    [Google Scholar]
  105. PorterC.J.H. TrevaskisN.L. CharmanW.N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs.Nat. Rev. Drug Discov.20076323124810.1038/nrd219717330072
    [Google Scholar]
  106. AnsariM.M. VoD.K. ChoiH.I. RyuJ.S. BaeY. BukhariN.I. ZebA. KimJ.K. MaengH.J. Formulation and evaluation of a self-microemulsifying drug delivery system of raloxifene with improved solubility and oral bioavailability.Pharmaceutics2023158207310.3390/pharmaceutics1508207337631288
    [Google Scholar]
  107. LeeJ.H. KimH.H. ChoY.H. KooT.S. LeeG.W. Development and evaluation of raloxifene-hydrochloride-loaded supersaturatable SMEDDS containing an acidifier.Pharmaceutics20181037810.3390/pharmaceutics1003007829966249
    [Google Scholar]
  108. JainA. KaurR. BegS. KushwahV. JainS. SinghB. Novel cationic supersaturable nanomicellar systems of raloxifene hydrochloride with enhanced biopharmaceutical attributes.Drug Deliv. Transl. Res.20188367069210.1007/s13346‑018‑0514‑829589250
    [Google Scholar]
  109. ThakurP.S. SinghN. SangamwarA.T. BansalA.K. Investigation of need of natural bioenhancer for a metabolism susceptible drug—raloxifene, in a designed self-emulsifying drug delivery system.AAPS PharmSciTech20171872529254010.1208/s12249‑017‑0732‑228224392
    [Google Scholar]
  110. KohliK. ChopraS. DharD. AroraS. KharR.K. Self-emulsifying drug delivery systems: An approach to enhance oral bioavailability.Drug Discov. Today20101521-2295896510.1016/j.drudis.2010.08.00720727418
    [Google Scholar]
  111. BrouwersJ. BrewsterM.E. AugustijnsP. Supersaturating drug delivery systems: The answer to solubility-limited oral bioavailability?J. Pharm. Sci.20099882549257210.1002/jps.2165019373886
    [Google Scholar]
  112. UsuiF. MaedaK. KusaiA. NishimuraK. Keiji Yamamoto Inhibitory effects of water-soluble polymers on precipitation of RS-8359.Int. J. Pharm.19971541596610.1016/S0378‑5173(97)00129‑4
    [Google Scholar]
  113. KucheK. BhargaviN. DoraC.P. JainS. Drug-phospholipid complex — A go through strategy for enhanced oral bioavailability.AAPS PharmSciTech20192024310.1208/s12249‑018‑1252‑430610392
    [Google Scholar]
  114. BegS. RazaK. KumarR. ChadhaR. KatareO.P. SinghB. Improved intestinal lymphatic drug targeting via phospholipid complex-loaded nanolipospheres of rosuvastatin calcium.RSC Advances20166108173818710.1039/C5RA24278A
    [Google Scholar]
  115. ZhaoY.Q. WangL.P. MaC. ZhaoK. LiuY. FengN.P. Preparation and characterization of tetrandrine-phospholipid complex loaded lipid nanocapsules as potential oral carriers.Int. J. Nanomedicine2013814169418124204145
    [Google Scholar]
  116. BegS. KazmiI. AfzalO. Alfawaz AltamimiA.S. Al-AbbasiF.A. AlmalkiW.H. AlghamdiS. AlrobaianM. AlharbiK.S. AlshammariM.S. PandaS.K. Aziz IbrahimI.A. SinghT. RahmanM. Implications of phospholipid-based nanomixed micelles of olmesartan medoxomil with enhanced lymphatic drug targeting ability and systemic bioavailability.J. Drug Deliv. Sci. Technol.20216210227310.1016/j.jddst.2020.102273
    [Google Scholar]
  117. AltyarA.E. FahmyO. Preparation of liposomal raloxifene- graphene nanosheet and evaluation of its in vitro anticancer effects.Dose Response202220110.1177/1559325821106398335069050
    [Google Scholar]
  118. FahmyU.A. Badr-EldinS.M. AldawsariH.M. AlhakamyN.A. AhmedO.A.A. RadwanM.F. EidB.G. SayedS.R.M. El SherbinyG.A. AbualsununW. Potentiality of raloxifene loaded melittin functionalized lipidic nanovesicles against pancreatic cancer cells.Drug Deliv.20222911863187710.1080/10717544.2022.207254435708464
    [Google Scholar]
  119. MalekarS.A. SarodeA.L. BachA.C. BoseA. BothunG. WorthenD.R. Radio frequency-activated nanoliposomes for controlled combination drug delivery.AAPS PharmSciTech20151661335134310.1208/s12249‑015‑0323‑z25899799
    [Google Scholar]
  120. BurraM. JukantiR. JangaK.Y. SunkavalliS. VelpulaA. AmpatiS. JayaveeraK.N. Enhanced intestinal absorption and bioavailability of raloxifene hydrochloride via lyophilized solid lipid nanoparticles.Adv. Powder Technol.201324139340210.1016/j.apt.2012.09.002
    [Google Scholar]
  121. PantA. SharmaG. SainiS. KaurG. JainA. ThakurA. SinghB. QbD-driven development of phospholipid-embedded lipidic nanocarriers of raloxifene: Extensive in vitro and in vivo evaluation studies.Drug Deliv. Transl. Res.202414373075610.1007/s13346‑023‑01427‑337768530
    [Google Scholar]
  122. ShahN. SethA. BalaramanR. SailorG. JaviaA. GohilD. Oral bioavailability enhancement of raloxifene by developing microemulsion using D-optimal mixture design: Optimization and in-vivo pharmacokinetic study.Drug Dev. Ind. Pharm.201844468769610.1080/03639045.2017.140864329168671
    [Google Scholar]
  123. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  124. DristantU. MukherjeeK. SahaS. MaityD. RETRACTED: An overview of polymeric nanoparticles-based drug delivery system in cancer treatment.Technol. Cancer Res. Treat.2023221533033823115208310.1177/1533033823115208336718541
    [Google Scholar]
  125. GazoriT. KhoshayandM.R. AziziE. YazdizadeP. NomaniA. HaririanI. Evaluation of alginate/chitosan nanoparticles as antisense delivery vector: Formulation, optimization and in vitro characterization.Carbohydr. Polym.200977359960610.1016/j.carbpol.2009.02.019
    [Google Scholar]
  126. DeshmukhR. HarwanshR.K. RahmanM.A. Sodium alginate-guar gum and carbopol based methotrexate loaded mucoadhesive microparticles for colon delivery: An in vitro evaluation.Braz. J. Pharm. Sci.202157e1914710.1590/s2175‑97902020000419147
    [Google Scholar]
  127. JayapalJ.J. DhanarajS. Exemestane loaded alginate nanoparticles for cancer treatment: Formulation and in vitro evaluation.Int. J. Biol. Macromol.2017105Pt 141642110.1016/j.ijbiomac.2017.07.06428711612
    [Google Scholar]
  128. DevA. BinulalN.S. AnithaA. NairS.V. FuruikeT. TamuraH. JayakumarR. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications.Carbohydr. Polym.201080383383810.1016/j.carbpol.2009.12.040
    [Google Scholar]
  129. NairR.S. MorrisA. BillaN. LeongC.O. An evaluation of curcumin-encapsulated chitosan nanoparticles for transdermal delivery.AAPS PharmSciTech20192026910.1208/s12249‑018‑1279‑630631984
    [Google Scholar]
  130. LiJ. WuJ. ZhangJ. WangY. FangL. ShenQ. Oral bioavailability and evaluation of docetaxel–nicotinamide complex loaded chitosan nanoparticles.RSC Advances2016642353543536410.1039/C5RA27590C
    [Google Scholar]
  131. ManukumarH.M. UmeshaS. KumarH.N.N. Promising biocidal activity of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) as anti-infective agents against perilous pathogens.Int. J. Biol. Macromol.20171021257126510.1016/j.ijbiomac.2017.05.03028495626
    [Google Scholar]
  132. DanhierF. LecouturierN. VromanB. JérômeC. Marchand-BrynaertJ. FeronO. PréatV. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation.J. Control. Release20091331111710.1016/j.jconrel.2008.09.08618950666
    [Google Scholar]
  133. GaonkarR.H. GangulyS. DewanjeeS. SinhaS. GuptaA. GangulyS. ChattopadhyayD. Chatterjee DebnathM. Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: Preparation, physicochemical characterization, in vitro and in vivo studies.Sci. Rep.20177153010.1038/s41598‑017‑00696‑628373669
    [Google Scholar]
  134. SunY. YuB. WangG. WuY. ZhangX. ChenY. TangS. YuanY. LeeR.J. TengL. XuS. Enhanced antitumor efficacy of vitamin E TPGS-emulsified PLGA nanoparticles for delivery of paclitaxel.Colloids Surf. B Biointerfaces201412371672310.1016/j.colsurfb.2014.10.00725456995
    [Google Scholar]
  135. BernabeuE. GonzalezL. LegaspiM.J. MorettonM.A. ChiappettaD.A. Paclitaxel-loaded TPGS-b-PCL nanoparticles: in vitro cytotoxicity and cellular uptake in MCF-7 and MDA-MB-231 cells versus mPEG-b-PCL nanoparticles and Abraxane.J. Nanosci. Nanotechnol.201616116017010.1166/jnn.2016.1073927398441
    [Google Scholar]
  136. GagliardiA. GiulianoE. VenkateswararaoE. FrestaM. BulottaS. AwasthiV. CoscoD. Biodegradable polymeric nanoparticles for drug delivery to solid tumors.Front. Pharmacol.20211260162610.3389/fphar.2021.60162633613290
    [Google Scholar]
  137. MimaS. MiyaM. IwamotoR. YoshikawaS. Highly deacetylated chitosan and its properties.J. Appl. Polym. Sci.19832861909191710.1002/app.1983.070280607
    [Google Scholar]
  138. JayakumarR. NweN. TokuraS. TamuraH. Sulfated chitin and chitosan as novel biomaterials.Int. J. Biol. Macromol.200740317518110.1016/j.ijbiomac.2006.06.02116893564
    [Google Scholar]
  139. DudhaniA.R. KosarajuS.L. Bioadhesive chitosan nanoparticles: Preparation and characterization.Carbohydr. Polym.201081224325110.1016/j.carbpol.2010.02.026
    [Google Scholar]
  140. GustafsonH.H. Holt-CasperD. GraingerD.W. GhandehariH. Nanoparticle uptake: The phagocyte problem.Nano Today201510448751010.1016/j.nantod.2015.06.00626640510
    [Google Scholar]
  141. VittazM. BazileD. SpenlehauerG. VerrecchiaT. VeillardM. PuisieuxF. LabarreD. Effect of PEO surface density on long-circulating PLA-PEO nanoparticles which are very low complement activators.Biomaterials199617161575158110.1016/0142‑9612(95)00322‑38842361
    [Google Scholar]
  142. SukJ.S. XuQ. KimN. HanesJ. EnsignL.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv. Drug Deliv. Rev.201699Pt A285110.1016/j.addr.2015.09.01226456916
    [Google Scholar]
  143. KouchakzadehH. SafaviM.S. ShojaosadatiS.A. Efficient delivery of therapeutic agents by using targeted albumin nanoparticles.Adv. Protein Chem. Struct. Biol.20159812114310.1016/bs.apcsb.2014.11.00225819278
    [Google Scholar]
  144. MouryaA. FamtaP. ShahS. SrinivasaraoD.A. SharmaA. VambhurkarG. BojjaB. AryaS. DevanaganP. PrasadS.B. ShindeA. SinghG. KhatriD.K. SrivastavaS. MadanJ. Raloxifene loaded d-α-tocopherol polyethylene glycol 1000 succinate stabilized poly (ε-caprolactone) nanoparticles augmented drug delivery and apoptosis in breast cancer cells.J. Drug Deliv. Sci. Technol.20249210539910.1016/j.jddst.2024.105399
    [Google Scholar]
  145. Abd-RabouA.A. AbdelazizA.M. ShakerO.G. AyeldeenG. Hyaluronated nanoparticles deliver raloxifene to CD44-expressed colon cancer cells and regulate lncRNAs/miRNAs epigenetic cascade.Cancer Nanotechnol.20231413210.1186/s12645‑023‑00183‑w
    [Google Scholar]
  146. MaddiboyinaB. RoyH. NakkalaR.K. GandhiS. KavisriM. MoovendhanM. Formulation, optimization and characterization of raloxifene hydrochloride loaded PLGA nanoparticles by using Taguchi design for breast cancer application.Chem. Biol. Drug Des.2023102345747010.1111/cbdd.1422236856306
    [Google Scholar]
  147. MukherjeeA. WatersA.K. KalyanP. AchrolA.S. KesariS. YenugondaV.M. Lipid–polymer hybrid nanoparticles as a next- generation drug delivery platform: State of the art, emerging technologies, and perspectives.Int. J. Nanomedicine2019141937195210.2147/IJN.S19835330936695
    [Google Scholar]
  148. ZhangR.X. AhmedT. LiL.Y. LiJ. AbbasiA.Z. WuX.Y. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks.Nanoscale2017941334135510.1039/C6NR08486A27973629
    [Google Scholar]
  149. CheowW.S. HadinotoK. Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles.Colloids Surf. B Biointerfaces201185221422010.1016/j.colsurfb.2011.02.03321439797
    [Google Scholar]
  150. WuX.Y. Strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery.Expert Opin. Drug Deliv.201613560961210.1517/17425247.2016.116566226978527
    [Google Scholar]
  151. WongH.L. BendayanR. RauthA.M. WuX.Y. Development of solid lipid nanoparticles containing ionically complexed chemotherapeutic drugs and chemosensitizers.J. Pharm. Sci.20049381993200810.1002/jps.2010015236449
    [Google Scholar]
  152. TahirN. MadniA. BalasubramanianV. RehmanM. CorreiaA. KashifP.M. MäkiläE. SalonenJ. SantosH.A. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications.Int. J. Pharm.2017533115616810.1016/j.ijpharm.2017.09.06128963013
    [Google Scholar]
  153. DaveV. YadavR.B. KushwahaK. YadavS. SharmaS. AgrawalU. Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system.Bioact. Mater.20172426928010.1016/j.bioactmat.2017.07.00229744436
    [Google Scholar]
  154. TahirN. MadniA. CorreiaA. RehmanM. BalasubramanianV. KhanM.M. SantosH.A. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy.Int. J. Nanomedicine2019144961497410.2147/IJN.S20932531308666
    [Google Scholar]
  155. LiuJ. ChengH. HanL. QiangZ. ZhangX. GaoW. ZhaoK. SongY. Synergistic combination therapy of lung cancer using paclitaxel- and triptolide-coloaded lipid–polymer hybrid nanoparticles.Drug Des. Devel. Ther.2018123199320910.2147/DDDT.S17219930288024
    [Google Scholar]
  156. LiuY. LiuL. ZhouC. XiaX. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: Preparation and functional evaluation.Int. J. Nanomedicine20161176176910.2147/IJN.S9614626966360
    [Google Scholar]
  157. BabanejadN. FarhadianA. OmraniI. NabidM.R. Design, characterization and in vitro evaluation of novel amphiphilic block sunflower oil-based polyol nanocarrier as a potential delivery system: Raloxifene-hydrochloride as a model.Mater. Sci. Eng. C201778596810.1016/j.msec.2017.03.23528576026
    [Google Scholar]
  158. BoseA. Roy BurmanD. SikdarB. PatraP. Nanomicelles: Types, properties and applications in drug delivery.IET Nanobiotechnol.2021151192710.1049/nbt2.1201834694727
    [Google Scholar]
  159. SchroederA. HellerD.A. WinslowM.M. DahlmanJ.E. PrattG.W. LangerR. JacksT. AndersonD.G. Treating metastatic cancer with nanotechnology.Nat. Rev. Cancer2012121395010.1038/nrc318022193407
    [Google Scholar]
  160. YangH. KhanA.R. LiuM. FuM. JiJ. ChiL. ZhaiG. Stimuli-responsive polymeric micelles for the delivery of paclitaxel.J. Drug Deliv. Sci. Technol.20205610152310.1016/j.jddst.2020.101523
    [Google Scholar]
  161. BourzacK. Nanotechnology: Carrying drugs.Nature20124917425S58S6010.1038/491S58a23320289
    [Google Scholar]
  162. KwonG.S. OkanoT. Polymeric micelles as new drug carriers.Adv. Drug Deliv. Rev.199621210711610.1016/S0169‑409X(96)00401‑2
    [Google Scholar]
  163. JonesM.C. LerouxJ.C. Polymeric micelles – A new generation of colloidal drug carriers.Eur. J. Pharm. Biopharm.199948210111110.1016/S0939‑6411(99)00039‑910469928
    [Google Scholar]
  164. GhoshB. BiswasS. Polymeric micelles in cancer therapy: State of the art.J. Control. Release202133212714710.1016/j.jconrel.2021.02.01633609621
    [Google Scholar]
  165. GradzielskiM. Polyelectrolyte–surfactant complexes as a formulation tool for drug delivery.Langmuir20223844133301334310.1021/acs.langmuir.2c0216636278880
    [Google Scholar]
  166. Ikeda-ImafukuM. WangL.L.W. RodriguesD. ShahaS. ZhaoZ. MitragotriS. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation.J. Control. Release202234551253610.1016/j.jconrel.2022.03.04335337939
    [Google Scholar]
  167. CaoD. HeJ. XuJ. ZhangM. ZhaoL. DuanG. CaoY. ZhouR. NiP. Polymeric prodrugs conjugated with reduction-sensitive dextran–camptothecin and pH-responsive dextran- doxorubicin: An effective combinatorial drug delivery platform for cancer therapy.Polym. Chem.20167254198421210.1039/C6PY00701E
    [Google Scholar]
  168. LaiH. DingX. YeJ. DengJ. CuiS. pH-responsive hyaluronic acid-based nanoparticles for targeted curcumin delivery and enhanced cancer therapy.Colloids Surf. B Biointerfaces202119811145510.1016/j.colsurfb.2020.11145533243547
    [Google Scholar]
  169. GhaffarlouM. SütekinS.D. KaracaoğluE. Karahisar TuranS. İnciÖ.G. GüvenO. BarsbayM. Folic acid-modified biocompatible Pullulan/poly(acrylic acid) nanogels for targeted delivery to MCF-7 cancer cells.Eur. J. Pharm. Biopharm.202318418920110.1016/j.ejpb.2023.02.00136764499
    [Google Scholar]
  170. KalyaneD. RavalN. MaheshwariR. TambeV. KaliaK. TekadeR.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer.Mater. Sci. Eng. C2019981252127610.1016/j.msec.2019.01.06630813007
    [Google Scholar]
  171. KesharwaniS.S. KaurS. TummalaH. SangamwarA.T. Overcoming multiple drug resistance in cancer using polymeric micelles.Expert Opin. Drug Deliv.201815111127114210.1080/17425247.2018.153726130324813
    [Google Scholar]
  172. KimS.H. TanJ.P.K. NederbergF. FukushimaK. YangY.Y. WaymouthR.M. HedrickJ.L. Mixed micelle formation through stereocomplexation between enantiomeric poly(lactide) block copolymers.Macromolecules2009421252910.1021/ma801739x
    [Google Scholar]
  173. LoC.L. LinS.J. TsaiH.C. ChanW.H. TsaiC.H. ChengC.H.D. HsiueG.H. Mixed micelle systems formed from critical micelle concentration and temperature-sensitive diblock copolymers for doxorubicin delivery.Biomaterials20093023-243961397010.1016/j.biomaterials.2009.04.00219406466
    [Google Scholar]
  174. KaurJ. SinglaP. KaurI. Labrasol mediated enhanced solubilization of natural hydrophobic drugs in Pluronic micelles: Physicochemical and in vitro release studies.J. Mol. Liq.202236111959610.1016/j.molliq.2022.119596
    [Google Scholar]
  175. AlakhovV. KlinskiE. LiS. PietrzynskiG. VenneA. BatrakovaE. BronitchT. KabanovA. Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials.Colloids Surf. B Biointerfaces1999161-411313410.1016/S0927‑7765(99)00064‑8
    [Google Scholar]
  176. LongM. LiuX. HuangX. LuM. WuX. WengL. ChenQ. WangX. ZhuL. ChenZ. Alendronate-functionalized hypoxia-responsive polymeric micelles for targeted therapy of bone metastatic prostate cancer.J. Control. Release202133430331710.1016/j.jconrel.2021.04.03533933517
    [Google Scholar]
  177. ManjappaA.S. KumbharP.S. PatilA.B. DisouzaJ.I. PatravaleV.B. Polymeric mixed micelles: Improving the anticancer efficacy of single-copolymer micelles.Crit. Rev. Ther. Drug Carrier Syst.201936115810.1615/CritRevTherDrugCarrierSyst.2018020481
    [Google Scholar]
  178. TaurinS. NehoffH. Van AswegenT. RosengrenR.J. GreishK. A novel role for raloxifene nanomicelles in management of castrate resistant prostate cancer.Biomed. Res. Int.2014201432359410.1155/2014/32359424689036
    [Google Scholar]
  179. FontanaM.C. LaureanoJ.V. ForgeariniB. dos SantosJ. PohlmannA.R. GuterresS.S. de AraujoB.V. BeckR.C.R. Spray- dried raloxifene submicron particles for pulmonary delivery: Development and in vivo pharmacokinetic evaluation in rats.Int. J. Pharm.202058511942910.1016/j.ijpharm.2020.11942932470484
    [Google Scholar]
  180. GreishK. NehoffH. BahmanF. PritchardT. TaurinS. Raloxifene nano-micelles effect on triple-negative breast cancer is mediated through estrogen receptor-β and epidermal growth factor receptor.J. Drug Target.201927890391610.1080/1061186X.2019.156634130615483
    [Google Scholar]
  181. SethiS. BhatiaS. KambojS. SinghR.S. RanaV. Assessing the viability of carbamoylethyl pullulan-g-stearic acid based smart polymeric micelles for tumor targeting of raloxifene.Drug Dev. Ind. Pharm.202147121986199710.1080/03639045.2022.208315335645171
    [Google Scholar]
  182. GargA. SinghS. RaoV.U. BinduK. BalasubramaniamJ. Solid state interaction of raloxifene HCl with different hydrophilic carriers during co-grinding and its effect on dissolution rate.Drug Dev. Ind. Pharm.200935445547010.1080/0363904080243836519048425
    [Google Scholar]
  183. ElkasabgyN.A. Abdel-SalamF.S. MahmoudA.A. BasaliousE.B. AmerM.S. MostafaA.A. ElkheshenS.A. Long lasting in-situ forming implant loaded with raloxifene HCl: An injectable delivery system for treatment of bone injuries.Int. J. Pharm.201957111870310.1016/j.ijpharm.2019.11870331536761
    [Google Scholar]
  184. JagadishB. YelchuriR. KB. TangiH. MarojuS. RaoV.U. Enhanced dissolution and bioavailability of raloxifene hydrochloride by co-grinding with different superdisintegrants.Chem. Pharm. Bull. (Tokyo)201058329330010.1248/cpb.58.29320190431
    [Google Scholar]
  185. KomalaD.R. JangaK.Y. JukantiR. BandariS. VijayagopalM. Competence of raloxifene hydrochloride loaded liquisolid compacts for improved dissolution and intestinal permeation.J. Drug Deliv. Sci. Technol.20153023224110.1016/j.jddst.2015.10.020
    [Google Scholar]
  186. CelebiogluA. UyarT. Development of ferulic acid/cyclodextrin inclusion complex nanofibers for fast-dissolving drug delivery system.Int. J. Pharm.202058411939510.1016/j.ijpharm.2020.11939532407941
    [Google Scholar]
  187. AbbasZ.S. SulaimanG.M. JabirM.S. MohammedS.A.A. KhanR.A. MohammedH.A. Al-SubaiyelA. Galangin/β-cyclodextrin inclusion complex as a drug-delivery system for improved solubility and biocompatibility in breast cancer treatment.Molecules20222714452110.3390/molecules2714452135889394
    [Google Scholar]
  188. HongW. GuoF. YuN. YingS. LouB. WuJ. GaoY. JiX. WangH. LiA. WangG. YangG. A novel folic acid receptor-targeted drug delivery system based on curcumin-loaded β-cyclodextrin nanoparticles for cancer treatment.Drug Des. Devel. Ther.2021152843285510.2147/DDDT.S32011934234415
    [Google Scholar]
  189. PăduraruD.N. NiculescuA.G. BolocanA. AndronicO. GrumezescuA.M. BîrlăR. An updated overview of cyclodextrin-based drug delivery systems for cancer therapy.Pharmaceutics2022148174810.3390/pharmaceutics1408174836015374
    [Google Scholar]
  190. SantosA.C. CostaD. FerreiraL. GuerraC. Pereira-SilvaM. PereiraI. PeixotoD. FerreiraN.R. VeigaF. Cyclodextrin-based delivery systems for in vivo -tested anticancer therapies.Drug Deliv. Transl. Res.2021111497110.1007/s13346‑020‑00778‑532441011
    [Google Scholar]
  191. PardeshiC.V. KothawadeR.V. MarkadA.R. PardeshiS.R. KulkarniA.D. ChaudhariP.J. LonghiM.R. DhasN. NaikJ.B. SuranaS.J. GarcíaM.C. Sulfobutylether-β-cyclodextrin: A functional biopolymer for drug delivery applications.Carbohydr. Polym.2023301Pt B12034710.1016/j.carbpol.2022.12034736446486
    [Google Scholar]
  192. DavisM.E. BrewsterM.E. Cyclodextrin-based pharmaceutics: Past, present and future.Nat. Rev. Drug Discov.20043121023103510.1038/nrd157615573101
    [Google Scholar]
  193. CarneiroS. Costa DuarteF. HeimfarthL. Siqueira QuintansJ. Quintans-JúniorL. Veiga JúniorV. Neves de LimaÁ. Cyclodextrin-drug inclusion complexes: in vivo and in vitro approaches.Int. J. Mol. Sci.201920364210.3390/ijms2003064230717337
    [Google Scholar]
  194. AldawsariH.M. NegmA.A. Potentiation of raloxifene cytotoxicity against MCF-7 breast cancer cell lines via transdermal delivery and loading on self-emulsifying nanoemulsions.Trop. J. Pharm. Res.2020191111510.4314/tjpr.v19i1.2
    [Google Scholar]
  195. ElmoslemanyR.M. AbdallahO.Y. El-KhordaguiL.K. KhalafallahN.M. Propylene glycol liposomes as a topical delivery system for miconazole nitrate: Comparison with conventional liposomes.AAPS PharmSciTech201213272373110.1208/s12249‑012‑9783‑622566173
    [Google Scholar]
  196. ElsayedM.M.A. AbdallahO.Y. NaggarV.F. KhalafallahN.M. Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery.Int. J. Pharm.20063221-2606610.1016/j.ijpharm.2006.05.02716806755
    [Google Scholar]
  197. AlvesG.L. TeixeiraF.V. da RochaP.B.R. Krawczyk-SantosA.P. AndradeL.M. Cunha-FilhoM. MarretoR.N. TaveiraS.F. Preformulation and characterization of raloxifene-loaded lipid nanoparticles for transdermal administration.Drug Deliv. Transl. Res.202212352653710.1007/s13346‑021‑00949‑y33682031
    [Google Scholar]
  198. GuoZ. QiP. PeiD. ZhangX. Raloxifene-loaded solid lipid nanoparticles decorated gel with enhanced treatment potential of osteoporosis.J. Drug Deliv. Sci. Technol.20227510373310.1016/j.jddst.2022.103733
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031332806240930112452
Loading
/content/journals/ddl/10.2174/0122103031332806240930112452
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test