Skip to content
2000
image of Novel Delivery Systems of Raloxifene Hydrochloride for Improved Bioavailability and Therapeutic Efficacy: A Review

Abstract

Raloxifene hydrochloride belongs to the selective estrogen receptor modulator category. Initially, US FDA approved its use for the prevention and treatment of osteoporosis in post- menopausal women. Later, raloxifene hydrochloride was also approved for the prevention of invasive breast carcinoma in post-menopausal women under the high-risk category. Despite its immense and diverse therapeutic potential, the oral bioavailability of raloxifene hydrochloride is only ~ 2%. The factors responsible for the poor bioavailability of raloxifene hydrochloride include its amphiphobic nature, para-glycoprotein pump-mediated efflux in the intestine, and high pre-systemic glucuronidation. In the past two decades, multiple novel delivery systems, . lipid-based nanocarriers, polymeric nanoparticles, polymer-lipid hybrid nanoparticles, micelles, and mixed micelles, have been developed to overcome its drawbacks. Moreover, inclusion complex, phospholipid complex, and solid dispersion have also been developed to improve its solubility and dissolution rate. Further, some research groups successfully explored non-peroral routes like nasal and transdermal for augmenting the raloxifene hydrochloride bioavailability and its therapeutic efficacy. Hence, the principal objective of this review paper is to critically analyze all the delivery systems developed for raloxifene hydrochloride with their advantages and limitations. In addition, a detailed discussion of the physicochemical and pharmacokinetic parameters of raloxifene hydrochloride has been included in this paper. An in-depth understanding of these parameters will assist formulation scientists in developing efficient delivery systems in the future. In conclusion, the literature review revealed that the nanoparticulate systems successfully augmented the raloxifene hydrochloride bioavailability and therapeutic efficacy in pre-clinical experiments. However, future clinical trials should be conducted to assess their safety and therapeutic efficacy for rapid pre- clinical to clinical translation.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031332806240930112452
2024-10-07
2025-01-24
Loading full text...

Full text loading...

References

  1. Bryant H.U. Glasebrook A.L. Yang N.N. Sato M. A pharmacological review of raloxifene. J. Bone Miner. Metab. 1996 14 1 1 9 10.1007/BF01771666
    [Google Scholar]
  2. Clemett D. Spencer C.M. Raloxifene: A review of its use in postmenopausal osteoporosis. Drugs 2000 60 2 379 411 10.2165/00003495‑200060020‑00013 10983739
    [Google Scholar]
  3. Deal C.L. Draper M.W. Raloxifene: A selective estrogen-receptor modulator for postmenopausal osteoporosis - A clinical update on efficacy and safety. Womens Health (Lond. Engl.) 2006 2 2 199 210 10.2217/17455057.2.2.199 19803890
    [Google Scholar]
  4. Kumar V. Green S. Stack G. Berry M. Jin J.R. Chambon P. Functional domains of the human estrogen receptor. Cell 1987 51 6 941 951 10.1016/0092‑8674(87)90581‑2 3690665
    [Google Scholar]
  5. Yang N.N. Venugopalan M. Hardikar S. Glasebrook A. Identification of an estrogen response element activated by metabolites of 17beta-estradiol and raloxifene. Science 1996 273 5279 1222 1225 10.1126/science.273.5279.1222 8703055
    [Google Scholar]
  6. Ettinger B. Black D.M. Mitlak B.H. Knickerbocker R.K. Nickelsen T. Genant H.K. Christiansen C. Delmas P.D. Zanchetta J.R. Stakkestad J. Glüer C.C. Krueger K. Cohen F.J. Eckert S. Ensrud K.E. Avioli L.V. Lips P. Cummings S.R. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: Results from a 3-year randomized clinical trial. JAMA 1999 282 7 637 645 10.1001/jama.282.7.637 10517716
    [Google Scholar]
  7. Lufkin e.g. Whitaker M.D. Nickelsen T. Argueta R. Caplan R.H. Knickerbocker R.K. Riggs B.L. Treatment of established postmenopausal osteoporosis with raloxifene: A randomized trial. J. Bone Miner. Res. 1998 13 11 1747 1754 10.1359/jbmr.1998.13.11.1747 9797484
    [Google Scholar]
  8. Grese T.A. Sluka J.P. Bryant H.U. Cullinan G.J. Glasebrook A.L. Jones C.D. Matsumoto K. Palkowitz A.D. Sato M. Termine J.D. Winter M.A. Yang N.N. Dodge J.A. Molecular determinants of tissue selectivity in estrogen receptor modulators. Proc. Natl. Acad. Sci. USA 1997 94 25 14105 14110 10.1073/pnas.94.25.14105 9391160
    [Google Scholar]
  9. Vogel V.G. Costantino J.P. Wickerham D.L. Cronin W.M. Cecchini R.S. Atkins J.N. Bevers T.B. Fehrenbacher L. Pajon E.R. Wade J.L. Robidoux A. Margolese R.G. James J. Lippman S.M. Runowicz C.D. Ganz P.A. Reis S.E. McCaskill-Stevens W. Ford L.G. Jordan V.C. Wolmark N. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 2006 295 23 2727 2741 10.1001/jama.295.23.joc60074 16754727
    [Google Scholar]
  10. Waters E.A. McNeel T.S. Stevens W.M. Freedman A.N. Use of tamoxifen and raloxifene for breast cancer chemoprevention in 2010. Breast Cancer Res. Treat. 2012 134 2 875 880 10.1007/s10549‑012‑2089‑2 22622807
    [Google Scholar]
  11. Palomba S. Orio F. Russo T. Falbo A. Tolino A. Lombardi G. Cimini V. Zullo F. Antiproliferative and proapoptotic effects of raloxifene on uterine leiomyomas in postmenopausal women. Fertil. Steril. 2005 84 1 154 161 10.1016/j.fertnstert.2004.12.058 16009171
    [Google Scholar]
  12. Almutairi F.M. Abd-Rabou A.A. Mohamed M.S. Raloxifene-encapsulated hyaluronic acid-decorated chitosan nanoparticles selectively induce apoptosis in lung cancer cells. Bioorg. Med. Chem. 2019 27 8 1629 1638 10.1016/j.bmc.2019.03.004 30879864
    [Google Scholar]
  13. Neubauer B.L. Best K.L. Counts D.F. Goode R.L. Hoover D.M. Jones C.D. Sarosdy M.F. Shaar C.J. Tanzer L.R. Merriman R.L. Raloxifene (LY156758) produces antimetastatic responses and extends survival in the paiii rat prostatic adenocarcinoma model. Prostate 1995 27 4 220 229 10.1002/pros.2990270407 7479389
    [Google Scholar]
  14. Puro D. Athawale R. Pandya A. Design, optimization and characterization of nanostructured lipid carriers of raloxifene hydrochloride for transdermal delivery. Nanosci. Nanotechnol. Asia 2020 10 1 57 67 10.2174/2210681208666181106124337
    [Google Scholar]
  15. Jain A. Saini S. Kumar R. Sharma T. Swami R. Katare O.P. Singh B. Phospholipid-based complex of raloxifene with enhanced biopharmaceutical potential: Synthesis, characterization and preclinical assessment. Int. J. Pharm. 2019 571 118698 10.1016/j.ijpharm.2019.118698 31539555
    [Google Scholar]
  16. Kemp D.C. Fan P.W. Stevens J.C. Characterization of raloxifene glucuronidation in vitro: Contribution of intestinal metabolism to presystemic clearance. Drug Metab. Dispos. 2002 30 6 694 700 10.1124/dmd.30.6.694 12019197
    [Google Scholar]
  17. Elsheikh M.A. Elnaggar Y.S.R. Gohar E.Y. Abdallah O.Y. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: Optimization and in vivo appraisal. Int. J. Nanomedicine 2012 7 3787 3802 22888234
    [Google Scholar]
  18. Hochner-Celnikier D. Pharmacokinetics of raloxifene and its clinical application. Eur. J. Obstet. Gynecol. Reprod. Biol. 1999 85 1 23 29 10.1016/S0301‑2115(98)00278‑4 10428318
    [Google Scholar]
  19. Davies G.C. Huster W.J. Lu Y. Plouffe L. Lakshmanan M. Adverse events reported by postmenopausal women in controlled trials with raloxifene. Obstet. Gynecol. 1999 93 4 558 565 10214833
    [Google Scholar]
  20. Teixeira F.V. Alves G.L. Ferreira M.H. Taveira S.F. da Cunha-Filho M.S.S. Marreto R.N. Preformulation studies to guide the development of raloxifene lipid-based delivery systems. J. Therm. Anal. Calorim. 2018 132 1 365 371 10.1007/s10973‑018‑6964‑x
    [Google Scholar]
  21. Jain A. Sharma T. Kumar R. Katare O.P. Singh B. Raloxifene-loaded SLNs with enhanced biopharmaceutical potential: QbD-steered development, in vitro evaluation, in vivo pharmacokinetics, and IVIVC. Drug Deliv. Transl. Res. 2022 12 5 1136 1160 10.1007/s13346‑021‑00990‑x 33966178
    [Google Scholar]
  22. Nekkanti V. Venkateshwarlu V. Pillai R. Preparation, characterization and in-vivo evaluation of raloxifene hydrochloride solid lipid nanoparticles. Pharm. Nanotechnol. 2012 1 1 68 77 10.2174/2211738511301010068
    [Google Scholar]
  23. Thakkar H. Nangesh J. Parmar M. Patel D. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system. J. Pharm. Bioallied Sci. 2011 3 3 442 448 10.4103/0975‑7406.84463 21966167
    [Google Scholar]
  24. Muhindo D. Ashour E.A. Almutairi M. Joshi P.H. Repka M.A. Continuous production of raloxifene hydrochloride loaded nanostructured lipid carriers using hot-melt extrusion technology. J. Drug Deliv. Sci. Technol. 2021 65 102673 10.1016/j.jddst.2021.102673 34306183
    [Google Scholar]
  25. Shah N.V. Seth A.K. Balaraman R. Aundhia C.J. Maheshwari R.A. Parmar G.R. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study. J. Adv. Res. 2016 7 3 423 434 10.1016/j.jare.2016.03.002 27222747
    [Google Scholar]
  26. Ağardan N.B.M. Değim Z. Yılmaz Ş. Altıntaş L. Topal T. The effectiveness of Raloxifene-loaded liposomes and cochleates in breast cancer therapy. AAPS PharmSciTech 2016 17 4 968 977 10.1208/s12249‑015‑0429‑3 26729527
    [Google Scholar]
  27. Ağardan N.B.M. Değim Z. Yılmaz Ş. Altıntaş L. Topal T. Tamoxifen/raloxifene loaded liposomes for oral treatment of breast cancer. J. Drug Deliv. Sci. Technol. 2020 57 101612 10.1016/j.jddst.2020.101612
    [Google Scholar]
  28. Ye J.Y. Chen Z.Y. Huang C.L. Huang B. Zheng Y.R. Zhang Y.F. Lu B.Y. He L. Liu C.S. Long X.Y. A non-lipolysis nanoemulsion improved oral bioavailability by reducing the first-pass metabolism of raloxifene, and related absorption mechanisms being studied. Int. J. Nanomedicine 2020 15 6503 6518 10.2147/IJN.S259993 32922013
    [Google Scholar]
  29. Jha R.K. Tiwari S. Mishra B. Bioadhesive microspheres for bioavailability enhancement of raloxifene hydrochloride: Formulation and pharmacokinetic evaluation. AAPS PharmSciTech 2011 12 2 650 657 10.1208/s12249‑011‑9619‑9 21562721
    [Google Scholar]
  30. Kala S.G. Chinni S. Development of raloxifene hydrochloride loaded mPEG-PLA nanoparticles for oral delivery. Indian J Pharm Educ Res. 2021 55 1s s135 s148 10.5530/ijper.55.1s.44
    [Google Scholar]
  31. Saini D. Fazil M. Ali M.M. Baboota S. Ali J. Formulation, development and optimization of raloxifene-loaded chitosan nanoparticles for treatment of osteoporosis. Drug Deliv. 2015 22 6 823 836 10.3109/10717544.2014.900153 24725026
    [Google Scholar]
  32. Kavas A. Keskin D. Altunbaş K. Tezcaner A. Raloxifene-/raloxifene-poly(ethylene glycol) conjugate-loaded microspheres: A novel strategy for drug delivery to bone forming cells. Int. J. Pharm. 2016 510 1 168 183 10.1016/j.ijpharm.2016.06.053 27343363
    [Google Scholar]
  33. Yadav A.S. Radharani N.N.V. Gorain M. Bulbule A. Shetti D. Roy G. Baby T. Kundu G.C. RGD functionalized chitosan nanoparticle mediated targeted delivery of raloxifene selectively suppresses angiogenesis and tumor growth in breast cancer. Nanoscale 2020 12 19 10664 10684 10.1039/C9NR10673A 32374338
    [Google Scholar]
  34. Yang S.J. Chang C.H. Young T.H. Wang C.H. Tseng T.H. Wang M.L. Human serum albumin-based nanoparticles alter raloxifene administration and improve bioavailability. Drug Deliv. 2022 29 1 2685 2693 10.1080/10717544.2022.2111479 35975329
    [Google Scholar]
  35. Murthy A. Ravi P.R. Kathuria H. Vats R. Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifene. Int. J. Pharm. 2020 588 119731 10.1016/j.ijpharm.2020.119731 32763388
    [Google Scholar]
  36. Du X. Gao N. Song X. Bioadhesive polymer/lipid hybrid nanoparticles as oral delivery system of raloxifene with enhancive intestinal retention and bioavailability. Drug Deliv. 2021 28 1 252 260 10.1080/10717544.2021.1872742 33501870
    [Google Scholar]
  37. Varshosaz J. Ziaei V. Minaiyan M. Jahanian-Najafabadi A. Sayed-Tabatabaei L. Enhanced solubility, oral bioavailability and anti-osteoporotic effects of raloxifene HCl in ovariectomized rats by Igepal CO-890 nanomicelles. Pharm. Dev. Technol. 2019 24 2 133 144 10.1080/10837450.2018.1428815 29338533
    [Google Scholar]
  38. Sethi S. Bhatia S. Kamboj S. Rana V. Exploring the feasibility of carbamoylethyl pullulan-g-palmitic acid polymeric micelles for the effective targeting of raloxifene to breast tumor: Optimization and preclinical evaluation. Int. J. Pharm. 2021 603 120720 10.1016/j.ijpharm.2021.120720 34019973
    [Google Scholar]
  39. Pritchard T. Rosengren R.J. Greish K. Taurin S. Raloxifene nanomicelles reduce the growth of castrate-resistant prostate cancer. J. Drug Target. 2016 24 5 441 449 10.3109/1061186X.2015.1086360 26373825
    [Google Scholar]
  40. Kanade R. Boche M. Pokharkar V. Self-assembling raloxifene loaded mixed micelles: Formulation optimization, in vitro cytotoxicity and in vivo pharmacokinetics. AAPS PharmSciTech 2018 19 3 1105 1115 10.1208/s12249‑017‑0919‑6 29181706
    [Google Scholar]
  41. Wang Z. Li Y. Raloxifene/SBE-β-CD Inclusion complexes formulated into nanoparticles with chitosan to overcome the absorption barrier for bioavailability enhancement. Pharmaceutics 2018 10 3 76 10.3390/pharmaceutics10030076 29958389
    [Google Scholar]
  42. Li H. Lu S. Luo M. Li X. Liu S. Zhang T. A matrix dispersion based on phospholipid complex system: Preparation, lymphatic transport, and pharmacokinetics. Drug Dev. Ind. Pharm. 2020 46 4 557 565 10.1080/03639045.2020.1735408 32126844
    [Google Scholar]
  43. Elkanayati R.M. Omari S. Youssef A.A.A. Almutairi M. Almotairy A. Repka M. Ashour E.A. Multilevel categoric factorial design for optimization of raloxifene hydrochloride solid dispersion in PVP K30 by hot-melt extrusion technology. J. Drug Deliv. Sci. Technol. 2024 92 105362 10.1016/j.jddst.2024.105362
    [Google Scholar]
  44. Alhalmi A. Amin S. Khan Z. Beg S. Al kamaly O. Saleh A. Kohli K. Nanostructured lipid carrier-based codelivery of raloxifene and naringin: Formulation, optimization, in vitro, ex- vivo, in vivo assessment, and acute toxicity studies. Pharmaceutics 2022 14 9 1771 10.3390/pharmaceutics14091771 36145519
    [Google Scholar]
  45. Nagai N. Ogata F. Otake H. Nakazawa Y. Kawasaki N. Design of a transdermal formulation containing raloxifene nanoparticles for osteoporosis treatment. Int. J. Nanomedicine 2018 13 5215 5229 10.2147/IJN.S173216 30233182
    [Google Scholar]
  46. Thakkar H.P. Savsani H. Kumar P. Ethosomal hydrogel of raloxifene HCl: Statistical optimization & ex-vivo permeability evaluation across microporated pig ear skin. Curr. Drug Deliv. 2016 13 7 1111 1122 10.2174/1567201813666160120151816 26787414
    [Google Scholar]
  47. Zakir F. Ahmad A. Mirza M.A. Kohli K. Ahmad F.J. Exploration of a transdermal nanoemulgel as an alternative therapy for postmenopausal osteoporosis. J. Drug Deliv. Sci. Technol. 2021 65 102745 10.1016/j.jddst.2021.102745
    [Google Scholar]
  48. Ansari M.D. khan I. Solanki P. Pandit J. Jahan R.N. Aqil M. Sultana Y. Fabrication and optimization of raloxifene loaded spanlastics vesicle for transdermal delivery. J. Drug Deliv. Sci. Technol. 2022 68 103102 10.1016/j.jddst.2022.103102
    [Google Scholar]
  49. Waheed A. Aqil M. Ahad A. Imam S.S. Moolakkadath T. Iqbal Z. Ali A. Improved bioavailability of raloxifene hydrochloride using limonene containing transdermal nano-sized vesicles. J. Drug Deliv. Sci. Technol. 2019 52 468 476 10.1016/j.jddst.2019.05.019
    [Google Scholar]
  50. Salem H.F. Gamal A. Saeed H. Tulbah A.S. The impact of improving dermal permeation on the efficacy and targeting of liposome nanoparticles as a potential treatment for breast cancer. Pharmaceutics 2021 13 10 1633 10.3390/pharmaceutics13101633 34683926
    [Google Scholar]
  51. Mahmood S. Taher M. Mandal U.K. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application. Int. J. Nanomedicine 2014 9 4331 4346 25246789
    [Google Scholar]
  52. Joshi A. Kaur J. Kulkarni R. Chaudhari R. in-vitro and ex- vivo evaluation of Raloxifene hydrochloride delivery using nano- transfersome based formulations. J. Drug Deliv. Sci. Technol. 2018 45 151 158 10.1016/j.jddst.2018.02.006
    [Google Scholar]
  53. Mahmood S. Chatterjee B. Mandal U.K. Pharmacokinetic evaluation of the synergistic effect of raloxifene loaded transfersomes for transdermal delivery. J. Drug Deliv. Sci. Technol. 2021 63 102545 10.1016/j.jddst.2021.102545
    [Google Scholar]
  54. Alhakamy N.A. Fahmy U.A. Ahmed O.A.A. Vitamin E TPGS based transferosomes augmented TAT as a promising delivery system for improved transdermal delivery of raloxifene. PLoS One 2019 14 12 e0226639 10.1371/journal.pone.0226639 31881053
    [Google Scholar]
  55. Patel A. Tyagi A. Sharma R.K. Thakkar H. A gamma scintigraphy study to investigate uterine targeting efficiency of raloxifene-loaded liposomes administered intravaginally in New Zealand white female rabbits. Drug Deliv. 2016 23 9 3330 3338 10.1080/10717544.2016.1177137 27072061
    [Google Scholar]
  56. Patel A. Dhande R. Thakkar H. Development of intravaginal rod insert bearing liposomal raloxifene hydrochloride and Leuprolide acetate as a potential carrier for uterine targeting. J. Pharm. Pharmacol. 2021 73 5 653 663 10.1093/jpp/rgab003 33772288
    [Google Scholar]
  57. Teeter J.S. Meyerhoff R.D. Environmental fate and chemistry of raloxifene hydrochloride. Environ. Toxicol. Chem. 2002 21 4 729 736 10.1002/etc.5620210407 11951945
    [Google Scholar]
  58. Trontelj J. Vovk T. Bogataj M. Mrhar A. HPLC analysis of raloxifene hydrochloride and its application to drug quality control studies. Pharmacol. Res. 2005 52 4 334 339 10.1016/j.phrs.2005.05.007 15979892
    [Google Scholar]
  59. Czock D. Keller F. Heringa M. Rasche F.M. Raloxifene pharmacokinetics in males with normal and impaired renal function. Br. J. Clin. Pharmacol. 2005 59 4 479 482 10.1111/j.1365‑2125.2004.02326.x 15801944
    [Google Scholar]
  60. Wempe M.F. Wacher V.J. Ruble K.M. Ramsey M.G. Edgar K.J. Buchanan N.L. Buchanan C.M. Pharmacokinetics of raloxifene in male Wistar–Hannover rats: Influence of complexation with hydroxybutenyl-beta-cyclodextrin. Int. J. Pharm. 2008 346 1-2 25 37 10.1016/j.ijpharm.2007.06.002 17644287
    [Google Scholar]
  61. Jeong E.J. Lin H. Hu M. Disposition mechanisms of raloxifene in the human intestinal Caco-2 model. J. Pharmacol. Exp. Ther. 2004 310 1 376 385 10.1124/jpet.103.063925 15020665
    [Google Scholar]
  62. Bikiaris D. Karavelidis V. Karavas E. Novel biodegradable polyesters. Synthesis and application as drug carriers for the preparation of raloxifene HCl loaded nanoparticles. Molecules 2009 14 7 2410 2430 10.3390/molecules14072410 19633613
    [Google Scholar]
  63. Ahad A. Shakeel F. Alfaifi O.A. Raish M. Ahmad A. Al-Jenoobi F.I. Al-Mohizea A.M. Solubility determination of raloxifene hydrochloride in ten pure solvents at various temperatures: Thermodynamics-based analysis and solute–solvent interactions. Int. J. Pharm. 2018 544 1 165 171 10.1016/j.ijpharm.2018.04.024 29679751
    [Google Scholar]
  64. Subramanian P. Kurek M.A. Jensen I-J. Lipid-based nanocarrier system for the effective delivery of nutraceuticals. Molecules 2021 26 18 5510 10.3390/molecules26185510 34576981
    [Google Scholar]
  65. Garg A. Tomar D.S. Bhalala K. Wahajuddin M. Development and investigation of Artemether loaded binary solid lipid nanoparticles: Physicochemical characterization and in-situ single-pass intestinal permeability. J. Drug Deliv. Sci. Technol. 2020 60 102072 10.1016/j.jddst.2020.102072
    [Google Scholar]
  66. Garg R. Garg A. Tacrolimus loaded nanostructured lipid carriers using Moringa oleifera seed oil: Design, optimization and in-vitro evaluations. J. Microencapsul. 2023 40 7 502 516 10.1080/02652048.2023.2231075 37366651
    [Google Scholar]
  67. Wang S. Chen Y. Guo J. Huang Q. Liposomes for tumor targeted therapy: A review. Int. J. Mol. Sci. 2023 24 3 2643 10.3390/ijms24032643 36768966
    [Google Scholar]
  68. Chaturvedi S. Garg A. Verma A. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J. Drug Deliv. Sci. Technol. 2020 59 101899 10.1016/j.jddst.2020.101899
    [Google Scholar]
  69. Yang T. Cui F.D. Choi M.K. Lin H. Chung S.J. Shim C.K. Kim D.D. Liposome formulation of paclitaxel with enhanced solubility and stability. Drug Deliv. 2007 14 5 301 308 10.1080/10717540601098799 17613018
    [Google Scholar]
  70. Yang T. Cui F.D. Choi M.K. Cho J.W. Chung S.J. Shim C.K. Kim D.D. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int. J. Pharm. 2007 338 1-2 317 326 10.1016/j.ijpharm.2007.02.011 17368984
    [Google Scholar]
  71. Silli E.K. Li M. Shao Y. Zhang Y. Hou G. Du J. Liang J. Wang Y. Liposomal nanostructures for Gemcitabine and Paclitaxel delivery in pancreatic cancer. Eur. J. Pharm. Biopharm. 2023 192 13 24 10.1016/j.ejpb.2023.09.014 37758121
    [Google Scholar]
  72. Tardi P. Boman N. Cullis P. Liposomal Doxorubicin. J. Drug Target. 1996 4 3 129 140 10.3109/10611869609015970 8959485
    [Google Scholar]
  73. Swenson C.E. Perkins W.R. Roberts P. Janoff A.S. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). Breast 2001 10 1 7 10.1016/S0960‑9776(01)80001‑1
    [Google Scholar]
  74. Shahraki N. Mehrabian A. Amiri-Darban S. Moosavian S.A. Jaafari M.R. Preparation and characterization of PEGylated liposomal Doxorubicin targeted with leptin-derived peptide and evaluation of their anti-tumor effects, in vitro and in vivo in mice bearing C26 colon carcinoma. Colloids Surf. B Biointerfaces 2021 200 111589 10.1016/j.colsurfb.2021.111589 33545570
    [Google Scholar]
  75. Rohilla S. Awasthi R. Mehta M. Chellappan D.K. Gupta G. Gulati M. Singh S.K. Anand K. Oliver B.G. Dua K. Dureja H. Preparation and evaluation of gefitinib containing nanoliposomal formulation for lung cancer therapy. Bionanoscience 2022 12 1 241 255 10.1007/s12668‑022‑00938‑6
    [Google Scholar]
  76. Hu Y. Zhang J. Hu H. Xu S. Xu L. Chen E. Gefitinib encapsulation based on nano-liposomes for enhancing the curative effect of lung cancer. Cell Cycle 2020 19 24 3581 3594 10.1080/15384101.2020.1852756 33300430
    [Google Scholar]
  77. Liu Y. Zhao Z. Zhu S. Cheng Y. Liu J. Ye T. Wang S. Docetaxel liposomes for lung targeted delivery: Development and evaluation. Pharm. Dev. Technol. 2023 28 9 856 864 10.1080/10837450.2023.2265472 37842809
    [Google Scholar]
  78. Zawilska P. Machowska M. Wisniewski K. Grynkiewicz G. Hrynyk R. Rzepecki R. Gubernator J. Novel pegylated liposomal formulation of docetaxel with 3-n-pentadecylphenol derivative for cancer therapy. Eur. J. Pharm. Sci. 2021 163 105838 10.1016/j.ejps.2021.105838 33845119
    [Google Scholar]
  79. Vakili-Ghartavol R. Rezayat S.M. Faridi-Majidi R. Sadri K. Jaafari M.R. Optimization of docetaxel loading conditions in liposomes: Proposing potential products for metastatic breast carcinoma chemotherapy. Sci. Rep. 2020 10 1 5569 10.1038/s41598‑020‑62501‑1 32221371
    [Google Scholar]
  80. Borges O. Cordeiro-da-Silva A. Romeijn S.G. Amidi M. de Sousa A. Borchard G. Junginger H.E. Uptake studies in rat Peyer’s patches, cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosal vaccination. J. Control. Release 2006 114 3 348 358 10.1016/j.jconrel.2006.06.011 16905219
    [Google Scholar]
  81. Chaturvedi S. Mishra R. Insight into delivery approaches for biopharmaceutics classification system class II and IV drugs. Drug Deliv. Lett. 2020 10 4 255 277 10.2174/2210303110999200712185109
    [Google Scholar]
  82. O’Driscoll C.M. Lipid-based formulations for intestinal lymphatic delivery. Eur. J. Pharm. Sci. 2002 15 5 405 415 10.1016/S0928‑0987(02)00051‑9 12036717
    [Google Scholar]
  83. Singh S. Kushwaha A.K. Vuddanda P.R. Karunanidhi P. Singh S.K. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. Biomed. Res. Int. 2013 2013 584549 10.1155/2013/584549 24228255
    [Google Scholar]
  84. Xie Y. Bagby T.R. Cohen M.S. Forrest M.L. Drug delivery to the lymphatic system: Importance in future cancer diagnosis and therapies. Expert Opin. Drug Deliv. 2009 6 8 785 792 10.1517/17425240903085128 19563270
    [Google Scholar]
  85. Čerpnjak K. Zvonar A. Gašperlin M. Vrečer F. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharm. 2013 63 4 427 445 10.2478/acph‑2013‑0040 24451070
    [Google Scholar]
  86. Suresh G. Manjunath K. Venkateswarlu V. Satyanarayana V. Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles. AAPS PharmSciTech 2007 8 1 E162 E170 10.1208/pt0801024 17408223
    [Google Scholar]
  87. Porter C.J.H. Pouton C.W. Cuine J.F. Charman W.N. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv. Drug Deliv. Rev. 2008 60 6 673 691 10.1016/j.addr.2007.10.014 18155801
    [Google Scholar]
  88. Ravi P.R. Aditya N. Kathuria H. Malekar S. Vats R. Lipid nanoparticles for oral delivery of raloxifene: Optimization, stability, in vivo evaluation and uptake mechanism. Eur. J. Pharm. Biopharm. 2014 87 1 114 124 10.1016/j.ejpb.2013.12.015 24378615
    [Google Scholar]
  89. Bagasariya D. Charankumar K. Shah S. Famta P. Fernandes V. Shahrukh S. Khatri D.K. Singh S.B. Srivastava S. Quality by design endorsed atorvastatin-loaded nanostructured lipid carriers embedded in pH-responsive gel for melanoma. J. Microencapsul. 2024 41 1 27 44 10.1080/02652048.2023.2282971 37982590
    [Google Scholar]
  90. Thakur S. Anjum M.M. Jaiswal S. Gautam A.K. Rajinikanth P.S. Tazarotene-calcipotriol loaded nanostructured lipid carrier enriched hydrogel: A novel dual drug synergistic approach towards Psoriasis management. J. Drug Deliv. Sci. Technol. 2023 88 104944 10.1016/j.jddst.2023.104944
    [Google Scholar]
  91. Murthy A. Rao Ravi P. Kathuria H. Malekar S. Oral bioavailability enhancement of raloxifene with nanostructured lipid carriers. Nanomaterials (Basel) 2020 10 6 1085 10.3390/nano10061085 32486508
    [Google Scholar]
  92. Sharma A. Streets J. Bhatt P. Patel P. Sutariya V. Varghese Gupta S. Formulation and characterization of raloxifene nanostructured lipid carriers for permeability and uptake enhancement applications. Assay Drug Dev. Technol. 2022 20 4 164 174 10.1089/adt.2022.004 35617693
    [Google Scholar]
  93. Bhagurkar A.M. Repka M.A. Murthy S.N. A novel approach for the development of a nanostructured lipid carrier formulation by hot-melt extrusion technology. J. Pharm. Sci. 2017 106 4 1085 1091 10.1016/j.xphs.2016.12.015 28040458
    [Google Scholar]
  94. Bagde A. Patel K. Kutlehria S. Chowdhury N. Singh M. Formulation of topical ibuprofen solid lipid nanoparticle (SLN) gel using hot melt extrusion technique (HME) and determining its anti-inflammatory strength. Drug Deliv. Transl. Res. 2019 9 4 816 827 10.1007/s13346‑019‑00632‑3 30924025
    [Google Scholar]
  95. Thakkar R. Komanduri N. Dudhipala N. Tripathi S. Repka M.A. Majumdar S. Development and optimization of hot-melt extruded moxifloxacin hydrochloride inserts, for ocular applications, using the design of experiments. Int. J. Pharm. 2021 603 120676 10.1016/j.ijpharm.2021.120676 33961956
    [Google Scholar]
  96. Bagde A. Kouagou E. Singh M. Formulation of topical flurbiprofen solid lipid nanoparticle gel formulation using hot melt extrusion technique. AAPS PharmSciTech 2022 23 7 257 10.1208/s12249‑022‑02410‑w 36114430
    [Google Scholar]
  97. Elzoghby A.O. El-Lakany S.A. Helmy M.W. Abu-Serie M.M. Elgindy N.A. Shell-crosslinked zein nanocapsules for oral codelivery of exemestane and resveratrol in breast cancer therapy. Nanomedicine (Lond.) 2017 12 24 2785 2805 10.2217/nnm‑2017‑0247 29094642
    [Google Scholar]
  98. Azimi S. Esmaeil Lashgarian H. Ghorbanzadeh V. Moradipour A. Pirzeh L. Dariushnejad H. 5-FU and the dietary flavonoid carvacrol: A synergistic combination that induces apoptosis in MCF-7 breast cancer cells. Med. Oncol. 2022 39 12 253 10.1007/s12032‑022‑01863‑0 36224408
    [Google Scholar]
  99. Liskova A. Samec M. Koklesova L. Brockmueller A. Zhai K. Abdellatif B. Siddiqui M. Biringer K. Kudela E. Pec M. Gadanec L.K. Šudomová M. Hassan S.T.S. Zulli A. Shakibaei M. Giordano F.A. Büsselberg D. Golubnitschaja O. Kubatka P. Flavonoids as an effective sensitizer for anti-cancer therapy: Insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J. 2021 12 2 155 176 10.1007/s13167‑021‑00242‑5 34025826
    [Google Scholar]
  100. Charman S.A. Charman W.N. Rogge M.C. Wilson T.D. Dutko F.J. Pouton C.W. Self-emulsifying drug delivery systems: Formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm. Res. 1992 9 1 87 93 10.1023/A:1018987928936 1589415
    [Google Scholar]
  101. Constantinides P.P. Lipid microemulsions for improving drug dissolution and oral absorption: Physical and biopharmaceutical aspects. Pharm. Res. 1995 12 11 1561 1572 10.1023/A:1016268311867 8592652
    [Google Scholar]
  102. Manish Kumar C.P. Jain C.P. Shukla A.K. Verma G. Yadav V.K. Terminology and mechanisms of self-emulsifying systems for biomedical applications: A comprehensive review. Colloid J. 2023 85 6 917 929 10.1134/S1061933X23600719
    [Google Scholar]
  103. Chaturvedi S. Verma A. Saharan V.A. Lipid drug carriers for cancer therapeutics: An insight into lymphatic targeting, P-gp, CYP3A4 modulation and bioavailability enhancement. Adv. Pharm. Bull. 2020 10 4 524 541 10.34172/apb.2020.064 33072532
    [Google Scholar]
  104. Cherniakov I. Domb A.J. Hoffman A. Self-nano-emulsifying drug delivery systems: An update of the biopharmaceutical aspects. Expert Opin. Drug Deliv. 2015 12 7 1121 1133 10.1517/17425247.2015.999038 25556987
    [Google Scholar]
  105. Porter C.J.H. Trevaskis N.L. Charman W.N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. 2007 6 3 231 248 10.1038/nrd2197 17330072
    [Google Scholar]
  106. Ansari M.M. Vo D.K. Choi H.I. Ryu J.S. Bae Y. Bukhari N.I. Zeb A. Kim J.K. Maeng H.J. Formulation and evaluation of a self-microemulsifying drug delivery system of raloxifene with improved solubility and oral bioavailability. Pharmaceutics 2023 15 8 2073 10.3390/pharmaceutics15082073 37631288
    [Google Scholar]
  107. Lee J.H. Kim H.H. Cho Y.H. Koo T.S. Lee G.W. Development and evaluation of raloxifene-hydrochloride-loaded supersaturatable SMEDDS containing an acidifier. Pharmaceutics 2018 10 3 78 10.3390/pharmaceutics10030078 29966249
    [Google Scholar]
  108. Jain A. Kaur R. Beg S. Kushwah V. Jain S. Singh B. Novel cationic supersaturable nanomicellar systems of raloxifene hydrochloride with enhanced biopharmaceutical attributes. Drug Deliv. Transl. Res. 2018 8 3 670 692 10.1007/s13346‑018‑0514‑8 29589250
    [Google Scholar]
  109. Thakur P.S. Singh N. Sangamwar A.T. Bansal A.K. Investigation of need of natural bioenhancer for a metabolism susceptible drug—raloxifene, in a designed self-emulsifying drug delivery system. AAPS PharmSciTech 2017 18 7 2529 2540 10.1208/s12249‑017‑0732‑2 28224392
    [Google Scholar]
  110. Kohli K. Chopra S. Dhar D. Arora S. Khar R.K. Self-emulsifying drug delivery systems: An approach to enhance oral bioavailability. Drug Discov. Today 2010 15 21-22 958 965 10.1016/j.drudis.2010.08.007 20727418
    [Google Scholar]
  111. Brouwers J. Brewster M.E. Augustijns P. Supersaturating drug delivery systems: The answer to solubility-limited oral bioavailability? J. Pharm. Sci. 2009 98 8 2549 2572 10.1002/jps.21650 19373886
    [Google Scholar]
  112. Usui F. Maeda K. Kusai A. Nishimura K. Keiji Yamamoto Inhibitory effects of water-soluble polymers on precipitation of RS-8359. Int. J. Pharm. 1997 154 1 59 66 10.1016/S0378‑5173(97)00129‑4
    [Google Scholar]
  113. Kuche K. Bhargavi N. Dora C.P. Jain S. Drug-phospholipid complex — A go through strategy for enhanced oral bioavailability. AAPS PharmSciTech 2019 20 2 43 10.1208/s12249‑018‑1252‑4 30610392
    [Google Scholar]
  114. Beg S. Raza K. Kumar R. Chadha R. Katare O.P. Singh B. Improved intestinal lymphatic drug targeting via phospholipid complex-loaded nanolipospheres of rosuvastatin calcium. RSC Advances 2016 6 10 8173 8187 10.1039/C5RA24278A
    [Google Scholar]
  115. Zhao Y.Q. Wang L.P. Ma C. Zhao K. Liu Y. Feng N.P. Preparation and characterization of tetrandrine-phospholipid complex loaded lipid nanocapsules as potential oral carriers. Int. J. Nanomedicine 2013 8 1 4169 4181 24204145
    [Google Scholar]
  116. Beg S. Kazmi I. Afzal O. Alfawaz Altamimi A.S. Al-Abbasi F.A. Almalki W.H. Alghamdi S. Alrobaian M. Alharbi K.S. Alshammari M.S. Panda S.K. Aziz Ibrahim I.A. Singh T. Rahman M. Implications of phospholipid-based nanomixed micelles of olmesartan medoxomil with enhanced lymphatic drug targeting ability and systemic bioavailability. J. Drug Deliv. Sci. Technol. 2021 62 102273 10.1016/j.jddst.2020.102273
    [Google Scholar]
  117. Altyar A.E. Fahmy O. Preparation of liposomal raloxifene- graphene nanosheet and evaluation of its in vitro anticancer effects. Dose Response 2022 20 1 10.1177/15593258211063983 35069050
    [Google Scholar]
  118. Fahmy U.A. Badr-Eldin S.M. Aldawsari H.M. Alhakamy N.A. Ahmed O.A.A. Radwan M.F. Eid B.G. Sayed S.R.M. El Sherbiny G.A. Abualsunun W. Potentiality of raloxifene loaded melittin functionalized lipidic nanovesicles against pancreatic cancer cells. Drug Deliv. 2022 29 1 1863 1877 10.1080/10717544.2022.2072544 35708464
    [Google Scholar]
  119. Malekar S.A. Sarode A.L. Bach A.C. Bose A. Bothun G. Worthen D.R. Radio frequency-activated nanoliposomes for controlled combination drug delivery. AAPS PharmSciTech 2015 16 6 1335 1343 10.1208/s12249‑015‑0323‑z 25899799
    [Google Scholar]
  120. Burra M. Jukanti R. Janga K.Y. Sunkavalli S. Velpula A. Ampati S. Jayaveera K.N. Enhanced intestinal absorption and bioavailability of raloxifene hydrochloride via lyophilized solid lipid nanoparticles. Adv. Powder Technol. 2013 24 1 393 402 10.1016/j.apt.2012.09.002
    [Google Scholar]
  121. Pant A. Sharma G. Saini S. Kaur G. Jain A. Thakur A. Singh B. QbD-driven development of phospholipid-embedded lipidic nanocarriers of raloxifene: Extensive in vitro and in vivo evaluation studies. Drug Deliv. Transl. Res. 2024 14 3 730 756 10.1007/s13346‑023‑01427‑3 37768530
    [Google Scholar]
  122. Shah N. Seth A. Balaraman R. Sailor G. Javia A. Gohil D. Oral bioavailability enhancement of raloxifene by developing microemulsion using D-optimal mixture design: Optimization and in-vivo pharmacokinetic study. Drug Dev. Ind. Pharm. 2018 44 4 687 696 10.1080/03639045.2017.1408643 29168671
    [Google Scholar]
  123. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  124. Dristant U. Mukherjee K. Saha S. Maity D. RETRACTED: An overview of polymeric nanoparticles-based drug delivery system in cancer treatment. Technol. Cancer Res. Treat. 2023 22 15330338231152083 10.1177/15330338231152083 36718541
    [Google Scholar]
  125. Gazori T. Khoshayand M.R. Azizi E. Yazdizade P. Nomani A. Haririan I. Evaluation of alginate/chitosan nanoparticles as antisense delivery vector: Formulation, optimization and in vitro characterization. Carbohydr. Polym. 2009 77 3 599 606 10.1016/j.carbpol.2009.02.019
    [Google Scholar]
  126. Deshmukh R. Harwansh R.K. Rahman M.A. Sodium alginate-guar gum and carbopol based methotrexate loaded mucoadhesive microparticles for colon delivery: An in vitro evaluation. Braz. J. Pharm. Sci. 2021 57 e19147 10.1590/s2175‑97902020000419147
    [Google Scholar]
  127. Jayapal J.J. Dhanaraj S. Exemestane loaded alginate nanoparticles for cancer treatment: Formulation and in vitro evaluation. Int. J. Biol. Macromol. 2017 105 Pt 1 416 421 10.1016/j.ijbiomac.2017.07.064 28711612
    [Google Scholar]
  128. Dev A. Binulal N.S. Anitha A. Nair S.V. Furuike T. Tamura H. Jayakumar R. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr. Polym. 2010 80 3 833 838 10.1016/j.carbpol.2009.12.040
    [Google Scholar]
  129. Nair R.S. Morris A. Billa N. Leong C.O. An evaluation of curcumin-encapsulated chitosan nanoparticles for transdermal delivery. AAPS PharmSciTech 2019 20 2 69 10.1208/s12249‑018‑1279‑6 30631984
    [Google Scholar]
  130. Li J. Wu J. Zhang J. Wang Y. Fang L. Shen Q. Oral bioavailability and evaluation of docetaxel–nicotinamide complex loaded chitosan nanoparticles. RSC Advances 2016 6 42 35354 35364 10.1039/C5RA27590C
    [Google Scholar]
  131. Manukumar H.M. Umesha S. Kumar H.N.N. Promising biocidal activity of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) as anti-infective agents against perilous pathogens. Int. J. Biol. Macromol. 2017 102 1257 1265 10.1016/j.ijbiomac.2017.05.030 28495626
    [Google Scholar]
  132. Danhier F. Lecouturier N. Vroman B. Jérôme C. Marchand-Brynaert J. Feron O. Préat V. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J. Control. Release 2009 133 1 11 17 10.1016/j.jconrel.2008.09.086 18950666
    [Google Scholar]
  133. Gaonkar R.H. Ganguly S. Dewanjee S. Sinha S. Gupta A. Ganguly S. Chattopadhyay D. Chatterjee Debnath M. Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: Preparation, physicochemical characterization, in vitro and in vivo studies. Sci. Rep. 2017 7 1 530 10.1038/s41598‑017‑00696‑6 28373669
    [Google Scholar]
  134. Sun Y. Yu B. Wang G. Wu Y. Zhang X. Chen Y. Tang S. Yuan Y. Lee R.J. Teng L. Xu S. Enhanced antitumor efficacy of vitamin E TPGS-emulsified PLGA nanoparticles for delivery of paclitaxel. Colloids Surf. B Biointerfaces 2014 123 716 723 10.1016/j.colsurfb.2014.10.007 25456995
    [Google Scholar]
  135. Bernabeu E. Gonzalez L. Legaspi M.J. Moretton M.A. Chiappetta D.A. Paclitaxel-loaded TPGS-b-PCL nanoparticles: in vitro cytotoxicity and cellular uptake in MCF-7 and MDA-MB-231 cells versus mPEG-b-PCL nanoparticles and Abraxane. J. Nanosci. Nanotechnol. 2016 16 1 160 170 10.1166/jnn.2016.10739 27398441
    [Google Scholar]
  136. Gagliardi A. Giuliano E. Venkateswararao E. Fresta M. Bulotta S. Awasthi V. Cosco D. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol. 2021 12 601626 10.3389/fphar.2021.601626 33613290
    [Google Scholar]
  137. Mima S. Miya M. Iwamoto R. Yoshikawa S. Highly deacetylated chitosan and its properties. J. Appl. Polym. Sci. 1983 28 6 1909 1917 10.1002/app.1983.070280607
    [Google Scholar]
  138. Jayakumar R. Nwe N. Tokura S. Tamura H. Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol. 2007 40 3 175 181 10.1016/j.ijbiomac.2006.06.021 16893564
    [Google Scholar]
  139. Dudhani A.R. Kosaraju S.L. Bioadhesive chitosan nanoparticles: Preparation and characterization. Carbohydr. Polym. 2010 81 2 243 251 10.1016/j.carbpol.2010.02.026
    [Google Scholar]
  140. Gustafson H.H. Holt-Casper D. Grainger D.W. Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015 10 4 487 510 10.1016/j.nantod.2015.06.006 26640510
    [Google Scholar]
  141. Vittaz M. Bazile D. Spenlehauer G. Verrecchia T. Veillard M. Puisieux F. Labarre D. Effect of PEO surface density on long-circulating PLA-PEO nanoparticles which are very low complement activators. Biomaterials 1996 17 16 1575 1581 10.1016/0142‑9612(95)00322‑3 8842361
    [Google Scholar]
  142. Suk J.S. Xu Q. Kim N. Hanes J. Ensign L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016 99 Pt A 28 51 10.1016/j.addr.2015.09.012 26456916
    [Google Scholar]
  143. Kouchakzadeh H. Safavi M.S. Shojaosadati S.A. Efficient delivery of therapeutic agents by using targeted albumin nanoparticles. Adv. Protein Chem. Struct. Biol. 2015 98 121 143 10.1016/bs.apcsb.2014.11.002 25819278
    [Google Scholar]
  144. Mourya A. Famta P. Shah S. Srinivasarao D.A. Sharma A. Vambhurkar G. Bojja B. Arya S. Devanagan P. Prasad S.B. Shinde A. Singh G. Khatri D.K. Srivastava S. Madan J. Raloxifene loaded d-α-tocopherol polyethylene glycol 1000 succinate stabilized poly (ε-caprolactone) nanoparticles augmented drug delivery and apoptosis in breast cancer cells. J. Drug Deliv. Sci. Technol. 2024 92 105399 10.1016/j.jddst.2024.105399
    [Google Scholar]
  145. Abd-Rabou A.A. Abdelaziz A.M. Shaker O.G. Ayeldeen G. Hyaluronated nanoparticles deliver raloxifene to CD44-expressed colon cancer cells and regulate lncRNAs/miRNAs epigenetic cascade. Cancer Nanotechnol. 2023 14 1 32 10.1186/s12645‑023‑00183‑w
    [Google Scholar]
  146. Maddiboyina B. Roy H. Nakkala R.K. Gandhi S. Kavisri M. Moovendhan M. Formulation, optimization and characterization of raloxifene hydrochloride loaded PLGA nanoparticles by using Taguchi design for breast cancer application. Chem. Biol. Drug Des. 2023 102 3 457 470 10.1111/cbdd.14222 36856306
    [Google Scholar]
  147. Mukherjee A. Waters A.K. Kalyan P. Achrol A.S. Kesari S. Yenugonda V.M. Lipid–polymer hybrid nanoparticles as a next- generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int. J. Nanomedicine 2019 14 1937 1952 10.2147/IJN.S198353 30936695
    [Google Scholar]
  148. Zhang R.X. Ahmed T. Li L.Y. Li J. Abbasi A.Z. Wu X.Y. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale 2017 9 4 1334 1355 10.1039/C6NR08486A 27973629
    [Google Scholar]
  149. Cheow W.S. Hadinoto K. Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids Surf. B Biointerfaces 2011 85 2 214 220 10.1016/j.colsurfb.2011.02.033 21439797
    [Google Scholar]
  150. Wu X.Y. Strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery. Expert Opin. Drug Deliv. 2016 13 5 609 612 10.1517/17425247.2016.1165662 26978527
    [Google Scholar]
  151. Wong H.L. Bendayan R. Rauth A.M. Wu X.Y. Development of solid lipid nanoparticles containing ionically complexed chemotherapeutic drugs and chemosensitizers. J. Pharm. Sci. 2004 93 8 1993 2008 10.1002/jps.20100 15236449
    [Google Scholar]
  152. Tahir N. Madni A. Balasubramanian V. Rehman M. Correia A. Kashif P.M. Mäkilä E. Salonen J. Santos H.A. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int. J. Pharm. 2017 533 1 156 168 10.1016/j.ijpharm.2017.09.061 28963013
    [Google Scholar]
  153. Dave V. Yadav R.B. Kushwaha K. Yadav S. Sharma S. Agrawal U. Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system. Bioact. Mater. 2017 2 4 269 280 10.1016/j.bioactmat.2017.07.002 29744436
    [Google Scholar]
  154. Tahir N. Madni A. Correia A. Rehman M. Balasubramanian V. Khan M.M. Santos H.A. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int. J. Nanomedicine 2019 14 4961 4974 10.2147/IJN.S209325 31308666
    [Google Scholar]
  155. Liu J. Cheng H. Han L. Qiang Z. Zhang X. Gao W. Zhao K. Song Y. Synergistic combination therapy of lung cancer using paclitaxel- and triptolide-coloaded lipid–polymer hybrid nanoparticles. Drug Des. Devel. Ther. 2018 12 3199 3209 10.2147/DDDT.S172199 30288024
    [Google Scholar]
  156. Liu Y. Liu L. Zhou C. Xia X. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: Preparation and functional evaluation. Int. J. Nanomedicine 2016 11 761 769 10.2147/IJN.S96146 26966360
    [Google Scholar]
  157. Babanejad N. Farhadian A. Omrani I. Nabid M.R. Design, characterization and in vitro evaluation of novel amphiphilic block sunflower oil-based polyol nanocarrier as a potential delivery system: Raloxifene-hydrochloride as a model. Mater. Sci. Eng. C 2017 78 59 68 10.1016/j.msec.2017.03.235 28576026
    [Google Scholar]
  158. Bose A. Roy Burman D. Sikdar B. Patra P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnol. 2021 15 1 19 27 10.1049/nbt2.12018 34694727
    [Google Scholar]
  159. Schroeder A. Heller D.A. Winslow M.M. Dahlman J.E. Pratt G.W. Langer R. Jacks T. Anderson D.G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 2012 12 1 39 50 10.1038/nrc3180 22193407
    [Google Scholar]
  160. Yang H. Khan A.R. Liu M. Fu M. Ji J. Chi L. Zhai G. Stimuli-responsive polymeric micelles for the delivery of paclitaxel. J. Drug Deliv. Sci. Technol. 2020 56 101523 10.1016/j.jddst.2020.101523
    [Google Scholar]
  161. Bourzac K. Nanotechnology: Carrying drugs. Nature 2012 491 7425 S58 S60 10.1038/491S58a 23320289
    [Google Scholar]
  162. Kwon G.S. Okano T. Polymeric micelles as new drug carriers. Adv. Drug Deliv. Rev. 1996 21 2 107 116 10.1016/S0169‑409X(96)00401‑2
    [Google Scholar]
  163. Jones M.C. Leroux J.C. Polymeric micelles – A new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 1999 48 2 101 111 10.1016/S0939‑6411(99)00039‑9 10469928
    [Google Scholar]
  164. Ghosh B. Biswas S. Polymeric micelles in cancer therapy: State of the art. J. Control. Release 2021 332 127 147 10.1016/j.jconrel.2021.02.016 33609621
    [Google Scholar]
  165. Gradzielski M. Polyelectrolyte–surfactant complexes as a formulation tool for drug delivery. Langmuir 2022 38 44 13330 13343 10.1021/acs.langmuir.2c02166 36278880
    [Google Scholar]
  166. Ikeda-Imafuku M. Wang L.L.W. Rodrigues D. Shaha S. Zhao Z. Mitragotri S. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation. J. Control. Release 2022 345 512 536 10.1016/j.jconrel.2022.03.043 35337939
    [Google Scholar]
  167. Cao D. He J. Xu J. Zhang M. Zhao L. Duan G. Cao Y. Zhou R. Ni P. Polymeric prodrugs conjugated with reduction-sensitive dextran–camptothecin and pH-responsive dextran–doxorubicin: An effective combinatorial drug delivery platform for cancer therapy. Polym. Chem. 2016 7 25 4198 4212 10.1039/C6PY00701E
    [Google Scholar]
  168. Lai H. Ding X. Ye J. Deng J. Cui S. pH-responsive hyaluronic acid-based nanoparticles for targeted curcumin delivery and enhanced cancer therapy. Colloids Surf. B Biointerfaces 2021 198 111455 10.1016/j.colsurfb.2020.111455 33243547
    [Google Scholar]
  169. Ghaffarlou M. Sütekin S.D. Karacaoğlu E. Karahisar Turan S. İnci Ö.G. Güven O. Barsbay M. Folic acid-modified biocompatible Pullulan/poly(acrylic acid) nanogels for targeted delivery to MCF-7 cancer cells. Eur. J. Pharm. Biopharm. 2023 184 189 201 10.1016/j.ejpb.2023.02.001 36764499
    [Google Scholar]
  170. Kalyane D. Raval N. Maheshwari R. Tambe V. Kalia K. Tekade R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C 2019 98 1252 1276 10.1016/j.msec.2019.01.066 30813007
    [Google Scholar]
  171. Kesharwani S.S. Kaur S. Tummala H. Sangamwar A.T. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin. Drug Deliv. 2018 15 11 1127 1142 10.1080/17425247.2018.1537261 30324813
    [Google Scholar]
  172. Kim S.H. Tan J.P.K. Nederberg F. Fukushima K. Yang Y.Y. Waymouth R.M. Hedrick J.L. Mixed micelle formation through stereocomplexation between enantiomeric poly(lactide) block copolymers. Macromolecules 2009 42 1 25 29 10.1021/ma801739x
    [Google Scholar]
  173. Lo C.L. Lin S.J. Tsai H.C. Chan W.H. Tsai C.H. Cheng C.H.D. Hsiue G.H. Mixed micelle systems formed from critical micelle concentration and temperature-sensitive diblock copolymers for doxorubicin delivery. Biomaterials 2009 30 23-24 3961 3970 10.1016/j.biomaterials.2009.04.002 19406466
    [Google Scholar]
  174. Kaur J. Singla P. Kaur I. Labrasol mediated enhanced solubilization of natural hydrophobic drugs in Pluronic micelles: Physicochemical and in vitro release studies. J. Mol. Liq. 2022 361 119596 10.1016/j.molliq.2022.119596
    [Google Scholar]
  175. Alakhov V. Klinski E. Li S. Pietrzynski G. Venne A. Batrakova E. Bronitch T. Kabanov A. Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials. Colloids Surf. B Biointerfaces 1999 16 1-4 113 134 10.1016/S0927‑7765(99)00064‑8
    [Google Scholar]
  176. Long M. Liu X. Huang X. Lu M. Wu X. Weng L. Chen Q. Wang X. Zhu L. Chen Z. Alendronate-functionalized hypoxia-responsive polymeric micelles for targeted therapy of bone metastatic prostate cancer. J. Control. Release 2021 334 303 317 10.1016/j.jconrel.2021.04.035 33933517
    [Google Scholar]
  177. Manjappa A.S. Kumbhar P.S. Patil A.B. Disouza J.I. Patravale V.B. Polymeric mixed micelles: Improving the anticancer efficacy of single-copolymer micelles. Crit. Rev. Ther. Drug Carrier Syst. 2019 36 1 1 58 10.1615/CritRevTherDrugCarrierSyst.2018020481
    [Google Scholar]
  178. Taurin S. Nehoff H. Van Aswegen T. Rosengren R.J. Greish K. A novel role for raloxifene nanomicelles in management of castrate resistant prostate cancer. Biomed. Res. Int. 2014 2014 323594 10.1155/2014/323594 24689036
    [Google Scholar]
  179. Fontana M.C. Laureano J.V. Forgearini B. dos Santos J. Pohlmann A.R. Guterres S.S. de Araujo B.V. Beck R.C.R. Spray- dried raloxifene submicron particles for pulmonary delivery: Development and in vivo pharmacokinetic evaluation in rats. Int. J. Pharm. 2020 585 119429 10.1016/j.ijpharm.2020.119429 32470484
    [Google Scholar]
  180. Greish K. Nehoff H. Bahman F. Pritchard T. Taurin S. Raloxifene nano-micelles effect on triple-negative breast cancer is mediated through estrogen receptor-β and epidermal growth factor receptor. J. Drug Target. 2019 27 8 903 916 10.1080/1061186X.2019.1566341 30615483
    [Google Scholar]
  181. Sethi S. Bhatia S. Kamboj S. Singh R.S. Rana V. Assessing the viability of carbamoylethyl pullulan-g-stearic acid based smart polymeric micelles for tumor targeting of raloxifene. Drug Dev. Ind. Pharm. 2021 47 12 1986 1997 10.1080/03639045.2022.2083153 35645171
    [Google Scholar]
  182. Garg A. Singh S. Rao V.U. Bindu K. Balasubramaniam J. Solid state interaction of raloxifene HCl with different hydrophilic carriers during co-grinding and its effect on dissolution rate. Drug Dev. Ind. Pharm. 2009 35 4 455 470 10.1080/03639040802438365 19048425
    [Google Scholar]
  183. Elkasabgy N.A. Abdel-Salam F.S. Mahmoud A.A. Basalious E.B. Amer M.S. Mostafa A.A. Elkheshen S.A. Long lasting in-situ forming implant loaded with raloxifene HCl: An injectable delivery system for treatment of bone injuries. Int. J. Pharm. 2019 571 118703 10.1016/j.ijpharm.2019.118703 31536761
    [Google Scholar]
  184. Jagadish B. Yelchuri R. K B. Tangi H. Maroju S. Rao V.U. Enhanced dissolution and bioavailability of raloxifene hydrochloride by co-grinding with different superdisintegrants. Chem. Pharm. Bull. (Tokyo) 2010 58 3 293 300 10.1248/cpb.58.293 20190431
    [Google Scholar]
  185. Komala D.R. Janga K.Y. Jukanti R. Bandari S. Vijayagopal M. Competence of raloxifene hydrochloride loaded liquisolid compacts for improved dissolution and intestinal permeation. J. Drug Deliv. Sci. Technol. 2015 30 232 241 10.1016/j.jddst.2015.10.020
    [Google Scholar]
  186. Celebioglu A. Uyar T. Development of ferulic acid/cyclodextrin inclusion complex nanofibers for fast-dissolving drug delivery system. Int. J. Pharm. 2020 584 119395 10.1016/j.ijpharm.2020.119395 32407941
    [Google Scholar]
  187. Abbas Z.S. Sulaiman G.M. Jabir M.S. Mohammed S.A.A. Khan R.A. Mohammed H.A. Al-Subaiyel A. Galangin/β-cyclodextrin inclusion complex as a drug-delivery system for improved solubility and biocompatibility in breast cancer treatment. Molecules 2022 27 14 4521 10.3390/molecules27144521 35889394
    [Google Scholar]
  188. Hong W. Guo F. Yu N. Ying S. Lou B. Wu J. Gao Y. Ji X. Wang H. Li A. Wang G. Yang G. A novel folic acid receptor-targeted drug delivery system based on curcumin-loaded β-cyclodextrin nanoparticles for cancer treatment. Drug Des. Devel. Ther. 2021 15 2843 2855 10.2147/DDDT.S320119 34234415
    [Google Scholar]
  189. Păduraru D.N. Niculescu A.G. Bolocan A. Andronic O. Grumezescu A.M. Bîrlă R. An updated overview of cyclodextrin-based drug delivery systems for cancer therapy. Pharmaceutics 2022 14 8 1748 10.3390/pharmaceutics14081748 36015374
    [Google Scholar]
  190. Santos A.C. Costa D. Ferreira L. Guerra C. Pereira-Silva M. Pereira I. Peixoto D. Ferreira N.R. Veiga F. Cyclodextrin-based delivery systems for in vivo-tested anticancer therapies. Drug Deliv. Transl. Res. 2021 11 1 49 71 10.1007/s13346‑020‑00778‑5 32441011
    [Google Scholar]
  191. Pardeshi C.V. Kothawade R.V. Markad A.R. Pardeshi S.R. Kulkarni A.D. Chaudhari P.J. Longhi M.R. Dhas N. Naik J.B. Surana S.J. García M.C. Sulfobutylether-β-cyclodextrin: A functional biopolymer for drug delivery applications. Carbohydr. Polym. 2023 301 Pt B 120347 10.1016/j.carbpol.2022.120347 36446486
    [Google Scholar]
  192. Davis M.E. Brewster M.E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov. 2004 3 12 1023 1035 10.1038/nrd1576 15573101
    [Google Scholar]
  193. Carneiro S. Costa Duarte F. Heimfarth L. Siqueira Quintans J. Quintans-Júnior L. Veiga Júnior V. Neves de Lima Á. Cyclodextrin-drug inclusion complexes: in vivo and in vitro approaches. Int. J. Mol. Sci. 2019 20 3 642 10.3390/ijms20030642 30717337
    [Google Scholar]
  194. Aldawsari H.M. Negm A.A. Potentiation of raloxifene cytotoxicity against MCF-7 breast cancer cell lines via transdermal delivery and loading on self-emulsifying nanoemulsions. Trop. J. Pharm. Res. 2020 19 1 11 15 10.4314/tjpr.v19i1.2
    [Google Scholar]
  195. Elmoslemany R.M. Abdallah O.Y. El-Khordagui L.K. Khalafallah N.M. Propylene glycol liposomes as a topical delivery system for miconazole nitrate: Comparison with conventional liposomes. AAPS PharmSciTech 2012 13 2 723 731 10.1208/s12249‑012‑9783‑6 22566173
    [Google Scholar]
  196. Elsayed M.M.A. Abdallah O.Y. Naggar V.F. Khalafallah N.M. Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery. Int. J. Pharm. 2006 322 1-2 60 66 10.1016/j.ijpharm.2006.05.027 16806755
    [Google Scholar]
  197. Alves G.L. Teixeira F.V. da Rocha P.B.R. Krawczyk-Santos A.P. Andrade L.M. Cunha-Filho M. Marreto R.N. Taveira S.F. Preformulation and characterization of raloxifene-loaded lipid nanoparticles for transdermal administration. Drug Deliv. Transl. Res. 2022 12 3 526 537 10.1007/s13346‑021‑00949‑y 33682031
    [Google Scholar]
  198. Guo Z. Qi P. Pei D. Zhang X. Raloxifene-loaded solid lipid nanoparticles decorated gel with enhanced treatment potential of osteoporosis. J. Drug Deliv. Sci. Technol. 2022 75 103733 10.1016/j.jddst.2022.103733
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031332806240930112452
Loading
/content/journals/ddl/10.2174/0122103031332806240930112452
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test