Skip to content
2000
image of Preclinical Aspects of [89Zr]Zr-DFO-Rituximab: A High Potential Agent for Immuno-PET Imaging

Abstract

Background

An early diagnosis of cancer can lead to choosing more effective treatment and increase the number of cancer survivors. In this study, the preparation and preclinical aspects of [89Zr]Zr-DFO-Rituximab, a high-potential agent for PET imaging of Non-Hodgkin Lymphoma (NHL), were evaluated.

Methods

DFO was conjugated to rituximab monoclonal antibody (mAb), and DFO-rituximab was successfully labeled with zirconium-89 (89Zr) at optimized conditions. The stability of the complex was assessed in human blood serum and PBS buffer. Radioimmunoreactivity (RIA) of the radioimmunoconjugate (RIC) was evaluated on CD20-overexpressing Raji cell line and CHO cells. The biodistribution of the radiolabeled mAb was studied in normal and tumor-bearing rodents. Finally, the absorbed dose in human organs was estimated.

Results

The radiolabeled compound was prepared with radiochemical purity (RCP) >99% (RTLC) and a specific activity of 180±1.8 GBq/g. The RCP of the final complex PBS buffer and human blood serum was higher than 95%, even after 48 h post incubation. The RIA assay demonstrated that more than 63% of the radiolabeled compound (40 ng/ml, 0.5 mL) was bound to 5×106 Raji cells. The biodistribution of the final product in tumor-bearing mice showed a high accumulation of the RIC in the tumor site in all intervals post-injection. Tumor/non-target ratios were increased over time, and longer imaging time was suggested. The dosimetry data indicated that the liver received the most absorbed dose after the complex injection.

Conclusion

[89Zr]Zr-DFO-Rituximab represents a significant advancement in the field of oncological imaging and offers a robust platform for both diagnostic and therapeutic applications in the management of B-cell malignancies.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710326742241018050220
2024-10-24
2025-04-02
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  2. Whitaker K. Earlier diagnosis: The importance of cancer symptoms. Lancet Oncol. 2020 21 1 6 8 10.1016/S1470‑2045(19)30658‑8 31704136
    [Google Scholar]
  3. Armitage J.O. Gascoyne R.D. Lunning M.A. Cavalli F. Non-hodgkin lymphoma. Lancet 2017 390 10091 298 310
    [Google Scholar]
  4. Evans L.S. Hancock B.W. Non-Hodgkin lymphoma. Lancet 2003 362 9378 139 146 10.1016/S0140‑6736(03)13868‑8 12867117
    [Google Scholar]
  5. Kramer-Marek G. Capala J. The role of nuclear medicine in modern therapy of cancer. Tumour Biol. 2012 33 3 629 640 10.1007/s13277‑012‑0373‑8 22446937
    [Google Scholar]
  6. Liu J.K.H. The history of monoclonal antibody development - Progress, remaining challenges and future innovations. Ann. Med. Surg. (Lond.) 2014 3 4 113 116 10.1016/j.amsu.2014.09.001 25568796
    [Google Scholar]
  7. Selewski D.T. Shah G.V. Mody R.J. Rajdev P.A. Mukherji S.K. Rituximab (Rituxan). AJNR Am. J. Neuroradiol. 2010 31 7 1178 1180 10.3174/ajnr.A2142 20448016
    [Google Scholar]
  8. Pierpont T.M. Limper C.B. Richards K.L. Past, present, and future of rituximab—the world’s first oncology monoclonal antibody therapy. Front. Oncol. 2018 8 163 10.3389/fonc.2018.00163 29915719
    [Google Scholar]
  9. Dias C.R. Jeger S. Osso J.A. Jr Müller C. De Pasquale C. Hohn A. Waibel R. Schibli R. Radiolabeling of rituximab with 188Re and 99mTc using the tricarbonyl technology. Nucl. Med. Biol. 2011 38 1 19 28 10.1016/j.nucmedbio.2010.05.010 21220126
    [Google Scholar]
  10. Tran L. Baars J.W. Maessen H.J. Hoefnagel C.A. Beijnen J.H. Huitema A.D.R. A simple and safe method for 131I radiolabeling of rituximab for myeloablative high-dose radioimmunotherapy. Cancer Biother. Radiopharm. 2009 24 1 103 110 10.1089/cbr.2008.0538 19243252
    [Google Scholar]
  11. Miele E. Spinelli G.P. Tomao F. Zullo A. De Marinis F. Pasciuti G. Rossi L. Zoratto F. Tomao S. Positron Emission Tomography (PET) radiotracers in oncology – utility of 18F-Fluoro-deoxy-glucose (FDG)-PET in the management of patients with non-small-cell lung cancer (NSCLC). J. Exp. Clin. Cancer Res. 2008 27 1 52 10.1186/1756‑9966‑27‑52 18928537
    [Google Scholar]
  12. Pruszyński M. Majkowska-Pilip A. Loktionova N.S. Eppard E. Roesch F. Radiolabeling of DOTATOC with the long-lived positron emitter 44Sc. Appl. Radiat. Isot. 2012 70 6 974 979 10.1016/j.apradiso.2012.03.005 22464928
    [Google Scholar]
  13. Yoon J.K. Park B.N. Ryu E.K. An Y.S. Lee S.J. Current perspectives on 89Zr-PET imaging. Int. J. Mol. Sci. 2020 21 12 4309 10.3390/ijms21124309
    [Google Scholar]
  14. Bhatt N. Pandya D. Wadas T. Recent a in zirconium-89 chelator development. Molecules 2018 23 3 638 10.3390/molecules23030638 29534538
    [Google Scholar]
  15. van Es S.C. Brouwers A.H. Mahesh S.V.K. Leliveld-Kors A.M. de Jong I.J. Lub-de Hooge M.N. de Vries E.G.E. Gietema J.A. Oosting S.F. 89Zr-bevacizumab PET: Potential early indicator of everolimus efficacy in patients with metastatic renal cell carcinoma. J. Nucl. Med. 2017 58 6 905 910 10.2967/jnumed.116.183475 28082434
    [Google Scholar]
  16. van Helden E.J. Elias S.G. Gerritse S.L. van Es S.C. Boon E. Huisman M.C. van Grieken N.C.T. Dekker H. van Dongen G.A.M.S. Vugts D.J. Boellaard R. van Herpen C.M.L. de Vries E.G.E. Oyen W.J.G. Brouwers A.H. Verheul H.M.W. Hoekstra O.S. Menke-van der Houven van Oordt C.W. [89Zr]Zr-cetuximab PET/CT as biomarker for cetuximab monotherapy in patients with RAS wild-type advanced colorectal cancer. Eur. J. Nucl. Med. Mol. Imaging 2020 47 4 849 859 10.1007/s00259‑019‑04555‑6 31705176
    [Google Scholar]
  17. Mohammadpour-Ghazi F. Yousefnia H. Divband G. Zolghadri S. Alirezapour B. Shakeri F. Development and evaluation of 89Zr-trastuzumab for clinical applications. Asia Ocean. J. Nucl. Med. Biol. 2023 11 2 135 144 37324228
    [Google Scholar]
  18. Bruijnen S. Tsang-A-Sjoe M. Raterman H. Ramwadhdoebe T. Vugts D. van Dongen G. Huisman M. Hoekstra O. Tak P.P. Voskuyl A. van der Laken C. B-cell imaging with zirconium-89 labelled rituximab PET-CT at baseline is associated with therapeutic response 24 weeks after initiation of rituximab treatment in rheumatoid arthritis patients. Arthritis Res. Ther. 2016 18 1 266 10.1186/s13075‑016‑1166‑z 27863504
    [Google Scholar]
  19. Jauw Y.W.S. Zijlstra J.M. de Jong D. Vugts D.J. Zweegman S. Hoekstra O.S. van Dongen G.A.M.S. Huisman M.C. Performance of 89Zr-labeled-rituximab-PET as an imaging biomarker to assess CD20 targeting: A pilot study in patients with relapsed/refractory diffuse large B cell lymphoma. PLoS One 2017 12 1 e0169828 10.1371/journal.pone.0169828 28060891
    [Google Scholar]
  20. Hagens M.H.J. Killestein J. Yaqub M.M. van Dongen G.A.M.S. Lammertsma A.A. Barkhof F. van Berckel B.N.M. Cerebral rituximab uptake in multiple sclerosis: A 89 Zr-immunoPET pilot study. Mult. Scler. 2018 24 4 543 545 10.1177/1352458517704507 28443358
    [Google Scholar]
  21. Adams H. van de Garde E.M.W. Vugts D.J. Grutters J.C. Oyen W.J.G. Keijsers R.G. [89Zr]-immuno-PET prediction of response to rituximab treatment in patients with therapy refractory interstitial pneumonitis: A phase 2 trial. Eur. J. Nucl. Med. Mol. Imaging 2023 50 7 1929 1939 10.1007/s00259‑023‑06143‑1 36826476
    [Google Scholar]
  22. Natarajan A. Gambhir S.S. Radiation dosimetry study of [89 Zr] rituximab tracer for clinical translation of B cell NHL imaging using positron emission tomography. Mol. Imaging Biol. 2015 17 4 539 547 10.1007/s11307‑014‑0810‑8 25500766
    [Google Scholar]
  23. Muylle K. Flamen P. Vugts D.J. Guiot T. Ghanem G. Meuleman N. Bourgeois P. Vanderlinden B. van Dongen G.A.M.S. Everaert H. Vaes M. Bron D. Tumour targeting and radiation dose of radioimmunotherapy with 90Y-rituximab in CD20+ B-cell lymphoma as predicted by 89Zr-rituximab immuno-PET: Impact of preloading with unlabelled rituximab. Eur. J. Nucl. Med. Mol. Imaging 2015 42 8 1304 1314 10.1007/s00259‑015‑3025‑6 25792453
    [Google Scholar]
  24. Jauw Y.W.S. Bensch F. Brouwers A.H. Hoekstra O.S. Zijlstra J.M. Pieplenbosch S. Schröder C.P. Zweegman S. van Dongen G.A.M.S. Menke-van der Houven van Oordt C.W. de Vries E.G.E. de Vet H.C.W. Boellaard R. Huisman M.C. Interobserver reproducibility of tumor uptake quantification with 89Zr-immuno-PET: A multicenter analysis. Eur. J. Nucl. Med. Mol. Imaging 2019 46 9 1840 1849 10.1007/s00259‑019‑04377‑6 31209514
    [Google Scholar]
  25. Vosjan M.J.W.D. Perk L.R. Visser G.W.M. Budde M. Jurek P. Kiefer G.E. van Dongen G.A.M.S. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat. Protoc. 2010 5 4 739 743 10.1038/nprot.2010.13 20360768
    [Google Scholar]
  26. Pippin C.G. Parker T.A. McMurry T.J. Brechbiel M.W. Spectrophotometric method for the determination of a bifunctional DTPA ligand in DTPA-monoclonal antibody conjugates. Bioconjug. Chem. 1992 3 4 342 345 10.1021/bc00016a014 1390990
    [Google Scholar]
  27. Mohammadpour-Ghazi F. Yousefnia H. Zolghadri S. Yarmohammadi M. Alirezapour B. Rahiminejad A. Aslani G. Production of radioimmunoPET grade zirconium-89. Iran. J. Nucl. Med. 2023 31 20 28
    [Google Scholar]
  28. Lindmo T. Boven E. Cuttitta F. Fedorko J. Bunn P.A. Jr Determination of the immunoreactive function of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J. Immunol. Methods 1984 72 1 77 89 10.1016/0022‑1759(84)90435‑6 6086763
    [Google Scholar]
  29. Sparks R.B. Aydogan B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. (No. ORISE-99-0164-Vol. 2; CONF-960536-PROC.-Vol. 2). Oak Ridge Associated Universities, TN (United States) 1999 2 99 0164
    [Google Scholar]
  30. Stabin M.G. Sparks R.B. Crowe E. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 2005 46 6 1023 1027 15937315
    [Google Scholar]
  31. van Dongen G.A.M.S. Beaino W. Windhorst A.D. Zwezerijnen G.J.C. Oprea-Lager D.E. Hendrikse N.H. van Kuijk C. Boellaard R. Huisman M.C. Vugts D.J. The role of 89Zr-immuno-PET in navigating and derisking the development of biopharmaceuticals. J. Nucl. Med. 2021 62 4 438 445 10.2967/jnumed.119.239558 33277395
    [Google Scholar]
  32. Yousefnia H. Radfar E. Jalilian A.R. Bahrami-Samani A. Shirvani-Arani S. Arbabi A. Ghannadi-Maragheh M. Development of 177Lu-DOTA-anti-CD20 for radioimmunotherapy. J. Radioanal. Nucl. Chem. 2011 287 1 199 209 10.1007/s10967‑010‑0676‑4
    [Google Scholar]
  33. Bahrami-Samani A. Ghannadi-Maragheh M. Jalilian A.R. Yousefnia H. Garousi J. Moradkhani S. Development of 153Sm-DTPA-rituximab for radioimmunotherapy. Nukleonika 2009 54 271 277
    [Google Scholar]
  34. Zolghadri S. Mohammadpour-Ghazi F. Yousefnia H. Preparation, quality control, and absorbed dose estimation of 89Zr-DFO-Cetuximab for imaging of EGFR-expressing tumors. J. Radioanal. Nucl. Chem. 2024 333 6 2639 2648 10.1007/s10967‑024‑09486‑7
    [Google Scholar]
/content/journals/crp/10.2174/0118744710326742241018050220
Loading
/content/journals/crp/10.2174/0118744710326742241018050220
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: rituximab ; raji cell lines ; absorbed dose ; 89Zr
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test