Skip to content
2000
Volume 18, Issue 2
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

Background

An early diagnosis of cancer can lead to choosing more effective treatment and increase the number of cancer survivors. In this study, the preparation and preclinical aspects of [89Zr]Zr-DFO-Rituximab, a high-potential agent for PET imaging of Non-Hodgkin Lymphoma (NHL), were evaluated.

Methods

DFO was conjugated to rituximab monoclonal antibody (mAb), and DFO-rituximab was successfully labeled with zirconium-89 (89Zr) at optimized conditions. The stability of the complex was assessed in human blood serum and PBS buffer. Radioimmunoreactivity (RIA) of the radioimmunoconjugate (RIC) was evaluated on CD20-overexpressing Raji cell line and CHO cells. The biodistribution of the radiolabeled mAb was studied in normal and tumor-bearing rodents. Finally, the absorbed dose in human organs was estimated.

Results

The radiolabeled compound was prepared with radiochemical purity (RCP) >99% (RTLC) and a specific activity of 180±1.8 GBq/g. The RCP of the final complex PBS buffer and human blood serum was higher than 95%, even after 48 h post incubation. The RIA assay demonstrated that more than 63% of the radiolabeled compound (40 ng/ml, 0.5 mL) was bound to 5×106 Raji cells. The biodistribution of the final product in tumor-bearing mice showed a high accumulation of the RIC in the tumor site in all intervals post-injection. Tumor/non-target ratios were increased over time, and longer imaging time was suggested. The dosimetry data indicated that the liver received the most absorbed dose after the complex injection.

Conclusion

[89Zr]Zr-DFO-Rituximab represents a significant advancement in the field of oncological imaging and offers a robust platform for both diagnostic and therapeutic applications in the management of B-cell malignancies.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710326742241018050220
2024-10-24
2025-06-29
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  2. WhitakerK. Earlier diagnosis: The importance of cancer symptoms.Lancet Oncol.20202116810.1016/S1470‑2045(19)30658‑8 31704136
    [Google Scholar]
  3. ArmitageJ.O. GascoyneR.D. LunningM.A. CavalliF. Non-hodgkin lymphoma.Lancet201739010091298310
    [Google Scholar]
  4. EvansL.S. HancockB.W. Non-Hodgkin lymphoma.Lancet2003362937813914610.1016/S0140‑6736(03)13868‑8 12867117
    [Google Scholar]
  5. Kramer-MarekG. CapalaJ. The role of nuclear medicine in modern therapy of cancer.Tumour Biol.201233362964010.1007/s13277‑012‑0373‑8 22446937
    [Google Scholar]
  6. LiuJ.K.H. The history of monoclonal antibody development - Progress, remaining challenges and future innovations.Ann. Med. Surg. (Lond.)20143411311610.1016/j.amsu.2014.09.001 25568796
    [Google Scholar]
  7. SelewskiD.T. ShahG.V. ModyR.J. RajdevP.A. MukherjiS.K. Rituximab (Rituxan).AJNR Am. J. Neuroradiol.20103171178118010.3174/ajnr.A2142 20448016
    [Google Scholar]
  8. PierpontT.M. LimperC.B. RichardsK.L. Past, present, and future of rituximab—the world’s first oncology monoclonal antibody therapy.Front. Oncol.2018816310.3389/fonc.2018.00163 29915719
    [Google Scholar]
  9. DiasC.R. JegerS. OssoJ.A.Jr MüllerC. De PasqualeC. HohnA. WaibelR. SchibliR. Radiolabeling of rituximab with 188Re and 99mTc using the tricarbonyl technology.Nucl. Med. Biol.2011381192810.1016/j.nucmedbio.2010.05.010 21220126
    [Google Scholar]
  10. TranL. BaarsJ.W. MaessenH.J. HoefnagelC.A. BeijnenJ.H. HuitemaA.D.R. A simple and safe method for 131I radiolabeling of rituximab for myeloablative high-dose radioimmunotherapy.Cancer Biother. Radiopharm.200924110311010.1089/cbr.2008.0538 19243252
    [Google Scholar]
  11. MieleE. SpinelliG.P. TomaoF. ZulloA. De MarinisF. PasciutiG. RossiL. ZorattoF. TomaoS. Positron Emission Tomography (PET) radiotracers in oncology – utility of 18F-Fluoro-deoxy-glucose (FDG)-PET in the management of patients with non-small-cell lung cancer (NSCLC).J. Exp. Clin. Cancer Res.20082715210.1186/1756‑9966‑27‑52 18928537
    [Google Scholar]
  12. PruszyńskiM. Majkowska-PilipA. LoktionovaN.S. EppardE. RoeschF. Radiolabeling of DOTATOC with the long-lived positron emitter 44Sc.Appl. Radiat. Isot.201270697497910.1016/j.apradiso.2012.03.005 22464928
    [Google Scholar]
  13. YoonJ.K. ParkB.N. RyuE.K. AnY.S. LeeS.J. Current perspectives on 89Zr-PET imaging.Int. J. Mol. Sci.20202112430910.3390/ijms21124309
    [Google Scholar]
  14. BhattN. PandyaD. WadasT. Recent a in zirconium-89 chelator development.Molecules201823363810.3390/molecules23030638 29534538
    [Google Scholar]
  15. van EsS.C. BrouwersA.H. MaheshS.V.K. Leliveld-KorsA.M. de JongI.J. Lub-de HoogeM.N. de VriesE.G.E. GietemaJ.A. OostingS.F. 89Zr-bevacizumab PET: Potential early indicator of everolimus efficacy in patients with metastatic renal cell carcinoma.J. Nucl. Med.201758690591010.2967/jnumed.116.183475 28082434
    [Google Scholar]
  16. van HeldenE.J. EliasS.G. GerritseS.L. van EsS.C. BoonE. HuismanM.C. van GriekenN.C.T. DekkerH. van DongenG.A.M.S. VugtsD.J. BoellaardR. van HerpenC.M.L. de VriesE.G.E. OyenW.J.G. BrouwersA.H. VerheulH.M.W. HoekstraO.S. Menke-van der Houven van OordtC.W. [89Zr]Zr-cetuximab PET/CT as biomarker for cetuximab monotherapy in patients with RAS wild-type advanced colorectal cancer.Eur. J. Nucl. Med. Mol. Imaging202047484985910.1007/s00259‑019‑04555‑6 31705176
    [Google Scholar]
  17. Mohammadpour-GhaziF. YousefniaH. DivbandG. ZolghadriS. AlirezapourB. ShakeriF. Development and evaluation of 89Zr-trastuzumab for clinical applications.Asia Ocean. J. Nucl. Med. Biol.2023112135144 37324228
    [Google Scholar]
  18. BruijnenS. Tsang-A-SjoeM. RatermanH. RamwadhdoebeT. VugtsD. van DongenG. HuismanM. HoekstraO. TakP.P. VoskuylA. van der LakenC. B-cell imaging with zirconium-89 labelled rituximab PET-CT at baseline is associated with therapeutic response 24 weeks after initiation of rituximab treatment in rheumatoid arthritis patients.Arthritis Res. Ther.201618126610.1186/s13075‑016‑1166‑z 27863504
    [Google Scholar]
  19. JauwY.W.S. ZijlstraJ.M. de JongD. VugtsD.J. ZweegmanS. HoekstraO.S. van DongenG.A.M.S. HuismanM.C. Performance of 89Zr-labeled-rituximab-PET as an imaging biomarker to assess CD20 targeting: A pilot study in patients with relapsed/refractory diffuse large B cell lymphoma.PLoS One2017121e016982810.1371/journal.pone.0169828 28060891
    [Google Scholar]
  20. HagensM.H.J. KillesteinJ. YaqubM.M. van DongenG.A.M.S. LammertsmaA.A. BarkhofF. van BerckelB.N.M. Cerebral rituximab uptake in multiple sclerosis: A 89Zr-immunoPET pilot study.Mult. Scler.201824454354510.1177/1352458517704507 28443358
    [Google Scholar]
  21. AdamsH. van de GardeE.M.W. VugtsD.J. GruttersJ.C. OyenW.J.G. KeijsersR.G. [89Zr]-immuno-PET prediction of response to rituximab treatment in patients with therapy refractory interstitial pneumonitis: A phase 2 trial.Eur. J. Nucl. Med. Mol. Imaging20235071929193910.1007/s00259‑023‑06143‑1 36826476
    [Google Scholar]
  22. NatarajanA. GambhirS.S. Radiation dosimetry study of [89 Zr] rituximab tracer for clinical translation of B cell NHL imaging using positron emission tomography.Mol. Imaging Biol.201517453954710.1007/s11307‑014‑0810‑8 25500766
    [Google Scholar]
  23. MuylleK. FlamenP. VugtsD.J. GuiotT. GhanemG. MeulemanN. BourgeoisP. VanderlindenB. van DongenG.A.M.S. EveraertH. VaesM. BronD. Tumour targeting and radiation dose of radioimmunotherapy with 90Y-rituximab in CD20+ B-cell lymphoma as predicted by 89Zr-rituximab immuno-PET: Impact of preloading with unlabelled rituximab.Eur. J. Nucl. Med. Mol. Imaging20154281304131410.1007/s00259‑015‑3025‑6 25792453
    [Google Scholar]
  24. JauwY.W.S. BenschF. BrouwersA.H. HoekstraO.S. ZijlstraJ.M. PieplenboschS. SchröderC.P. ZweegmanS. van DongenG.A.M.S. Menke-van der Houven van OordtC.W. de VriesE.G.E. de VetH.C.W. BoellaardR. HuismanM.C. Interobserver reproducibility of tumor uptake quantification with 89Zr-immuno-PET: A multicenter analysis.Eur. J. Nucl. Med. Mol. Imaging20194691840184910.1007/s00259‑019‑04377‑6 31209514
    [Google Scholar]
  25. VosjanM.J.W.D. PerkL.R. VisserG.W.M. BuddeM. JurekP. KieferG.E. van DongenG.A.M.S. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine.Nat. Protoc.20105473974310.1038/nprot.2010.13 20360768
    [Google Scholar]
  26. PippinC.G. ParkerT.A. McMurryT.J. BrechbielM.W. Spectrophotometric method for the determination of a bifunctional DTPA ligand in DTPA-monoclonal antibody conjugates.Bioconjug. Chem.19923434234510.1021/bc00016a014 1390990
    [Google Scholar]
  27. Mohammadpour-GhaziF. YousefniaH. ZolghadriS. YarmohammadiM. AlirezapourB. RahiminejadA. AslaniG. Production of radioimmunoPET grade zirconium-89.Iran. J. Nucl. Med.2023312028
    [Google Scholar]
  28. LindmoT. BovenE. CuttittaF. FedorkoJ. BunnP.A.Jr Determination of the immunoreactive function of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess.J. Immunol. Methods1984721778910.1016/0022‑1759(84)90435‑6 6086763
    [Google Scholar]
  29. SparksR.B. AydoganB. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. (No. ORISE-99-0164-Vol. 2; CONF-960536-PROC.-Vol. 2).Oak Ridge Associated Universities, TN (United States)19992990164
    [Google Scholar]
  30. StabinM.G. SparksR.B. CroweE. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine.J. Nucl. Med.200546610231027 15937315
    [Google Scholar]
  31. van DongenG.A.M.S. BeainoW. WindhorstA.D. ZwezerijnenG.J.C. Oprea-LagerD.E. HendrikseN.H. van KuijkC. BoellaardR. HuismanM.C. VugtsD.J. The role of 89Zr-immuno-PET in navigating and derisking the development of biopharmaceuticals.J. Nucl. Med.202162443844510.2967/jnumed.119.239558 33277395
    [Google Scholar]
  32. YousefniaH. RadfarE. JalilianA.R. Bahrami-SamaniA. Shirvani-AraniS. ArbabiA. Ghannadi-MaraghehM. Development of 177Lu-DOTA-anti-CD20 for radioimmunotherapy.J. Radioanal. Nucl. Chem.2011287119920910.1007/s10967‑010‑0676‑4
    [Google Scholar]
  33. Bahrami-SamaniA. Ghannadi-MaraghehM. JalilianA.R. YousefniaH. GarousiJ. MoradkhaniS. Development of 153Sm-DTPA-rituximab for radioimmunotherapy.Nukleonika200954271277
    [Google Scholar]
  34. ZolghadriS. Mohammadpour-GhaziF. YousefniaH. Preparation, quality control, and absorbed dose estimation of 89Zr-DFO-Cetuximab for imaging of EGFR-expressing tumors.J. Radioanal. Nucl. Chem.202433362639264810.1007/s10967‑024‑09486‑7
    [Google Scholar]
/content/journals/crp/10.2174/0118744710326742241018050220
Loading
/content/journals/crp/10.2174/0118744710326742241018050220
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 89Zr; absorbed dose; CD20; DFO; non-hodgkin lymphoma; PET; raji cell lines; rituximab
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test