Skip to content
2000
Volume 18, Issue 1
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

Background

In this study, [64Cu]Cu-NODAGA-RGD-BBN was prepared and its preclinical assessments were evaluated for PET imaging of GRPR overexpressing tumors.

Methods

NODAGA-RGD-BBN heterodimer peptide was successfully labeled with cyclotron-produced copper-64 at optimized conditions. The radiochemical purity of the radiotracer was checked by HPLC and RTLC methods. The stability of the radiolabeled compound was assessed in PBS (4°C) and in human blood serum (37°C). Binding affinity and internalization of [64Cu]Cu-NODAGA-RGD-BBN were studied on PC3, LNCaP, and CHO cell lines. The biodistribution of the radiotracer was evaluated in normal and tumor-bearing mice.

Results

[64Cu]Cu-NODAGA-RGD-BBN was prepared with radiochemical purity >99 ± 0.7% (HPLC/ITLC) and specific activity of 18.5 ± 2.2 TBq/mmol. The radiotracer showed high stability in PBS (95 ± 1.05%) and in human blood serum (96 ± 1.24%) and, high affinity to the GRP expressing tumor cells. [64Cu]Cu-NODAGA-RGD-BBN showed hydrophilic (log = -1.14) and agonistic nature. The biodistribution and imaging studies demonstrated high uptake at the tumor site at all intervals post-injection and 3-4 h post-injection can be considered an appropriate time of imaging.

Conclusion

The results indicated that [64Cu]Cu-NODAGA-RGD-BBN radiolabeled heterodimer peptide can be considered as a high-potential agent for PET imaging of GRPR-overexpressing tumors.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710246897240209070005
2025-03-01
2025-06-01
Loading full text...

Full text loading...

References

  1. www.euro.who.intWorld Health Organization, regional office for Europe.
  2. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015.Lancet2016388145954410.1016/S0140‑6736(16)31012‑1 27733281
    [Google Scholar]
  3. D’SouzaS.E. GinsbergM.H. PlowE.F. Arginyl-glycyl-aspartic acid (RGD): A cell adhesion motif.Trends Biochem. Sci.19911624625010.1016/0968‑0004(91)90096‑E
    [Google Scholar]
  4. ToniniT. FrancescaR. PierP.C. Molecular basis of angiogenesis and cancer.Oncogene20032265496556
    [Google Scholar]
  5. HanahanD. WeinbergR.A. Hallmarks of cancer: the next generation.Cell2011144564667410.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  6. LiuL. YanS. ShiG. TiefengJ. HaishanZ. BinJ. BenC. 99mTc-3PRGD2 scintimammography in palpable and nonpalpable breast lesions.Molecular imaging20141372902014
    [Google Scholar]
  7. ShindermanM.E. CohenK. WeingartenC. NabriskiD. TwitoO. BarafL. The ‎thyroid ‎hormone-αvβ3 integrin axis in ovarian cancer: regulation of gene transcription and ‎MAPK-‎dependent proliferation.Oncogene20163519771987
    [Google Scholar]
  8. HuangR. EinarK.R. Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma.J. Exp. Clin. Cancer Res.201837114
    [Google Scholar]
  9. BegumA.A. MoyleP.M. TothI. Investigation of bombesin peptide as a targeting ligand for the gastrin releasing peptide (GRP) receptor.Bioorg. Med. Chem.201624225834584110.1016/j.bmc.2016.09.039 27670095
    [Google Scholar]
  10. YanY. ChenX. Peptide heterodimers for molecular imaging.Amino Acids20114151081109210.1007/s00726‑010‑0546‑y 20232091
    [Google Scholar]
  11. LauJ. RousseauE. KwonD. LinK.S. BénardF. ChenX. Insight into the Development of PET Radiopharmaceuticals for Oncology.Cancers2020121312
    [Google Scholar]
  12. BlowerP.J. LewisJ.S. ZweitJ. Copper radionuclides and radiopharmaceuticals in nuclear medicine.Nucl. Med. Biol.199623895798010.1016/S0969‑8051(96)00130‑8 9004284
    [Google Scholar]
  13. MaM.T. DonnellyP.S. Peptide Targeted Copper-64 Radiopharmaceuticals.Curr Top Med Chem.201111500520
    [Google Scholar]
  14. LiuZ. NiuG. WangF. ChenX. 68Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging.Eur. J. Nucl. Med. Mol. Imaging20093691483149410.1007/s00259‑009‑1123‑z 19360404
    [Google Scholar]
  15. ZhangJ. NiuG. LangL. LiF. FanX. YanX. YaoS. YanW. HuoL. ChenL. LiZ. ZhuZ. ChenX. Clinical Translation of a Dual Integrin α v β 3 – and Gastrin-Releasing Peptide Receptor–Targeting PET Radiotracer, 68Ga-BBN-RGD.J. Nucl. Med.201758222823410.2967/jnumed.116.177048 27493267
    [Google Scholar]
  16. ZhangJ. MaoF. NiuG. PengL. LangL. LiF. YingH. WuH. PanB. ZhuZ. ChenX. 68 Ga-BBN-RGD PET/CT for GRPR and Integrin α v β 3 Imaging in Patients with Breast Cancer.Theranostics2018841121113010.7150/thno.22601 29464003
    [Google Scholar]
  17. CaiW. ChenK. HeL. CaoQ. KoongA. ChenX. Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody.Eur. J. Nucl. Med. Mol. Imaging200734685085810.1007/s00259‑006‑0361‑6 17262214
    [Google Scholar]
  18. SmithS.V. WatersD.J. Di BartoloN. Separation of 64 Cu from 67 Ga Waste Products Using Anion Exchange and Low Acid Aqueous/Organic Mixtures.Radiochim. Acta1996752656810.1524/ract.1996.75.2.65
    [Google Scholar]
  19. Atlihan-GundogduE. CheIlem-Ozdemirn, D.; Ekinci, M.; Ozgenc, E.; Demir, E.S.; Sánchez-Dengra, B.; González-Alvárez, I. Recent developments in cancer therapy and diagnosis.J. Pharmaceutic. Invest.202050349361
    [Google Scholar]
  20. AghanejadA. JalilianA.R. MusS. YousefniaH. GeramifarP. BeikiD. Optimized production and quality control of 68Ga-DOTATATE.Iran. J. Nucl. Med.2016242936
    [Google Scholar]
  21. ZolghadriS. NaderiM. YousefniaH. AlirezapourB. BeikiD. Evaluation of the Possible Utilization of 68Ga-DOTATOC in Diagnosis of Adenocarcinoma Breast Cancer.Asia Ocean. J. Nucl. Med. Biol.201864149
    [Google Scholar]
  22. ZhangH. SchuhmacherJ. WaserB. WildD. EisenhutM. ReubiJ.C. MaeckeH.R. DOTAPESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours.Eur. J. Nucl. Med. Mol.20073411981208
    [Google Scholar]
  23. MaddalenaM.E. FoxJ. ChenJ. FengW. CagnoliniA. LinderK.E. 177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and ‎‎autoradiography in prostate cancer models with low GRP-R expression.J. Nucl. Med.20095020172024
    [Google Scholar]
  24. YuZ. AnaniasH.J. CarlucciG. An update of radiolabeled bombesin analogs for ‎gastrin-releasing peptide receptor targeting.Curr. Pharm. Des.20131933293341
    [Google Scholar]
  25. BarattoL. JadvarH. IagaruA. Prostate Cancer Theranostics Targeting Gastrin-Releasing Peptide Receptors.Mol. Imaging Biol.201820450150910.1007/s11307‑017‑1151‑1 29256046
    [Google Scholar]
  26. LiuZ. YanY. LiuS. WangF. ChenX. (18)F, (64)Cu, and (68)Ga labeled RGD-bombesin heterodimeric peptides for PET imaging of breast cancer.Bioconjug. Chem.20092051016102510.1021/bc9000245 20540537
    [Google Scholar]
/content/journals/crp/10.2174/0118744710246897240209070005
Loading
/content/journals/crp/10.2174/0118744710246897240209070005
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): GRPR positive tumors; heterodimer peptide; human blood serum; imaging; PET; tumor cells
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test