Skip to content
2000
Volume 18, Issue 2
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

Objectives

Zirconium89 (89Zr, t=3.27d) is an important emitting radionuclide used in Positron Emission Tomography (PET) immuno studies due to its unique characteristics and increased demand due to simple and cost-effective production capacity. Production of 89Zr is achieved primarily through solid natural yttrium targets different target preparation methodologies, such as electrodeposition, pressed foils, and spark plasma sintering. In this study, we have investigated the pressed solid target methodology.

Methods

The Yttrium Oxide (YO) powder was pressed to pellet form and stacked over a different back support plate, such as platinum (Pt), niobium (Nb), and tantalum (Ta). The target was irradiated with approximately 12 MeV proton beam for 10-60 minutes at 20µA current. The irradiated target was purified through a solid phase extraction method hydroxamate-based resin by manual or automatic approach. The purified 89Zr was analyzed using gamma scintigraphy, and specific activity was calculated through Deferoxamine (DFO) chelation.

Results

89Zr radionuclide pressed target was effectively produced with a production yield of 20-30 MBq/µA.h, and the purification was achieved in 35 minutes with (87.46)% average recovery and >98% purity while using automated purification, but manual purification took 2 hours with (91 ± 2)% recovery and >98% purity. The production yield was comparable to the reported pressed target approach. Deferoxamine chelation with 89Zr-oxalate was performed with purity >98% and specific activity of 25-30 µCi/μmol.

Conclusion

In this study, we explored the production of 89Zr by pressed targets and purification manual or automated methods with good radionuclide purity. The chelation with DFO or its analog was performed with good labeling efficiency and stability.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710318544240715061530
2024-07-22
2025-06-20
Loading full text...

Full text loading...

References

  1. de LucasÁ.G. LamminmäkiU. López-PicónF.R. ImmunoPET directed to the brain: A new tool for preclinical and clinical neuroscience.Biomolecules202313116410.3390/biom13010164 36671549
    [Google Scholar]
  2. ChometM. van DongenG.A.M.S. VugtsD.J. State-of-the-art in radiolabeling of antibodies with common and uncommon radiometals for preclinical and clinical immuno-PET.Bioconjug. Chem.20213271315133010.1021/acs.bioconjchem.1c00136 33974403
    [Google Scholar]
  3. WeiW. RosenkransZ.T. LiuJ. HuangG. LuoQ.Y. CaiW. ImmunoPET: Concept, design, and applications.Chem. Rev.202012083787385110.1021/acs.chemrev.9b00738 32202104
    [Google Scholar]
  4. FischerG. SeiboldU. SchirrmacherR. WänglerB. WänglerC. 89Zr, a radiometal nuclide with high potential for molecular imaging with PET: Chemistry, applications and remaining challenges.Molecules20131866469649010.3390/molecules18066469 23736785
    [Google Scholar]
  5. VerelI. VisserG.W. BoellaardR. Stigter-van WalsumM. SnowG.B. Van DongenG.A. 89Zr immuno-PET: Comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies.J. Nucl. Med.200344812711281 12902418
    [Google Scholar]
  6. CisterninoS. CazzolaE. SkliarovaH. AmicoJ. MalachiniM. GorgoniG. Anselmi-TamburiniU. EspositoJ. Target manufacturing by spark plasma sintering for efficient 89Zr production.Nucl. Med. Biol.2022104-105384610.1016/j.nucmedbio.2021.11.004 34856450
    [Google Scholar]
  7. AlnahwiA.H. TremblayS. GuérinB. Comparative study with 89Y-foil and 89Y-pressed targets for the production of 89Zr.Appl. Sci.201889157910.3390/app8091579
    [Google Scholar]
  8. HollandJ.P. ShehY. LewisJ.S. Standardized methods for the production of high specific-activity zirconium-89.Nucl. Med. Biol.200936772973910.1016/j.nucmedbio.2009.05.007 19720285
    [Google Scholar]
  9. O’HaraM.J. MurrayN.J. CarterJ.C. MorrisonS.S. Optimized anion exchange column isolation of zirconium-89 (89Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform.J. Chromatogr. A20181545485810.1016/j.chroma.2018.02.053 29525125
    [Google Scholar]
  10. YooJ. TangL. PerkinsT.A. RowlandD.J. LaforestR. LewisJ.S. WelchM.J. Preparation of high specific activity 86Y using a small biomedical cyclotron.Nucl. Med. Biol.200532889189710.1016/j.nucmedbio.2005.06.007 16253815
    [Google Scholar]
  11. McCarthyD.W. SheferR.E. KlinkowsteinR.E. BassL.A. MargeneauW.H. CutlerC.S. AndersonC.J. WelchM.J. Efficient production of high specific activity 64Cu using a biomedical cyclotron.Nucl. Med. Biol.1997241354310.1016/S0969‑8051(96)00157‑6 9080473
    [Google Scholar]
  12. MeijsW.E. HerscheidJ.D.M. HaismaH.J. PinedoH.M. Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89.Int. J. Rad. Appl. Instrum. [A]199243121443144710.1016/0883‑2889(92)90170‑J 1334954
    [Google Scholar]
  13. SkliarovaH. CisterninoS. CicoriaG. CazzolaE. GorgoniG. MarengoM. EspositoJ. Cyclotron solid targets preparation for medical radionuclides production in the framework of LARAMED project.J. Phys. Conf. Ser.20201548101202210.1088/1742‑6596/1548/1/012022
    [Google Scholar]
  14. SkliarovaH. CisterninoS. CicoriaG. MarengoM. CazzolaE. GorgoniG. PalmieriV. Medical cyclotron solid target preparation by ultrathick film magnetron sputtering deposition.Instruments2019312110.3390/instruments3010021
    [Google Scholar]
  15. QueernS.L. AwedaT.A. MassicanoA.V.F. ClantonN.A. El SayedR. SaderJ.A. ZyuzinA. LapiS.E. Production of Zr-89 using sputtered yttrium coin targets.Nucl. Med. Biol.201750111610.1016/j.nucmedbio.2017.03.004 28376350
    [Google Scholar]
  16. PandeyM.K. BansalA. EllinghuysenJ.R. VailD.J. BergH.M. DeGradoT.R. A new solid target design for the production of 89Zr and radiosynthesis of high molar activity[89Zr]Zr-DBN.Am. J. Nucl. Med. Mol. Imaging20221211524 35295887
    [Google Scholar]
  17. SciaccaG. MartiniP. CisterninoS. MouL. AmicoJ. EspositoJ. GorgoniG. CazzolaE. A universal cassette-based system for the dissolution of solid targets.Molecules20212620625510.3390/molecules26206255 34684836
    [Google Scholar]
  18. DiasG.M. RamogidaC.F. RousseauJ. ZacchiaN.A. HoehrC. SchafferP. LinK.S. BénardF. 89 Zr for antibody labeling and in vivo studies – A comparison between liquid and solid target production.Nucl. Med. Biol.2018581710.1016/j.nucmedbio.2017.11.005 29291493
    [Google Scholar]
  19. PandeyM.K. BansalA. EngelbrechtH.P. ByrneJ.F. PackardA.B. DeGradoT.R. Improved production and processing of 89Zr using a solution target.Nucl. Med. Biol.20164319710010.1016/j.nucmedbio.2015.09.007 26471714
    [Google Scholar]
  20. PandeyM.K. DeGradoT.R. Cyclotron production of PET radiometals in liquid targets: Aspects and prospects.Curr. Radiopharm.202114432533910.2174/18744729MTA5sMzgr4 32867656
    [Google Scholar]
  21. ZweitJ. DowneyS. SharmaH.L. Production of no-carrier-added zirconium-89 for positron emission tomography.Int. J. Rad. Appl. Instrum. [A]199142219920110.1016/0883‑2889(91)90074‑B
    [Google Scholar]
  22. AlbrechtS. CymorekC. EckertJ. Niobium and niobium compounds. Ullmann’s Encyclopedia of Industrial ChemistryWiley Online Library2011b10.1002/14356007.a17_251.pub2
    [Google Scholar]
  23. Vosjan, Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET-imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine.Nat. Protoc.20105473974310.1038/nprot.2010.13
    [Google Scholar]
/content/journals/crp/10.2174/0118744710318544240715061530
Loading
/content/journals/crp/10.2174/0118744710318544240715061530
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test