Skip to content
2000
Volume 18, Issue 1
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

Background

The reproductive organ, housing spermatogonial stem cells (SSCs), undergoes ongoing division impacted by the irradiation dosage and exposure duration. Within the male reproductive organ, germ stem cells (spermatogonia) and somatic cells (Sertoli and Leydig cells) are present. Lower doses of ionizing (>4-6 Gy) and non-ionizing radiation (radiofrequency and microwave range 900 MHz - 2.45 GHz) may cause sperm-related issues, while higher doses (15 Gy) may affect Leydig cells and testosterone production. Response to radiation varies with age and pubescence. Spermatogonial stem cells, crucial for regenerating the spermatogenic lineage, express molecular markers like Estrogen receptor, FSH (Follicular Stimulating Hormone) receptor, TLR-4 (Toll-like Receptor-4), TLR-5 (Toll-like Receptor-5), FGF2 (Fibroblast Growth Factor-2), KIT (Receptor Tyrosine Kinase), AT-1 (Angiotensin II Type-1 Receptor), LXRs-γ (Liver X Receptor-γ), TNF-β (Tumor Necrosis Factor-β), and PCNA (Proliferating Cell Nuclear Antigen), influencing stem cell activity in testes.

Objective

This study aimed to review the various available radioprotective agents and their efficacy in targeting the male reproductive system from the available literature.

Results

Various radioprotective herbal/synthetic/microbial/metallic extracts/formulations/
drugs [Septilin, Silymarin, Organic Turmeric, Oestrogen, Melatonin, Febuxostat, SQGD (Semiquinone glucoside derivative), Rapamycin, Entolimod, Zinc, Selenium, .] have been investigated up to exposure, but owing to effectiveness issues, they are unable to fulfil the aim to the fullest of restoring male fertility and normal testosterone levels during such eventuality.

Conclusion

Further study is needed to optimize these tactics and fill knowledge gaps. Also, the effective components of herbal, synthetic drugs, ., should be isolated and tested up to clinical levels, paving the way for successful radioprotection and radiomitigation strategies in the male reproductive system.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710285874240326041025
2025-03-01
2025-05-04
Loading full text...

Full text loading...

References

  1. KesariK.K. AgarwalA. HenkelR. Radiations and male fertility.Reprod. Biol. Endocrinol.201816111810.1186/s12958‑018‑0431‑1 30445985
    [Google Scholar]
  2. Ogilvy-StuartA.L. ShaletS.M. Effect of radiation on the human reproductive system.Environ. Health Perspect.1993101S210911610.1289/ehp.93101s2109 8243379
    [Google Scholar]
  3. SamantaN. GoelH.C. Protection against radiation induced damage to spermatogenesis by Podophyllum hexandrum.J. Ethnopharmacol.200281221722410.1016/S0378‑8741(02)00081‑8 12065154
    [Google Scholar]
  4. SharmaK.V. SisodiaR. Radioprotective potential of Grewia asiatica fruit extract in mice testis.Pharmacologyonline20101487495
    [Google Scholar]
  5. ShabanN.Z. ZahranA.A.M. RashidyE.F.H. KodousA.A.S. Protective role of hesperidin against γ-radiation-induced oxidative stress and apoptosis in rat testis.J. Biol. Res.2017241510.1186/s40709‑017‑0059‑x 28265554
    [Google Scholar]
  6. KivrakE. YurtK. KaplanA. AlkanI. AltunG. Effects of electromagnetic fields exposure on the antioxidant defense system.J. Microsc. Ultrastruct.20175416717610.1016/j.jmau.2017.07.003 30023251
    [Google Scholar]
  7. IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz.IEEE International Committee on Electromagnetic Safety 20192019
    [Google Scholar]
  8. SivakumarR. SivaramanP.B. BabuM.N. AbideenJ.I.M. KalliyappanP. BalasubramanianK. Radiation exposure impairs luteinizing hormone signal transduction and steroidogenesis in cultured human leydig cells.Toxicol. Sci.200691255055610.1093/toxsci/kfj178 16569731
    [Google Scholar]
  9. RodríguezG.A. GosálvezJ. AgarwalA. RoyR. JohnstonS. DNA damage and repair in human reproductive cells.Int. J. Mol. Sci.20182013110.3390/ijms20010031 30577615
    [Google Scholar]
  10. VlajkovićS. ČukuranovićR. BjelakovićD.M. StefanovićV. Possible therapeutic use of spermatogonial stem cells in the treatment of male infertility: A brief overview.ScientificWorldJournal201220121810.1100/2012/374151 22536138
    [Google Scholar]
  11. MohaqiqM. MovahedinM. MazaheriZ. AmirjannatiN. In vitro transplantation of spermatogonial stem cells isolated from human frozen–thawed testis tissue can induce spermatogenesis under 3-dimensional tissue culture conditions.Biol. Res.20195211610.1186/s40659‑019‑0223‑x 30917866
    [Google Scholar]
  12. SinghP.K. KumarR. SharmaA. AroraR. JainS.K. Pifithrin-α decreases the radioprotective efficacy of Podophyllum hexandrum fraction (REC-2006) in HepG2 cells.Biotechnol. Appl. Biochem.2019541536410.1042/BA20080250 19409072
    [Google Scholar]
  13. PatelD.D. BansalD.D. MishraS. AroraR. SharmaA. JainS.K. KumarR. Radioprotection to small intestine of the mice against ionizing radiation by semiquinone glucoside derivative (SQGD) isolated from Bacillus sp. INM-1.Mol. Cell. Biochem.20123701-211512510.1007/s11010‑012‑1403‑y 22875666
    [Google Scholar]
  14. PatelD.D. BansalD.D. MishraS. AroraR. SharmaR.K. JainS.K. KumarR. A semiquinone glucoside derivative provides protection to male reproductive system of the mice against gamma radiation toxicity.Environ. Toxicol.201429555856710.1002/tox.21781 22730153
    [Google Scholar]
  15. AkeemS. LukmanO. EltahirK. FataiO. AbiolaB. KhadijatO. Bone marrow and peripheral blood cells toxicity of a single 2.0 Gy cobalt60 ionizing radiation: An animal model.Ethiop. J. Health Sci.197029219520210.4314/ejhs.v29i2.6 31011267
    [Google Scholar]
  16. AzizN. The importance of semen analysis in the context of azoospermia.Clinics201368S1353810.6061/clinics/2013(Sup01)05
    [Google Scholar]
  17. AuharekS.A. AvelarG.F. LaraN.L.M. SharpeR.M. FrançaL.R. Sertoli cell numbers and spermatogenic efficiency are increased in inducible nitric oxide synthase mutant mice.Int. J. Androl.2011346pt2e621e62610.1111/j.1365‑2605.2011.01209.x 21831234
    [Google Scholar]
  18. PawlickiP. HejmejA. MilonA. LustofinK. PłachnoB.J. TworzydloW. WojtowiczG.E. PawlickaB. BalakK.M. BilinskaB. Telocytes in the mouse testicular interstitium: implications of G-protein-coupled estrogen receptor (GPER) and estrogen-related receptor (ERR) in the regulation of mouse testicular interstitial cells.Protoplasma2019256239340810.1007/s00709‑018‑1305‑2 30187340
    [Google Scholar]
  19. HessR.A. FrançaL.R. Structure of the sertoli cell.Sertoli Cell Biology.Elsevier Inc.20081940
    [Google Scholar]
  20. HessR.A. de FrancaL.R. Spermatogenesis and cycle of the seminiferous epithelium.Adv. Exp. Med. Biol.200963611510.1007/978‑0‑387‑09597‑4_1 19856159
    [Google Scholar]
  21. XiaoX. MrukD.D. WongC.K.C. ChengY.C. Germ cell transport across the seminiferous epithelium during spermatogenesis.Physiology201429428629810.1152/physiol.00001.2014 24985332
    [Google Scholar]
  22. ChenH. MrukD. XiaoX. ChengC.Y. Human spermatogenesis and its regulation.Male Hypogonadism. Contemporary Endocrinology. WintersS. HuhtaniemiI. Humana Press2017497210.1007/978‑3‑319‑53298‑1_3
    [Google Scholar]
  23. OakbergE.F. A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal.Am. J. Anat.195699339141310.1002/aja.1000990303 13402725
    [Google Scholar]
  24. OakbergE.F. Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium.Am. J. Anat.195699350751610.1002/aja.1000990307 13402729
    [Google Scholar]
  25. ClermontY. Kinetics of spermatogenesis in mammals: Seminiferous epithelium cycle and spermatogonial renewal.Physiol. Rev.197252119823610.1152/physrev.1972.52.1.198 4621362
    [Google Scholar]
  26. GriswoldM.D. Spermatogenesis: The commitment to meiosis.Physiol. Rev.201696111710.1152/physrev.00013.2015 26537427
    [Google Scholar]
  27. PhillipsB.T. GasseiK. OrwigK.E. Spermatogonial stem cell regulation and spermatogenesis.Philos. Trans. R. Soc. Lond. B Biol. Sci.201036515461663167810.1098/rstb.2010.0026 20403877
    [Google Scholar]
  28. HuckinsC. Cell cycle properties of differentiating spermatogonia in adult Sprague-Dawley rats.Cell Prolif.19714213915410.1111/j.1365‑2184.1971.tb01524.x 5128278
    [Google Scholar]
  29. OakbergE.F. Spermatogonial stem‐cell renewal in the mouse.Anat. Rec.1971169351553110.1002/ar.1091690305 5550531
    [Google Scholar]
  30. YoshidaS. NabeshimaY.I. NakagawaT. Stem cell heterogeneity: Actual and potential stem cell compartments in mouse spermatogenesis.Ann. N. Y. Acad. Sci.200711201475810.1196/annals.1411.003 17905929
    [Google Scholar]
  31. MorimotoH. ShinoharaK.M. TakashimaS. ChumaS. NakatsujiN. TakehashiM. ShinoharaT. Phenotypic plasticity of mouse spermatogonial stem cells.PLoS One2009411e790910.1371/journal.pone.0007909 19936070
    [Google Scholar]
  32. De RooijD.G. The spermatogonial stem cell niche.Microsc. Res. Tech.200972858058510.1002/jemt.20699 19263493
    [Google Scholar]
  33. OakbergE.F. Sensitivity and time of degeneration of spermatogenic cells irradiated in various stages of maturation in the mouse.Radiat. Res.19552436939110.2307/3570245 14385033
    [Google Scholar]
  34. FengC.W. BowlesJ. KoopmanP. Control of mammalian germ cell entry into meiosis.Mol. Cell. Endocrinol.2014382148849710.1016/j.mce.2013.09.026 24076097
    [Google Scholar]
  35. RussellL.D. GriswoldM.D. The Sertoli cell.Cache River Press199310.1002/mrd.1080360417
    [Google Scholar]
  36. O’DonnellL. NichollsP.K. O’BryanM.K. McLachlanR.I. StantonP.G. Spermiation.Spermatogenesis201111143510.4161/spmg.1.1.14525 21866274
    [Google Scholar]
  37. DiasT.R. AlvesM.G. SilvaB.M. OliveiraP.F. Sperm glucose transport and metabolism in diabetic individuals.Mol. Cell. Endocrinol.20143961-2374510.1016/j.mce.2014.08.005 25128846
    [Google Scholar]
  38. OakbergE.F. Gamma‐ray sensitivity of spermatogonia of the mouse.J. Exp. Zool.1957134234335610.1002/jez.1401340208 13428958
    [Google Scholar]
  39. SamarthR.M. SamarthM. Protection against radiation-induced testicular damage in swiss albino mice by Mentha piperita (Linn.).Basic Clin. Pharmacol. Toxicol.2009104432933410.1111/j.1742‑7843.2009.00384.x 19320637
    [Google Scholar]
  40. MurphyC.J. RichburgJ.H. Implications of Sertoli cell induced germ cell apoptosis to testicular pathology.Spermatogenesis201442e97911010.4161/21565562.2014.979110 26413394
    [Google Scholar]
  41. SharmaP. ParmarJ. SharmaP. VermaP. GoyalP. K. Radiation-induced testicular injury and its amelioration by Tinospora cordifolia (An Indian Medicinal Plant) extract.eCAM2011201164384710.1155/2011/643847
    [Google Scholar]
  42. MauduitC. SiahA. FochM. ChapetO. ClippeS. GerardJ.P. BenahmedM. Differential expression of growth factors in irradiated mouse testes.Int. J. Radiat. Oncol. Biol. Phys.200150120321210.1016/S0360‑3016(01)01461‑4 11316565
    [Google Scholar]
  43. LinC.C. WuL.S.H. LeeK.F. The potential effect of different doses of ionizing radiation on genes and disease.Dose Response201917210.1177/1559325819843375 31105480
    [Google Scholar]
  44. OkadaK. FujisawaM. Recovery of spermatogenesis following cancer treatment with cytotoxic chemotherapy and radiotherapy.World J. Mens Health201937216617410.5534/wjmh.180043 30588779
    [Google Scholar]
  45. DuelandS. GurenG.M. OlsenR.D. PoulsenJ.P. TveitM.K. Radiation therapy induced changes in male sex hormone levels in rectal cancer patients.Radiother. Oncol.200368324925310.1016/S0167‑8140(03)00120‑8 13129632
    [Google Scholar]
  46. TalwarP. YadavS. Testicular dysfunction and cancer: The current status.Onco Fertil. J.201811172310.4103/tofj.tofj_3_17
    [Google Scholar]
  47. ZalataA. El-SamanoudyA.Z. ShaalanD. El-BaiomyY. MostafaT. In vitro effect of cell phone radiation on motility, DNA fragmentation and clusterin gene expression in human sperm.Int. J. Fertil. Steril.20159112913610.22074/ijfs.2015.4217 25918601
    [Google Scholar]
  48. GorpinchenkoI. NikitinO. BanyraO. ShulyakA. The influence of direct mobile phone radiation on sperm quality.Cent. European J. Urol.2014671657110.5173/ceju.2014.01.art14 24982785
    [Google Scholar]
  49. OdacıE. ÖzyılmazC. Exposure to a 900 MHz electromagnetic field for 1 hour a day over 30 days does change the histopathology and biochemistry of the rat testis.Int. J. Radiat. Biol.201591754755410.3109/09553002.2015.1031850 25786704
    [Google Scholar]
  50. PandeyN. GiriS. DasS. UpadhayaP. Radiofrequency radiation (900 MHz)-induced DNA damage and cell cycle arrest in testicular germ cells in swiss albino mice.Toxicol. Ind. Health201733437338410.1177/0748233716671206 27738269
    [Google Scholar]
  51. KumarS. NiralaJ.P. BehariJ. PaulrajR. Effect of electromagnetic irradiation produced by 3G mobile phone on male rat reproductive system in a simulated scenario.Indian J. Exp. Biol.2014529890897
    [Google Scholar]
  52. MeenaR. KumariK. KumarJ. RajamaniP. VermaH.N. KesariK.K. Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats.Electromagn. Biol. Med.2014332819110.3109/15368378.2013.781035 23676079
    [Google Scholar]
  53. De IuliisG.N. KingB.V. AitkenR.J. Electromagnetic radiation and oxidative stress in the male germ line.Studies on Men’s health and fertility. AgarwalA. AitkenR.J. AlvarezJ.G. New YorkHumana Press201211913010.1007/978‑1‑61779‑776‑7_1
    [Google Scholar]
  54. SonH.Y. KimY.B. KangB.H. ChoS.W. HaC.S. RohJ.K. Effects of 2-bromopropane on spermatogenesis in the sprague–dawley rat.Reprod. Toxicol.199913317918710.1016/S0890‑6238(99)00005‑2 10378467
    [Google Scholar]
  55. AlzergyA.A. ElgharbawyS.M.S. Assessment of the effects of Capparis spinosa on the testes and epididymis of albino mice intoxicated with trichloroacetic acid.J. Am. Sci.2015112842
    [Google Scholar]
  56. KangasniemiM. HuhtaniemiI. MeistrichM.L. Failure of spermatogenesis to recover despite the presence of a spermatogonia in the irradiated LBNF1 rat.Biol. Reprod.19965461200120810.1095/biolreprod54.6.1200 8724346
    [Google Scholar]
  57. KumarM. SamarthR. KumarM. SelvanS.R. SaharanB. KumarA. Protective effect of Adhatoda vascia nees against radiation-induced damage at cellular, biochemical and chromosomal levels in Swiss albino mice.eCAM20074334335010.1093/ecam/nel098
    [Google Scholar]
  58. GhanemN.F. AttiaS.I. RiskA.M. ShwairebM.H. Effect of antithyroid drug cabimazole on the fertility and testicular structure of mice.JOBAZ199518112
    [Google Scholar]
  59. EissaO.S. MoustafaN.A. The protective role of septilin against gamma radiation-induced testicular toxicity in rats.Egypt. J. Hosp. Med.200727117618710.21608/ejhm.2007.17720
    [Google Scholar]
  60. DameghA.M.A. Rat testicular impairment induced by electromagnetic radiation from a conventional cellular telephone and the protective effects of the antioxidants vitamins C and E.Clinics201267778579210.6061/clinics/2012(07)14 22892924
    [Google Scholar]
  61. ForgácsZ. SomosyZ. KubinyiG. BakosJ. HudákA. SurjánA. ThuróczyG. Effect of whole-body 1800MHz GSM-like microwave exposure on testicular steroidogenesis and histology in mice.Reprod. Toxicol.200622111111710.1016/j.reprotox.2005.12.003 16434166
    [Google Scholar]
  62. SureshR. AravindanG.R. MoudgalN.R. Quantitation of spermatogenesis by DNA flow cytometry: Comparative study among six species of mammals.J. Biosci.199217441341910.1007/BF02720096
    [Google Scholar]
  63. van der MeerY. HuiskampR. DavidsJ.A.G. van der TweelI. de RooijD.G. HuiskampR. The sensitivity to X rays of mouse spermatogonia that are committed to differentiate and of differentiating spermatogonia.Radiat. Res.1992130329630210.2307/3578374 1594755
    [Google Scholar]
  64. OakbergE.F. DiMinnoR.L. X-ray sensitivity of primary spermatocytes of the mouse.int.Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.19602219620910.1080/09553006014550211 14428126
    [Google Scholar]
  65. ForandA. FouchetP. LahayeJ.B. ChicheporticheA. HabertR. SgherriB.J. Similarities and differences in the in vivo response of mouse neonatal gonocytes and spermatogonia to genotoxic stress.Biol. Reprod.200980586087310.1095/biolreprod.108.072884 19144961
    [Google Scholar]
  66. YoshinagaK. NishikawaS. OgawaM. HayashiS.I. KunisadaT. FujimotoT. NishikawaS.I. Role of c-kit in mouse spermatogenesis: Identification of spermatogonia as a specific site of c-kit expression and function.Development1991113268969910.1242/dev.113.2.689 1723681
    [Google Scholar]
  67. RuthigV.A. NielsenT. RielJ.M. YamauchiY. OrtegaE.A. SalvadorQ. WardM.A. Testicular abnormalities in mice with Y chromosome deficiencies.Biol. Reprod.201796369470610.1095/biolreprod.116.144006 28339606
    [Google Scholar]
  68. OatleyM.J. KaucherA.V. RacicotK.E. OatleyJ.M. Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice.Biol. Reprod.201185234735610.1095/biolreprod.111.091330 21543770
    [Google Scholar]
  69. AloisioG.M. NakadaY. SaatciogluH.D. PeñaC.G. BakerM.D. TarnawaE.D. MukherjeeJ. ManjunathH. BugdeA. SenguptaA.L. AmatrudaJ.F. CuevasI. HamraF.K. CastrillonD.H. PAX7 expression defines germline stem cells in the adult testis.J. Clin. Invest.201412493929394410.1172/JCI75943 25133429
    [Google Scholar]
  70. KomaiY. TanakaT. TokuyamaY. YanaiH. OheS. OmachiT. AtsumiN. YoshidaN. KumanoK. HishaH. MatsudaT. UenoH. Bmi1 expression in long-term germ stem cells.Sci. Rep.201441617510.1038/srep06175 25146451
    [Google Scholar]
  71. KaucherA.V. OatleyM.J. OatleyJ.M. NEUROG3 is a critical downstream effector for STAT3-regulated differentiation of mammalian stem and progenitor spermatogonia.Biol. Reprod.2012865164-11, 1-11.10.1095/biolreprod.111.097386 22378757
    [Google Scholar]
  72. WelckerM. ClurmanB.E. FBW7 ubiquitin ligase: A tumour suppressor at the crossroads of cell division, growth and differentiation.Nat. Rev. Cancer200882839310.1038/nrc2290 18094723
    [Google Scholar]
  73. ShinoharaK.M. OgonukiN. MatobaS. MorimotoH. OguraA. ShinoharaT. Improved serum- and feeder-free culture of mouse germline stem cells.Biol. Reprod.20149148810.1095/biolreprod.114.122317 25210127
    [Google Scholar]
  74. SadaA. SuzukiA. SuzukiH. SagaY. The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells.Science200932559461394139810.1126/science.1172645 19745153
    [Google Scholar]
  75. HuY.C. de RooijD.G. PageD.C. Tumor suppressor gene Rb is required for self-renewal of spermatogonial stem cells in mice.Proc. Natl. Acad. Sci.201311031126851269010.1073/pnas.1311548110 23858447
    [Google Scholar]
  76. ShahF.J. TanakaM. NielsenJ.E. IwamotoT. KobayashiS. SkakkebækN.E. LeffersH. AlmstrupK. Gene expression profiles of mouse spermatogenesis during recovery from irradiation.Reprod. Biol. Endocrinol.20097113010.1186/1477‑7827‑7‑130 19925657
    [Google Scholar]
  77. CordelliE. EleuteriP. GrollinoM.G. BenassiB. BlandinoG. BartoleschiC. PardiniM.C. Di CaprioE.V. SpanòM. PacchierottiF. VillaniP. Direct and delayed X‐ray‐induced DNA damage in male mouse germ cells.Environ. Mol. Mutagen.201253642943910.1002/em.21703 22730201
    [Google Scholar]
  78. WalkerW.H. Molecular mechanisms of testosterone action in spermatogenesis.Steroids200974760260710.1016/j.steroids.2008.11.017 19095000
    [Google Scholar]
  79. OduwoleO.O. PeltoketoH. HuhtaniemiI.T. Role of follicle-stimulating hormone in spermatogenesis.Front. Endocrinol.2018976310.3389/fendo.2018.00763 30619093
    [Google Scholar]
  80. ZirkinB.R. PapadopoulosV. Leydig cells: Formation, function, and regulation.Biol. Reprod.201899110111110.1093/biolre/ioy059 29566165
    [Google Scholar]
  81. ShettyG. WengC.C.Y. MeachemS.J. TillerB.O.U. ZhangZ. PakarinenP. HuhtaniemiI. MeistrichM.L. Both testosterone and follicle-stimulating hormone independently inhibit spermatogonial differentiation in irradiated rats.Endocrinology2006147147248210.1210/en.2005‑0984 16210366
    [Google Scholar]
  82. RöösliM. MichelG. KuehniC.E. SpoerriA. Cellular telephone use and time trends in brain tumour mortality in Switzerland from 1969 to 2002.Eur. J. Cancer Prev.2007161778210.1097/01.cej.0000203618.61936.cd
    [Google Scholar]
  83. MeachemS.J. WrefordN.G. StantonP.G. RobertsonD.M. McLACHLAN, R. Follicle-stimulating hormone is required for the initial phase of spermatogenic restoration in adult rats following gonadotropin suppression.J. Androl.199819672573510.1002/j.1939‑4640.1998.tb02082.x 9876024
    [Google Scholar]
  84. KerrJ.B. MaddocksS. SharpeR.M. Testosterone and FSH have independent, synergistic and stage-dependent effects upon spermatogenesis in the rat testis.Cell Tissue Res.1992268117918910.1007/BF00338067 1323421
    [Google Scholar]
  85. RussellL.D. KershawM. BorgK. ShennawyA.E. RulliS.S. GatesR.J. CalandraR.S. Hormonal regulation of spermatogenesis in the hypophysectomized rat: FSH maintenance of cellular viability during pubertal spermatogenesis.J. Androl.199819330831910.1002/j.1939‑4640.1998.tb02010.x 9639048
    [Google Scholar]
  86. O’DonnellL. McLachlanR.I. WrefordN.G. RobertsonD.M. Testosterone promotes the conversion of round spermatids between stages VII and VIII of the rat spermatogenic cycle.Endocrinology199413562608261410.1210/endo.135.6.7988449 7988449
    [Google Scholar]
  87. SamantaN. KannanK. BalaM. GoelH.C. Radioprotective mechanism of Podophyllum hexandrum during spermatogenesis.Mol. Cell. Biochem.20042671/216717610.1023/B:MCBI.0000049375.34583.65 15663198
    [Google Scholar]
  88. GoelH.C. SamantaN. KannanK. KumarI.P. BalaM. Protection of spermatogenesis in mice against gamma ray induced damage by Hippophae rhamnoides.Andrologia200638619920710.1111/j.1439‑0272.2006.00740.x 17081171
    [Google Scholar]
  89. AdaramoyeO.A. AdedaraI.A. PopoolaB. FarombiE.O. Extract of Xylopia aethiopica (Annonaceae) protects against gamma-radiation induced testicular damage in Wistar rats.J. Basic Clin. Physiol. Pharmacol.201021429531410.1515/JBCPP.2010.21.4.295 21305847
    [Google Scholar]
  90. SisodiaR. YadavR. SharmaK.V. BhatiaA.L. Spinacia oleracea modulates radiation-induced biochemical changes in mice testis.Indian J. Pharm. Sci.200870332032610.4103/0250‑474X.42980 20046739
    [Google Scholar]
  91. PandeS. KumarM. KumarA. Radioprotective efficacy of aloe vera leaf extract.Pharm. Biol.199836322723210.1076/phbi.36.3.227.6347
    [Google Scholar]
  92. KumarM. SharmaM.K. SaxenaP.S. KumarA. Radioprotective effect of Panax ginseng on the phosphatases and lipid peroxidation level in testes of Swiss albino mice.Biol. Pharm. Bull.200326330831210.1248/bpb.26.308 12612438
    [Google Scholar]
  93. FatehiD. MohammadiM. ShekarchiB. ShabaniA. SeifyM. RostamzadehA. Radioprotective effects of Silymarin on the sperm parameters of NMRI mice irradiated with γ-rays.J. Photochem. Photobiol. B201817848949510.1016/j.jphotobiol.2017.12.004 29232573
    [Google Scholar]
  94. AmmarA.A.A. Use of onion and curcumin as radioprotectors against ionizing radiation induced hepato - testicular alterations in rats.Egypt. J. Hosp. Med.201665146847310.12816/0033754
    [Google Scholar]
  95. WangT.Q. ZhangX. YangJ. Dynamic protective effect of chinese herbal prescription, Yiqi Jiedu Decoction, on testis in mice with acute radiation injury.Evid. Based Complement. Alternat. Med.20212021664409310.1155/2021/6644093
    [Google Scholar]
  96. TogunV.A. AmaoO.L.A. AdebisiJ.A. OkwusidiJ.O. WilliamsO.S. Effect of organic turmeric (Curcuma longa) feeding on testicular histology of rabbits exposed to ultraviolet radiation.J. Nat. Sci.20166166669
    [Google Scholar]
  97. GhaliA. Effect of oestrogen as a radioprotective agent on the structural changes of testis in irradiated rats.Egypt. J. Hosp. Med.2005211435210.21608/ejhm.2005.18048
    [Google Scholar]
  98. MahdaviM.R. MozdaraniH. Protective effects of famotidine and vitamin C against radiation induced cellular damage in mouse spermatogenesis process.Iran. J. Radiat. Res.20118223230
    [Google Scholar]
  99. SongthaveesinC. SaikhunJ. KitiyanantY. PavasuthipaisitK. Radio-protective effect of vitamin E on spermatogenesis in mice exposed to gamma-irradiation: A flow cytometric study.Asian J. Androl.200464331336 15546025
    [Google Scholar]
  100. PareekT.K. RimpuK. DevP.K. GoyalP.K. Modulation of radiation-induced lesions in testes of Swiss Albino mice by vitamin E. J.Cell Tissue Res.20055471474
    [Google Scholar]
  101. AndrieuN.M. KurtmanC. HicsonmezA. OzbilginK. EserE. ErdemliE. In vivo study to evaluate the protective effects of amifostine on radiation-induced damage of testis tissue.Oncology2005691445110.1159/000087475 16103734
    [Google Scholar]
  102. HusseinM.R. DiefA.E.E. GhaitS.E.A.T. AdlyM.A. AbdelraheemM.H. Morphological evaluation of the radioprotective effects of melatonin against X‐ray‐induced early and acute testis damage in Albino rats: An animal model.Int. J. Exp. Pathol.200687323725010.1111/j.1365‑2613.2006.00480.x 16709232
    [Google Scholar]
  103. LiuY. ZhangH. ZhangL. ZhangX. XieY. ZhaoW. Melatonin modulates acute testicular damage induced by carbon ions in mice.Pharmazie20096410685689 19947173
    [Google Scholar]
  104. KhanS. AdhikariJ.S. RizviM.A. ChaudhuryN.K. Correction: Radioprotective potential of melatonin against 60Co γ-ray-induced testicular injury in male C57BL/6 mice.J. Biomed. Sci.20222919110.1186/s12929‑022‑00843‑w 36324185
    [Google Scholar]
  105. LiuZ. CaoK. LiaoZ. ChenY. LeiX. WeiQ. LiuC. SunX. YangY. CaiJ. GaoF. Monophosphoryl lipid A alleviated radiation‐induced testicular injury through TLR4‐dependent exosomes.J. Cell. Mol. Med.20202473917393010.1111/jcmm.14978 32135028
    [Google Scholar]
  106. ShenH. HanJ. LiuC. CaoF. HuangY. Grape seed proanthocyanidins exert a radioprotective effect on the testes and intestines through antioxidant effects and inhibition of MAPK signal pathways.Front. Med.2022883652810.3389/fmed.2021.836528 35141259
    [Google Scholar]
  107. NaeimiR.A. AmiriT.F. KhalatbaryA.R. GhasemiA. ZargariM. GhesemiM. HosseinimehrS.J. Atorvastatin mitigates testicular injuries induced by ionizing radiation in mice.Reprod. Toxicol.20177211512110.1016/j.reprotox.2017.06.052 28668617
    [Google Scholar]
  108. HosseinimehrS.J. AmiriF.T. RaeispourM. FarzipourS. Radioprotective effect of febuxostat against testicular damage induced by ionizing radiation in mice.Curr. Radiopharm.202215213414010.2174/1874471014666210906154226 34488603
    [Google Scholar]
  109. SaidR.S. MohamedH.A. KassemD.H. Alpha-lipoic acid effectively attenuates ionizing radiation-mediated testicular dysfunction in rats: Crosstalk of NF-ĸB, TGF-β, and PPAR-ϒ pathways.Toxicology202044215253610.1016/j.tox.2020.152536 32649955
    [Google Scholar]
  110. TajabadiE. JavadiA. Ahmadi AzarN. NajafiM. ShiraziA. ShabeebD. MusaE.A. Radioprotective effect of a combination of melatonin and metformin on mice spermatogenesis: A histological study.Int. J. Reprod. Biomed.202018121073108010.18502/ijrm.v18i12.8029 33426418
    [Google Scholar]
  111. RossiG. PlacidiM. CastelliniC. ReaF. D’AndreaS. AlonsoG.L. GravinaG.L. TatoneC. EmidioD.G. D’AlessandroA.M. Crocetin mitigates irradiation injury in an in vitro model of the Pubertal testis: Focus on biological effects and molecular mechanisms.Molecules2021266167610.3390/molecules26061676 33802807
    [Google Scholar]
  112. LeeW. SonY. JangH. BaeM.J. KimJ. KangD. KimJ.S. Protective effect of administered rolipram against radiation-induced testicular injury in mice.World J. Mens Health2015331202910.5534/wjmh.2015.33.1.20 25927059
    [Google Scholar]
  113. KimJ. YoonY.D. Evaluation of caffeine as a radioprotector in gamma-irradiated C57BL/6N male mice.Proceedings of the Korean Nuclear Autumn Meeting YongpyongYongpyong, Korea2002
    [Google Scholar]
  114. YangJ. XuR. LuanY. FanH. YangS. LiuJ. ZengH. ShaoL. Rapamycin ameliorates radiation-induced testis damage in mice.Front. Cell Dev. Biol.20221078388410.3389/fcell.2022.783884 35547814
    [Google Scholar]
  115. BaiH. SunF. YangG. WangL. ZhangQ. ZhangQ. ZhanY. ChenJ. YuM. LiC. YinR. YangX. GeC. CBLB502, a toll-like receptor 5 agonist, offers protection against radiation-induced male reproductive system damage in mice.Biol. Reprod.2019100128129110.1093/biolre/ioy173 30084935
    [Google Scholar]
  116. BagheriS.H. AsghariA. FarhadiM. ShamshiriA.R. KabirA. KamravaS.K. JalessiM. MohebbiA. AlizadehR. HonarmandA.A. GhalehbaghiB. SalimiA. FirouzabadiD.F. Coincidence of COVID-19 epidemic and olfactory dysfunction outbreak in Iran.Med. J. Islam. Repub. Iran2020346210.47176/mjiri.34.62 32974228
    [Google Scholar]
  117. YinY. StahlB.C. DeWolfW.C. MorgentalerA. p53-mediated germ cell quality control in spermatogenesis.Dev. Biol.1998204116517110.1006/dbio.1998.9074 9851850
    [Google Scholar]
  118. HallP.A. LaneD.P. Tumour suppressors: A developing role for p53?Curr. Biol.199773R144R14710.1016/S0960‑9822(97)70074‑5 9162475
    [Google Scholar]
  119. SalmandP.A. JungasT. FernandezM. ConterA. ChristiansE.S. Mouse heat-shock factor 1 (HSF1) is involved in testicular response to genotoxic stress induced by doxorubicin.Biol. Reprod.20087961092110110.1095/biolreprod.108.070334 18703420
    [Google Scholar]
  120. ZhouX.C. ZhangZ.H. HuZ.Y. ZouR.J. LiuY.X. Expression of Hsp70–2 in rhesus monkey testis during germ cell apoptosis induced by testosterone undecanoate.Contraception200266537738210.1016/S0010‑7824(02)00357‑8 12443970
    [Google Scholar]
  121. ParkS.H. LeeS.J. ChungH.Y. KimT.H. ChoC.K. YooS.Y. LeeY.S. Inducible heat-shock protein 70 is involved in the radioadaptive response.Radiat. Res.2000153331832610.1667/0033‑7587(2000)153[0318:IHSPII]2.0.CO;2
    [Google Scholar]
  122. ŚcieglińskaD. WidłakW. RusinM. MarkkulaM. KrawczykZ. Expression of the testis-specific HSP70-related gene (hst70 gene) in somatic non-testicular rat tissues revealed by RT-PCR and transgenic mice analysis.Cell Biol. Int.1997211281382110.1006/cbir.1997.0195 9812345
    [Google Scholar]
  123. FengH.L. SandlowJ.I. SparksA.E.T. Decreased expression of the heat shock protein hsp70-2 is associated with the pathogenesis of male infertility.Fertil. Steril.20017661136113910.1016/S0015‑0282(01)02892‑8 11730740
    [Google Scholar]
  124. GajewskiT.F. ThompsonC.B. Apoptosis meets signal transduction: Elimination of a BAD influence.Cell199687458959210.1016/S0092‑8674(00)81377‑X 8929527
    [Google Scholar]
  125. BeumerT.L. GajadienR.H.L. GademanI.S. LockT.M.T.W. KalH.B. De RooijD.G. Apoptosis regulation in the testis: Involvement of Bcl-2 family members.Mol. Reprod. Dev.200056335335910.1002/1098‑2795(200007)56:3<353:AID‑MRD4>3.0.CO;2‑3 10862001
    [Google Scholar]
  126. SilvaA.M.S. CorreiaS. LopesC.J.E. MamedeA.C. CavacoJ.E.B. BotelhoM.F. SocorroS. MaiaC.J. The protective effect of regucalcin against radiation-induced damage in testicular cells.Life Sci.2016164314110.1016/j.lfs.2016.09.003 27620963
    [Google Scholar]
  127. AgarwalM.L. AgarwalA. TaylorW.R. StarkG.R. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts.Proc. Natl. Acad. Sci.199592188493849710.1073/pnas.92.18.8493 7667317
    [Google Scholar]
  128. XiongY. ZhangH. BeachD. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA.Cell199271350551410.1016/0092‑8674(92)90518‑H 1358458
    [Google Scholar]
  129. GartelA.L. SerfasM.S. TynerA.L. p21--negative regulator of the cell cycle.Proc. Soc. Exp. Biol. Med.1996213213814910.3181/00379727‑213‑44046
    [Google Scholar]
  130. HaapajärviT. KivinenL. HeiskanenA. des BordesC. DattoM.B. WangX.F. LaihoM. UV radiation is a transcriptional inducer of p21(Cip1/Waf1) cyclin-kinase inhibitor in a p53-independent manner.Exp. Cell Res.1999248127227910.1006/excr.1999.4403 10094833
    [Google Scholar]
  131. BeumerT.L. GajadienR.H.L. GademanI.S. BuulP.P.W. Gil-GomezG. RutgersD.H. RooijD.G. The role of the tumor suppressor p53 in spermatogenesis.Cell Death Differ.19985866967710.1038/sj.cdd.4400396 10200522
    [Google Scholar]
  132. GrewenigA. SchulerN. RübeC.E. Persistent DNA damage in spermatogonial stem cells after fractionated low-dose irradiation of testicular tissue.Int. J. Radiat. Oncol. Biol. Phys.20159251123113110.1016/j.ijrobp.2015.04.033 26059351
    [Google Scholar]
  133. RübeC.E. ZhangS. MiebachN. FrickeA. RübeC. Protecting the heritable genome: DNA damage response mechanisms in spermatogonial stem cells.DNA Repair201110215916810.1016/j.dnarep.2010.10.007 21123119
    [Google Scholar]
  134. de MurciaJ.M. NiedergangC. TruccoC. RicoulM. DutrillauxB. MarkM. OliverF.J. MassonM. DierichA. LeMeurM. WalztingerC. ChambonP. de MurciaG. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells.Proc. Natl. Acad. Sci.199794147303730710.1073/pnas.94.14.7303 9207086
    [Google Scholar]
  135. AitkenR.J. KrauszC. Oxidative stress, DNA damage and the Y chromosome.Reproduction2001122449750610.1530/rep.0.1220497 11570956
    [Google Scholar]
  136. FiccaM.M.L. ScherthanH. BürkleA. MeyerR.G. Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis.Chromosoma20051141677410.1007/s00412‑005‑0344‑6 15838619
    [Google Scholar]
  137. AgarwalA. MahfouzR.Z. SharmaR.K. SarkarO. MangrolaD. MathurP.P. Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes.Reprod. Biol. Endocrinol.20097114310.1186/1477‑7827‑7‑143 19961617
    [Google Scholar]
  138. JhaR. AgarwalA. MahfouzR. PaaschU. GrunewaldS. SabaneghE. YadavS.P. SharmaR. Determination of poly (ADP-ribose) polymerase (PARP) homologues in human ejaculated sperm and its correlation with sperm maturation.Fertil. Steril.200991378279010.1016/j.fertnstert.2007.12.079 18339380
    [Google Scholar]
  139. XuJ. MorrisG.F. p53-mediated regulation of proliferating cell nuclear antigen expression in cells exposed to ionizing radiation.Mol. Cell. Biol.1999191122010.1128/MCB.19.1.12 9858527
    [Google Scholar]
  140. AdjeiA.A. Blocking oncogenic Ras signaling for cancer therapy.J. Natl. Cancer Inst.200193141062107410.1093/jnci/93.14.1062 11459867
    [Google Scholar]
  141. BaeuerleP.A. HenkelT. Function and activation of NF-kappa B in the immune system.Annu. Rev. Immunol.199412114117910.1146/annurev.iy.12.040194.001041 8011280
    [Google Scholar]
  142. BurdelyaL.G. KrivokrysenkoV.I. TallantT.C. StromE. GleibermanA.S. GuptaD. KurnasovO.V. FortF.L. OstermanA.L. DiDonatoJ.A. FeinsteinE. GudkovA.V. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models.Science2008320587322623010.1126/science.1154986 18403709
    [Google Scholar]
  143. LilienbaumA. SageJ. MémetS. RassoulzadeganM. CuzinF. IsraëlA. NF-kappa B is developmentally regulated during spermatogenesis in mice.Dev. Dyn.20002193333340
    [Google Scholar]
  144. RasoulpourR.J. BoekelheideK. NF-kappaB activation elicited by ionizing radiation is proapoptotic in testis.Biol. Reprod.200776227928510.1095/biolreprod.106.054924 17123945
    [Google Scholar]
  145. DavisR.H. KabbaniJ.M. MaroN.P. Aloe vera and wound healing.J. Am. Podiatr. Med. Assoc.198777416516910.7547/87507315‑77‑4‑165 2438402
    [Google Scholar]
  146. MehraK.S. MikuniI. GuptaU. GodeK.D. Curcuma longa (Linn) drops in corneal wound healing.Tokai J. Exp. Clin. Med.1984912731 6535298
    [Google Scholar]
  147. BakinaE.E. RodinaV.S. KinzburskiiY.A.N. KopytinB.M. Use of P vitamins, quercetin and flavallicep during radiation sickness in rats.Vliyanie Organizm Fiz Khim Faktorov Vnesh Sredy Sb Rab Mater Nauch Konf196719675758
    [Google Scholar]
/content/journals/crp/10.2174/0118744710285874240326041025
Loading
/content/journals/crp/10.2174/0118744710285874240326041025
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test