Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

In the past few decades, impressive progress achieved in technology development and improvement has accelerated the application of peptides as diagnostic biomarkers for various diseases. We outline the advantages of peptides as good diagnostic targets, since they serve as molecular surrogates of enzyme activities, much more specific biomarkers than proteins, and also play vital roles in many biological processes. On the basis of an extensive literature survey, peptide markers with high specificity and sensitivity that are currently applied in clinical tests, as well as recently identified, are summarized for the following four major categories of diseases: neurodegenerative disease, heart failure, infectious disease, and cancer. In addition, we summarize a few prevalent techniques used in peptide biomarker discovery and analysis, such as immunoassays, nanopore-based and nanoparticle-based peptide detection, and also MS-based peptide analysis techniques, and their pros and cons. Currently, there are plenty of analytical technologies available to achieve fast, sensitive and reliable peptide analyses, benefiting from the developments of hardware and instrumentation, as well as data analysis software and databases. Thus, with peptides emerging as sensitive, specific and reliable biomarkers for early detection of diseases, therapeutic monitoring, clinical treatment decisions and disease prognosis, the medical need for peptide biomarkers will increase strongly in the future.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037315736240907131856
2024-09-25
2025-05-17
Loading full text...

Full text loading...

References

  1. AcetÖ. ShcharbinD. ZhoglaV. KirsanovP. Halets-BuiI. Önal AcetB. GökT. BryszewskaM. OdabaşıM. Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications.Colloids Surf. B Biointerfaces202322211303110.1016/j.colsurfb.2022.11303136435026
    [Google Scholar]
  2. Di̇ki̇ci̇E. Önal AcetB. GökT. AcetÖ. OdabaşiM. Self-assembled short peptide nanostructures: “Dipeptides”.MANAS J. Eng.2023111839110.51354/mjen.1282790
    [Google Scholar]
  3. OkamotoN. WatanabeA. Interorgan communication through peripherally derived peptide hormones in Drosophila.Fly202216115217610.1080/19336934.2022.206183435499154
    [Google Scholar]
  4. LaticN. ErbenR.G. Interaction of vitamin D with peptide hormones with emphasis on parathyroid hormone, FGF23, and the renin-angiotensin-aldosterone system.Nutrients20221423518610.3390/nu1423518636501215
    [Google Scholar]
  5. RanaT. BehlT. SehgalA. SinghS. SharmaN. AbdeenA. IbrahimS.F. ManiV. IqbalM.S. BhatiaS. Abdel DaimM.M. BungauS. Exploring the role of neuropeptides in depression and anxiety.Prog. Neuropsychopharmacol. Biol. Psychiatry202211411047810.1016/j.pnpbp.2021.11047834801611
    [Google Scholar]
  6. IshiohM. NozuT. OkumuraT. Brain neuropeptides, neuroinflammation, and irritable bowel syndrome.Digestion20241051343910.1159/00053327537673052
    [Google Scholar]
  7. WangZ. Regulation of cell cycle progression by growth factor-induced cell signaling.Cells20211012332710.3390/cells1012332734943835
    [Google Scholar]
  8. ZochodneD.W. Growth factors and molecular-driven plasticity in neurological systems.Handb. Clin. Neurol.202319656959810.1016/B978‑0‑323‑98817‑9.00017‑X37620091
    [Google Scholar]
  9. KimJ. LeeS.G. LeeJ. ChoiS. SukJ. LeeJ.H. YangJ.H. YangJ.S. KimJ. Oral supplementation of low-molecular-weight collagen peptides reduces skin wrinkles and improves biophysical properties of skin: A randomized, double-blinded, placebo-controlled study.J. Med. Food202225121146115410.1089/jmf.2022.K.009736516059
    [Google Scholar]
  10. BaylissW.M. StarlingE.H. The mechanism of pancreatic secretion.J. Physiol.190228532535310.1113/jphysiol.1902.sp00092016992627
    [Google Scholar]
  11. BantingF.G. BestC.H. CollipJ.B. MacleodJ.J. NobleE.C. The effect of pancreatic extract (insulin) on normal rabbits.Am. J. Physiol.192262116217610.1152/ajplegacy.1922.62.1.162
    [Google Scholar]
  12. du VigneaudV. ResslerC. TrippettS. The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin.J. Biol. Chem.1953205294995710.1016/S0021‑9258(18)49238‑113129273
    [Google Scholar]
  13. VigneaudV. LawlerH.C. PopenoeE.A. Enzymatic cleavage of glycinamide from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the posterior pituitary.J. Am. Chem. Soc.195375194880488110.1021/ja01115a554
    [Google Scholar]
  14. SumitomoR. MenjuT. ShimazuY. ToyazakiT. ChibaN. MiyamotoH. HirayamaY. NishikawaS. TanakaS. YutakaY. YamadaY. NakajimaD. OhsumiA. HamajiM. SatoA. YoshizawaA. HuangC.L. HagaH. DateH. M2-like tumor-associated macrophages promote epithelial–mesenchymal transition through the transforming growth factor β/Smad/zinc finger e-box binding homeobox pathway with increased metastatic potential and tumor cell proliferation in lung squamous cell carcinoma.Cancer Sci.2023114124521453410.1111/cas.1598737806311
    [Google Scholar]
  15. SedlářA. TrávníčkováM. MatějkaR. PražákŠ. MészárosZ. BojarováP. BačákováL. KřenV. SlámováK. Growth factors vegf-a 165 and fgf-2 as multifunctional biomolecules governing cell adhesion and proliferation.Int. J. Mol. Sci.2021224184310.3390/ijms2204184333673317
    [Google Scholar]
  16. SzczepańskaE. Gietka-CzernelM. FGF21: A novel regulator of glucose and lipid metabolism and whole-body energy balance.Horm. Metab. Res.202254420321110.1055/a‑1778‑415935413740
    [Google Scholar]
  17. García-ArnésJ.A. García-CasaresN. Doping and sports endocrinology: Growth hormone, IGF-1, insulin, and erythropoietin.Rev. Clin. Esp.2023223318118710.1016/j.rceng.2023.01.00536736729
    [Google Scholar]
  18. Levi-MontalciniR. The nerve growth factor 35 years later.Science198723748191154116210.1126/science.33069163306916
    [Google Scholar]
  19. CarpenterG. CohenS. Epidermal growth factor.J. Biol. Chem.1990265147709771210.1016/S0021‑9258(19)38983‑52186024
    [Google Scholar]
  20. CarlssonA. Antipsychotic drugs, neurotransmitters, and schizophrenia.Am. J. Psychiatry1978135216417310.1176/ajp.135.2.16423684
    [Google Scholar]
  21. PatipongT. KageyamaH. Waditee-SirisatthaR. Insights into the phylogeny and transcriptional response of serine proteases in a halotolerant cyanobacterium Halothece sp. PCC7418.Plant Signal. Behav.2021169191355610.1080/15592324.2021.191355634184613
    [Google Scholar]
  22. HuhT. Larouche-LebelÉ. LoughranK.A. OyamaM.A. Effect of angiotensin receptor blockers and angiotensin-converting enzyme 2 on plasma equilibrium angiotensin peptide concentrations in cats with heart disease.J. Vet. Intern. Med.2021351334210.1111/jvim.1594833135833
    [Google Scholar]
  23. SunH. KaartinenM.T. Assessment of expression and specific activities of transglutaminases TG1, TG2, and FXIII-A during osteoclastogenesis.Anal. Biochem.202059111351210.1016/j.ab.2019.11351231786225
    [Google Scholar]
  24. Nangia-MakkerP. RazT. TaitL. HoganV. FridmanR. RazA. Galectin-3 cleavage: A novel surrogate marker for matrix metalloproteinase activity in growing breast cancers.Cancer Res.20076724117601176810.1158/0008‑5472.CAN‑07‑323318089806
    [Google Scholar]
  25. Lasa-BenitoM. MarinO. MeggioF. PinnaL.A. Golgi apparatus mammary gland casein kinase: Monitoring by a specific peptide substrate and definition of specificity determinants.FEBS Lett.19963821-214915210.1016/0014‑5793(96)00136‑68612738
    [Google Scholar]
  26. TikhonovD. KulikovaL. KopylovA.T. RudnevV. StepanovA. MalsagovaK. IzotovA. KulikovD. ZulkarnaevA. EnikeevD. PotoldykovaN. KayshevaA.L. Proteomic and molecular dynamic investigations of PTM-induced structural fluctuations in breast and ovarian cancer.Sci. Rep.20211111931810.1038/s41598‑021‑98201‑734588485
    [Google Scholar]
  27. ChuX. DiC. ChangP. LiL. FengZ. XiaoS. YanX. XuX. LiH. QiR. GongH. ZhaoY. XiaoF. ChangZ. Lactylated Histone H3K18 as a potential biomarker for the diagnosis and predicting the severity of septic shock.Front. Immunol.20221278666610.3389/fimmu.2021.78666635069560
    [Google Scholar]
  28. IgarashiN. HonjoM. AsaokaR. KuranoM. YatomiY. IgarashiK. MiyataK. KaburakiT. AiharaM. Aqueous autotaxin and TGF-βs are promising diagnostic biomarkers for distinguishing open-angle glaucoma subtypes.Sci. Rep.2021111140810.1038/s41598‑021‑81048‑333446826
    [Google Scholar]
  29. HirschK. NolleyS. RalphD.D. ZhengY. AltemeierW.A. RhodesC.J. MorrellN.W. WilkinsM.R. LearyP.J. RaynerS.G. Circulating markers of inflammation and angiogenesis and clinical outcomes across subtypes of pulmonary arterial hypertension.J. Heart Lung Transplant.202342217318210.1016/j.healun.2022.10.02636470771
    [Google Scholar]
  30. DvorakH.F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy.J. Clin. Oncol.200220214368438010.1200/JCO.2002.10.08812409337
    [Google Scholar]
  31. Valenzuela-VallejoL. ChrysafiP. KouvariM. Guatibonza-GarciaV. MylonakisS.C. KatsarouA. VerrastroO. MarkakisG. EslamM. PapatheodoridisG. MingroneG. GeorgeJ. MantzorosC.S. Circulating hormones in biopsy-proven steatotic liver disease and steatohepatitis: A Multicenter Observational Study.Metabolism202314815569410.1016/j.metabol.2023.15569437757973
    [Google Scholar]
  32. Gómez-ChocoM. MenaL. FontM.À. MengualJ.J. Garcia-SanchezS.M. AvellanedaC. MontullC. CastrilloL. BlanchP. LleixaM. Martín-BaraneraM. ArmarioP. NT-proBNP, cerebral small vessel disease and cardiac function in patients with a recent lacunar infarct.J. Hum. Hypertens.2023371626710.1038/s41371‑021‑00648‑835013570
    [Google Scholar]
  33. PaoP.C. SeoJ. LeeA. KritskiyO. PatnaikD. PenneyJ. RajuR.M. GeigenmullerU. SilvaM.C. LucenteD.E. GusellaJ.F. DickersonB.C. LoonA. YuM.X. BulaM. YuM. HaggartyS.J. TsaiL.H. A Cdk5-derived peptide inhibits Cdk5/p25 activity and improves neurodegenerative phenotypes.Proc. Natl. Acad. Sci. USA202312016e221786412010.1073/pnas.221786412037043533
    [Google Scholar]
  34. HanahanD. MonjeM. Cancer hallmarks intersect with neuroscience in the tumor microenvironment.Cancer Cell202341357358010.1016/j.ccell.2023.02.01236917953
    [Google Scholar]
  35. de VisserK.E. JoyceJ.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth.Cancer Cell202341337440310.1016/j.ccell.2023.02.01636917948
    [Google Scholar]
  36. RosiekV. KogutA. Kos-KudłaB. Pro-gastrin-releasing peptide as a biomarker in lung neuroendocrine neoplasm.Cancers20231513328210.3390/cancers1513328237444393
    [Google Scholar]
  37. VasdevN. Multicentric validation of nomograms based on BC-116 and BC-106 urine peptide biomarker panels for bladder cancer diagnostics and monitoring in two prospective cohorts of patients.Br. J. Cancer2023128692910.1038/s41416‑023‑02142‑z36859684
    [Google Scholar]
  38. ShenW. ShiP. DongQ. ZhouX. ChenC. SuiX. TianW. ZhuX. WangX. JinS. WuY. ChenG. QiuL. ZhaiW. GaoY. Discovery of a novel dual-targeting D-peptide to block CD24/Siglec-10 and PD-1/PD-L1 interaction and synergize with radiotherapy for cancer immunotherapy.J. Immunother. Cancer2023116e00706810.1136/jitc‑2023‑00706837344099
    [Google Scholar]
  39. HongoH. KosakaT. TakayamaK.I. BabaY. YasumizuY. UedaK. SuzukiY. InoueS. BeltranH. OyaM. G-protein signaling of oxytocin receptor as a potential target for cabazitaxel-resistant prostate cancer.PNAS Nexus202431002
    [Google Scholar]
  40. ZhouB. WuY. ChengP. WuC. Long noncoding RNAs with peptide-encoding potential identified in esophageal squamous cell carcinoma: KDM4A-AS1 -encoded peptide weakens cancer cell viability and migratory capacity.Mol. Oncol.20231771419143610.1002/1878‑0261.1342436965032
    [Google Scholar]
  41. McDonaghT.A. MetraM. AdamoM. GardnerR.S. BaumbachA. BöhmM. BurriH. ButlerJ. ČelutkienėJ. ChioncelO. ClelandJ.G. Crespo-LeiroM.G. FarmakisD. GilardM. HeymansS. HoesA.W. JaarsmaT. JankowskaE.A. LainscakM. LamC.S. LyonA.R. McMurrayJ.J. MebazaaA. MindhamR. MunerettoC. Francesco PiepoliM. PriceS. RosanoG.M. RuschitzkaF. SkibelundA.K. de BoerR.A. SchulzeP.C. ArbeloE. BartunekJ. BauersachsJ. BorgerM.A. BuccheriS. CerbaiE. DonalE. EdelmannF. FärberG. HeideckerB. IbanezB. JamesS. KøberL. KoskinasK.C. MasipJ. McEvoyJ.W. MentzR. MihaylovaB. MøllerJ.E. MullensW. NeubeckL. NielsenJ.C. PasquetA.A. PonikowskiP. PrescottE. RakishevaA. RoccaB. RosselloX. SadeL.E. SchaubroeckH. TessitoreE. TokmakovaM. van der MeerP. Van GelderI.C. Van HeetveldeM. VrintsC. WilhelmM. WitkowskiA. ZeppenfeldK. ShukaN. ChettibiM. HayrapetyanH. PavoN. IslamliA. PouleurA-C. KusljugicZ. TokmakovaM. MilicicD. ChristodoulidesT. MalekF. KøberL. KoriemM.A. PõderP. LassusJ. RoubilleF. AgladzeV. FrantzS. StavratiA. KosztinA. IngimarsdóttirI.J. CampbellP. HasinT. OlivaF. AidargaliyevaN. BajraktariG. MirrakhimovE. KamzolaG. El NeihoumA.M. ZaliaduonyteD. MooreA. VatamanE. BoskovicA. AlamiM. ManintveldO. KostovskaE.S. BrochK. NesslerJ. FrancoF. PopescuB.A. FoscoliM. MilosavljevicA.S. GoncalvesovaE. FrasZ. Gonzalez-CostelloJ. LindmarkK. PaulM. OudehA. ZakhamaL. CelikA. VoronkovL. ClarkA. AbdullaevT. PrescottE. JamesS. ArbeloE. BaigentC. BorgerM.A. BuccheriS. IbanezB. KøberL. KoskinasK.C. McEvoyJ.W. MihaylovaB. MindhamR. NeubeckL. NielsenJ.C. PasquetA.A. RakishevaA. RoccaB. RosselloX. VaartjesI. VrintsC. WitkowskiA. ZeppenfeldK. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.Eur. Heart J.202344373627363910.1093/eurheartj/ehad19537622666
    [Google Scholar]
  42. TsutsuiH. AlbertN.M. CoatsA.J. AnkerS.D. Bayes-GenisA. ButlerJ. ChioncelO. DefilippiC.R. DraznerM.H. FelkerG.M. FilippatosG. FiuzatM. IdeT. JanuzziJ.L. KinugawaK. KuwaharaK. MatsueY. MentzR.J. MetraM. PandeyA. RosanoG. SaitoY. SakataY. SatoN. SeferovicP.M. TeerlinkJ. YamamotoK. YoshimuraM. Natriuretic peptides: Role in the diagnosis and management of heart failure: a scientific statement from the heart failure association of the european society of cardiology, heart failure society of america and japanese heart failure society.Eur. J. Heart Fail.202325561663110.1002/ejhf.284837098791
    [Google Scholar]
  43. SakaneK. KanzakiY. OkunoT. NakayamaS. HasegawaH. TokuraD. HoraiR. TsudaK. MaedaD. SakataniY. HoshigaM. Left atrial remodeling related to disproportionately low b-type natriuretic peptide in acute heart failure patients with atrial fibrillation.Am. J. Cardiol.202320912813710.1016/j.amjcard.2023.09.07137844875
    [Google Scholar]
  44. MarinescuM. OpreaV.D. NechitaA. TutunaruD. NechitaL.C. RomilaA. The use of brain natriuretic peptide in the evaluation of heart failure in geriatric patients.Diagnostics2023139151210.3390/diagnostics1309151237174904
    [Google Scholar]
  45. GaoC. JiangJ. TanY. ChenS. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets.Signal Transduct. Target. Ther.20238135910.1038/s41392‑023‑01588‑037735487
    [Google Scholar]
  46. LiK. WangZ. lncRNA NEAT1: Key player in neurodegenerative diseases.Ageing Res. Rev.20238610187810.1016/j.arr.2023.10187836738893
    [Google Scholar]
  47. GlennerG.G. WongC.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein.Biochem. Biophys. Res. Commun.1984120388589010.1016/S0006‑291X(84)80190‑46375662
    [Google Scholar]
  48. ZouY. YuS. MaX. MaC. MaoC. MuD. LiL. GaoJ. QiuL. How far is the goal of applying β-amyloid in cerebrospinal fluid for clinical diagnosis of Alzheimer’s disease with standardization of measurements?Clin. Biochem.2023112334210.1016/j.clinbiochem.2022.11.01336473516
    [Google Scholar]
  49. AliT. KleinA.N. VuA. ArifinM.I. HannaouiS. GilchS. Peptide aptamer targeting Aβ–PrP–Fyn axis reduces Alzheimer’s disease pathologies in 5XFAD transgenic mouse model.Cell. Mol. Life Sci.202380613910.1007/s00018‑023‑04785‑w37149826
    [Google Scholar]
  50. YinZ. XuG. QiY. TanD.M. ChenE.H. DingX. JiR.Y. Application of serum peptidomics for Parkinson’s disease in SNCA-A30P mice.Heliyon2023912e2112510.1016/j.heliyon.2023.e2112538125428
    [Google Scholar]
  51. SchauenburgD. ZechF. HeckA.J. von MaltitzP. HarmsM. FührerS. AllevaN. MünchJ. KuanS.L. KirchhoffF. WeilT. Peptide bispecifics inhibiting HIV-1 infection by an orthogonal chemical and supramolecular strategy.Bioconjug. Chem.20233491645165210.1021/acs.bioconjchem.3c0031437665137
    [Google Scholar]
  52. Castro-AmaranteM.F. PereiraS.S. PereiraL.R. SantosL.S. Venceslau-CarvalhoA.A. MartinsE.G. BalanA. Souza FerreiraL.C. The anti-dengue virus peptide dv2 inhibits zika virus both in vitro and in vivo. Viruses202315483910.3390/v1504083937112820
    [Google Scholar]
  53. BelliniC. VergaraE. BencsF. FodorK. BőszeS. KrivićD. BacsaB. SurgutaS.E. TóváriJ. ReljicR. HorvátiK. Design and characterization of a multistage peptide-based vaccine platform to target mycobacterium tuberculosis infection.Bioconjug. Chem.202334101738175310.1021/acs.bioconjchem.3c0027337606258
    [Google Scholar]
  54. SaeedN. AttalahM. SalamonyA. ShehataS. Abdel-RahmanS. MohamedR. Evaluation of serum calcitonin gene related peptide (CGRP) Level in HIV infected patients as an indicator of disease activity.Egypt. J. Immunol.2023302263610.55133/eji.30020337031395
    [Google Scholar]
  55. CerruttiB.M. MoraesM.L. PulcinelliS.H. SantilliC.V. Lignin as immobilization matrix for HIV p17 peptide used in immunosensing.Biosens. Bioelectron.20157142042610.1016/j.bios.2015.04.05425950938
    [Google Scholar]
  56. AquinoV.H. FumagalliM.J. SilvaA. de Moura NegriniB.V. RojasA. GuillenY. BernalC. FigueiredoL.T. Linear epitope mapping in the E and NS1 proteins of dengue and Zika viruses: Prospection of peptides for vaccines and diagnostics.PLoS One20231810e029245110.1371/journal.pone.029245137788262
    [Google Scholar]
  57. MishraN. ThakkarR. NgJ. LipkinW.I. Zika virus peptide elisa (zikv-ns2b-concat elisa) for detection of igg antibodies to zika virus infection.Methods Mol. Biol.2020214211312210.1007/978‑1‑0716‑0581‑3_1032367363
    [Google Scholar]
  58. AntasP. BorchertJ. PonteC. LimaJ. GeorgI. BastosM. TrajmanA. Interleukin-6 and -27 as potential novel biomarkers for human pleural tuberculosis regardless of the immunological status.Microbes Infect.2024261-210523810.1016/j.micinf.2023.10523837805123
    [Google Scholar]
  59. SampathP. RajamanickamA. ThiruvengadamK. NatarajanA.P. HissarS. DhanapalM. ThangaveluB. JayabalL. RameshP.M. RanganathanU.D. BabuS. BethunaickanR. Plasma chemokines CXCL10 and CXCL9 as potential diagnostic markers of drug-sensitive and drug-resistant tuberculosis.Sci. Rep.2023131740410.1038/s41598‑023‑34530‑z37149713
    [Google Scholar]
  60. BothraA. PerryM.L. WeiE. MoayeriM. MaQ. BiamonteM.A. SiirinM. LepplaS.H. S9.6-based hybrid capture immunoassay for pathogen detection.Sci. Rep.20231312256210.1038/s41598‑023‑49881‑w38110611
    [Google Scholar]
  61. LiX. PuX. WangX. WangJ. LiaoX. HuangZ. YinG. A dual-targeting peptide for glioblastoma screened by phage display peptide library biopanning combined with affinity-adaptability analysis.Int. J. Pharm.202364412330610.1016/j.ijpharm.2023.12330637572856
    [Google Scholar]
  62. QasrawiD.O. PetrotchenkoE.V. BorchersC.H. Amino acid analysis for peptide quantitation using reversed-phase liquid chromatography combined with multiple reaction monitoring mass spectrometry.Anal. Bioanal. Chem.2023415225261526710.1007/s00216‑023‑04840‑237468754
    [Google Scholar]
  63. YeF. SmithP.B. WuC. ChiuD.T. Ultrasensitive detection of proteins on Western blots with semiconducting polymer dots.Macromol. Rapid Commun.201334978579010.1002/marc.20120080923637077
    [Google Scholar]
  64. TowbinH. StaehelinT. GordonJ. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proc. Natl. Acad. Sci. USA19797694350435410.1073/pnas.76.9.4350388439
    [Google Scholar]
  65. IdaN. HartmannT. PantelJ. SchrüderJ. ZerfassR. FürstlH. SandbrinkR. MastersC.L. BeyreutherK. Analysis of heterogeneous A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay.J. Biol. Chem.199627137229082291410.1074/jbc.271.37.229088798471
    [Google Scholar]
  66. AyoubiR. FotouhiM. SouthernK. BhajiawalaR. FantiR. PrinosP. McPhersonP.S. LaflammeC. The identification of high-performing antibodies for transmembrane protein 106B (TMEM106B) for use in Western blot, immunoprecipitation, and immunofluorescence.F1000 Res.20231230810.12688/f1000research.131333.137545650
    [Google Scholar]
  67. EngvallE. PerlmannP. Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes.J. Immunol.1972109112913510.4049/jimmunol.109.1.1294113792
    [Google Scholar]
  68. MunawarohH.S. PratiwiR.N. GumilarG.G. AisyahS. RohilahS. NurjanahA. NingrumA. SusantoE. PratiwiA. ArinditaN.P. MarthaL. ChewK.W. ShowP.L. Synthesis, modification and application of fish skin gelatin-based hydrogel as sustainable and versatile bioresource of antidiabetic peptide.Int. J. Biol. Macromol.202323112324810.1016/j.ijbiomac.2023.12324836642356
    [Google Scholar]
  69. LeeD.K. RubakhinS.S. SweedlerJ.V. Chemical decrosslinking-based peptide characterization of formaldehyde-fixed rat pancreas using fluorescence-guided single-cell mass spectrometry.Anal. Chem.202395166732673910.1021/acs.analchem.3c0061237040477
    [Google Scholar]
  70. MansurA.A. RodriguesM.A. CapanemaN.S. CarvalhoS.M. GomesD.A. MansurH.S. Functionalized bioadhesion-enhanced carboxymethyl cellulose/polyvinyl alcohol hybrid hydrogels for chronic wound dressing applications.RSC Advances20231319131561316810.1039/D3RA01519J37124005
    [Google Scholar]
  71. SithigorngulP. StrettonA.O. CowdenC. A versatile dot-ELISA method with femtomole sensitivity for detecting small peptides.J. Immunol. Methods19911411233210.1016/0022‑1759(91)90206‑U1865121
    [Google Scholar]
  72. RahiS. LanjekarV. GhormadeV. Rationally designed peptide conjugated to gold nanoparticles for detection of aflatoxin B1 in point-of-care dot-blot assay.Food Chem.202341313565110.1016/j.foodchem.2023.13565136787667
    [Google Scholar]
  73. YadavV. RafiqiS.I. YadavA. KushwahaA. GodaraR. KatochR. Panadero-FontánR. Dot-ELISA based on recombinant Hypodermin C of Przhevalskiana silenus for field diagnosis of goat warble fly infestation.Parasite Immunol.20234510e1300710.1111/pim.1300737524537
    [Google Scholar]
  74. El-AdawyM.M. AttiaM.M. ElgendyM.Y. AbdelsalamM. FadelA. Development of silver nano-based indirect ELISA and Dot-ELISA methods for serological diagnosis of a bacterial fish pathogen Aeromonas veronii.J. Microbiol. Methods202321110678210.1016/j.mimet.2023.10678237451347
    [Google Scholar]
  75. KasianowiczJ.J. BrandinE. BrantonD. DeamerD.W. Characterization of individual polynucleotide molecules using a membrane channel.Proc. Natl. Acad. Sci. USA19969324137701377310.1073/pnas.93.24.137708943010
    [Google Scholar]
  76. OukhaledA. BacriL. Pastoriza-GallegoM. BettonJ.M. PeltaJ. Sensing proteins through nanopores: Fundamental to applications.ACS Chem. Biol.20127121935194910.1021/cb300449t23145870
    [Google Scholar]
  77. Abraham VerslootR.C. Arias-OrozcoP. TademaM.J. Rudolfus LucasF.L. ZhaoX. MarrinkS.J. KuipersO.P. MagliaG. Seeing the invisibles: Detection of peptide enantiomers, diastereomers, and isobaric ring formation in lanthipeptides using nanopores.J. Am. Chem. Soc.202314533183551836510.1021/jacs.3c0407637579582
    [Google Scholar]
  78. LucasF.L. SarthakK. LentingE.M. ColtanD. van der HeideN.J. VerslootR.C. AksimentievA. MagliaG. The manipulation of the internal hydrophobicity of frac nanopores augments peptide capture and recognition.ACS Nano20211569600961310.1021/acsnano.0c0995834060809
    [Google Scholar]
  79. AndersenC.S. Kvist-HansenA. SiewertsenM. EnevoldC. HansenP.R. Kaur-KnudsenD. ZachariaeC. NielsenC.H. LoftN. SkovL. Blood cell biomarkers of inflammation and cytokine levels as predictors of response to biologics in patients with psoriasis.Int. J. Mol. Sci.2023247611110.3390/ijms2407611137047086
    [Google Scholar]
  80. WuX. ShenY. TanS. JiangX. ChenZ. YuQ. ChenH. ZhuangY. ZengH. FuX. ZhouH. DouZ. ChenG. LiX. Multiscale imaging of peroxynitrite in gliomas with a blood-brain barrier permeable probe reveals its potential as a biomarker and target for glioma treatment.Biosens. Bioelectron.202323611541510.1016/j.bios.2023.11541537245459
    [Google Scholar]
  81. KimD.Y. SharmaS.K. RasoolK. KoduruJ.R. SyedA. GhodakeG. Development of novel peptide-modified silver nanoparticle-based rapid biosensors for detecting aminoglycoside antibiotics.J. Agric. Food Chem.20237134128831289810.1021/acs.jafc.3c0356537603424
    [Google Scholar]
  82. OssolińskiK. RumanT. CopiéV. TripetB.P. KołodziejA. Płaza-AltamerA. OssolińskaA. OssolińskiT. NieczajA. NiziołJ. Targeted and untargeted urinary metabolic profiling of bladder cancer.J. Pharm. Biomed. Anal.202323311547310.1016/j.jpba.2023.11547337229797
    [Google Scholar]
  83. EreminaO.E. YarenkovN.R. BikbaevaG.I. KapitanovaO.O. SamodelovaM.V. ShekhovtsovaT.N. KolesnikovI.E. SyuyA.V. ArseninA.V. VolkovV.S. TselikovG.I. NovikovS.M. ManshinaA.A. VeselovaI.A. Silver nanoparticle-based SERS sensors for sensitive detection of amyloid-β aggregates in biological fluids.Talanta2024266112497010.1016/j.talanta.2023.12497037536108
    [Google Scholar]
  84. HanogluS.B. ManE. HarmanciD. TozanR.S. SanliS. KelesN.A. AydenA. TunaB.G. DuzgunO. OzkanO.F. DoganS. GhorbanizamaniF. MoulahoumH. Guler CelikE. EvranS. TimurS. Magnetic nanoparticle-based electrochemical sensing platform using ferrocene-labelled peptide nucleic acid for the early diagnosis of colorectal cancer.Biosensors202212973610.3390/bios1209073636140121
    [Google Scholar]
  85. NandiD. DebnathM. ForsterJ. PandeyA. BharadwajH. PatelR. KulkarniA. Nanoparticle-mediated co-delivery of inflammasome inhibitors provides protection against sepsis.Nanoscale20241694678469010.1039/D3NR05570A38317511
    [Google Scholar]
  86. XuR. WangQ. ZhuJ. BeiY. ChuY. SunZ. DuS. ZhouS. DingN. MengF. LiuB. Membrane fusogenic nanoparticle-based HLA-peptide-addressing universal T cell receptor-engineered T (HAUL TCR-T) cell therapy in solid tumor.Bioeng. Transl. Med.202386e1058510.1002/btm2.1058538023696
    [Google Scholar]
  87. OlivaresJ.A. NguyenN.T. YonkerC.R. SmithR.D. On-line mass spectrometric detection for capillary zone electrophoresis.Anal. Chem.19875981230123210.1021/ac00135a034
    [Google Scholar]
  88. SmithR.D. OlivaresJ.A. NguyenN.T. UdsethH.R. Capillary zone electrophoresis-mass spectrometry using an electrospray ionization interface, analytical chemistry.Anal. Chem.19886054364
    [Google Scholar]
  89. van VeelenP.A. TjadenU.R. van der GreefJ. IngendohA. HillenkampF. Off-line coupling of capillary electrophoresis with matrix-assisted laser desorption mass spectrometry.J. Chromatogr.1993647236737410.1016/0021‑9673(93)83417‑Q
    [Google Scholar]
  90. FrantziM. GomezG.E. BlancaP.A. ValeroR.J. LatosinskaA. CuligZ. MerseburgerA.S. LuqueR.M. RequenaT.M.J. MischakH. CarrascoV.J. CE–MS-based urinary biomarkers to distinguish non-significant from significant prostate cancer.Br. J. Cancer2019120121120112810.1038/s41416‑019‑0472‑z31092909
    [Google Scholar]
  91. KrochmalM. van KesselK.E. ZwarthoffE.C. BelczackaI. PejchinovskiM. VlahouA. MischakH. FrantziM. Urinary peptide panel for prognostic assessment of bladder cancer relapse.Sci. Rep.201991763510.1038/s41598‑019‑44129‑y31114012
    [Google Scholar]
  92. VoigtländerT. MetzgerJ. HusiH. KirsteinM.M. PejchinovskiM. LatosinskaA. FrantziM. MullenW. BookT. MischakH. MannsM.P. Bile and urine peptide marker profiles: Access keys to molecular pathways and biological processes in cholangiocarcinoma.J. Biomed. Sci.20202711310.1186/s12929‑019‑0599‑531900160
    [Google Scholar]
  93. KarasM. BachmannD. BahrU. HillenkampF. Matrix-assisted ultraviolet laser desorption of non-volatile compounds.Int. J. Mass Spectrom. Ion Process.198778536810.1016/0168‑1176(87)87041‑6
    [Google Scholar]
  94. TanakaK. WakiH. IdoY. AkitaS. YoshidaY. YoshidaT. MatsuoT. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry.Rapid Commun. Mass Spectrom.19882815115310.1002/rcm.1290020802
    [Google Scholar]
  95. WangW. ZhangX. TangE. LiA. ChenL. WangJ. MaJ. ZhangX. SunB. Thymosin β4, a potential marker of malignancy and prognosis in hepatocellular carcinoma.Scand. J. Gastroenterol.202358438039110.1080/00365521.2022.213601236269095
    [Google Scholar]
  96. DingD. ChenM. XiaoX. CaoP. LiS. Novel serum peptide model revealed by MALDI-TOF-MS and its diagnostic value in early bladder cancer.Int. J. Biol. Markers2020353596610.1177/172460082093547332701013
    [Google Scholar]
  97. RungkamoltipP. RoytrakulS. NavakanitworakulR. MALDI-TOF ms analysis of serum peptidome patterns in cervical cancer.Biomedicines2023118232710.3390/biomedicines1108232737626823
    [Google Scholar]
  98. ManfrediE. RoccaM.F. ZintgraffJ. IrazuL. MiliwebskyE. CarbonariC. DezaN. PrietoM. ChinenI. Rapid and accurate detection of Shiga toxin-producing Escherichia coli (STEC) serotype O157 : H7 by mass spectrometry directly from the isolate, using 10 potential biomarker peaks and machine learning predictive models.J. Med. Microbiol.202372500167510.1099/jmm.0.00167537130048
    [Google Scholar]
  99. YamashitaM. FennJ.B. Electrospray ion source. Another variation on the free-jet theme.J. Phys. Chem.198488204451445910.1021/j150664a002
    [Google Scholar]
  100. MausA. FaticaE.M. TaylorR. LarsonB.J. Algeciras-SchimnichA. SinghR.J. GrebeS.K. Identification, measurement, and assessment of the clinical utility of human pancreatic polypeptide by liquid chromatography–tandem mass spectrometry.J. Proteome Res.20232241322133010.1021/acs.jproteome.2c0082936880754
    [Google Scholar]
  101. PodvinS. JonesJ. KangA. GoodmanR. ReedP. LietzC.B. ThenJ. LeeK.C. EylerL.T. JesteD.V. GageF.H. HookV. Human iN neuronal model of schizophrenia displays dysregulation of chromogranin B and related neuropeptide transmitter signatures.Mol. Psychiatry20242951440144910.1038/s41380‑024‑02422‑x38302561
    [Google Scholar]
  102. DemeuseJ. HuyghebaertL. DetermeW. SchoumacherM. GrifnéeE. MassonnetP. DubrowskiT. RechchadM. SeguraJ.F. PeetersS. CavalierE. Le GoffC. Development and validation of an LC-MS/MS method for the simultaneous quantitation of angiotensin (1–7), (1–8), (1–9) and (1–10) in human plasma.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2024123212394310.1016/j.jchromb.2023.12394338039597
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037315736240907131856
Loading
/content/journals/cpps/10.2174/0113892037315736240907131856
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Biomarkers; diagnostic tool; diseases; immunoblot; mass spectrometry; peptide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test