Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

One of the most well-known instances of an interdisciplinary subject is tissue engineering, where experts from many backgrounds collaborate to address important health issues and improve people's quality of life. Many researchers are interested in using chitosan and its derivatives as an alternative to fabricating scaffold engineering and skin grafts in tissue because of its natural abundance, affordability, biodegradability, biocompatibility, and wound healing properties. Nanomaterials based on peptides can provide cells with the essential biological cues required to promote cellular adhesion and are easily fabricated. Due to such worthy properties of chitosan and peptide, they find their application in tissue engineering and regeneration processes. The implementation of hybrids of chitosan and peptide is increasing in the field of tissue engineering and scaffolding for improved cellular adherence and bioactivity. This review covers the individual applications of peptide and chitosan in tissue engineering and further discusses the role of their conjugates in the same. Here, the recent findings are also discussed, along with studies involving the use of these hybrids in tissue engineering applications.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037323136240910052119
2024-09-27
2025-05-16
Loading full text...

Full text loading...

References

  1. BianchiE. ViganiB. ViserasC. FerrariF. RossiS. SandriG. Inorganic nanomaterials in tissue engineering.Pharmaceutics2022146112710.3390/pharmaceutics1406112735745700
    [Google Scholar]
  2. ShafieeA. AtalaA. Tissue engineering: Toward a new era of medicine.Annu. Rev. Med.2017681294010.1146/annurev‑med‑102715‑09233127732788
    [Google Scholar]
  3. BakhshandehB. ZarrintajP. OftadehM.O. KeramatiF. FouladihaH. Sohrabi-jahromiS. ZiraksazZ. Tissue engineering; strategies, tissues, and biomaterials.Biotechnol. Genet. Eng. Rev.201733214417210.1080/02648725.2018.143046429385962
    [Google Scholar]
  4. KlimekK. GinalskaG. Proteins and peptides as important modifiers of the polymer scaffolds for tissue engineering applications—a review.Polymers202012484410.3390/polym1204084432268607
    [Google Scholar]
  5. RenX. FengY. GuoJ. WangH. LiQ. YangJ. HaoX. LvJ. MaN. LiW. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.Chem. Soc. Rev.201544155680574210.1039/C4CS00483C26023741
    [Google Scholar]
  6. Lizardi-MendozaJ MonalWM ValenciaFM Chemical characteristics and functional properties of chitosan.Chitosan in the Preservation of Agricultural CommoditiesAcademic Press201633110.1016/B978‑0‑12‑802735‑6.00001‑X
    [Google Scholar]
  7. LiQ DunnET GrandmaisonEW GoosenMF Applications and properties of chitosan.Applications of Chitin and ChitosanCRC Press202032910.1201/9781003072812‑2
    [Google Scholar]
  8. AranazI. AlcántaraA.R. CiveraM.C. AriasC. ElorzaB. Heras CaballeroA. AcostaN. Chitosan: An overview of its properties and applications.Polymers20211319325610.3390/polym1319325634641071
    [Google Scholar]
  9. IslamS. BhuiyanM.A.R. IslamM.N. Chitin and chitosan: Structure, properties and applications in biomedical engineering.J. Polym. Environ.201725385486610.1007/s10924‑016‑0865‑5
    [Google Scholar]
  10. Bernkop-SchnürchA. DünnhauptS. Chitosan-based drug delivery systems.Eur. J. Pharm. Biopharm.201281346346910.1016/j.ejpb.2012.04.00722561955
    [Google Scholar]
  11. DimassiS. TabaryN. ChaiF. BlanchemainN. MartelB. Sulfonated and sulfated chitosan derivatives for biomedical applications: A review.Carbohydr. Polym.201820238239610.1016/j.carbpol.2018.09.01130287013
    [Google Scholar]
  12. Zhao-ShengC. Yue-MingS. Chun-ShengY. Xue-MeiZ. Preparation, characterization, and antibacterial activities of para-biguanidinyl benzoyl chitosan hydrochloride.J. Appl. Polym. Sci.201212521146115110.1002/app.33910
    [Google Scholar]
  13. CaiZ. SunY. ZhuX. ZhaoL. YueG. Preparation and characterization of ortho-biguanidinyl benzoyl chitosan hydrochloride and its antibacterial activities.Polym. Bull.20137031085109610.1007/s00289‑012‑0883‑y
    [Google Scholar]
  14. MohamedN.A. El-GhanyN.A.A. FahmyM.M. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.Int. J. Biol. Macromol.20168258959810.1016/j.ijbiomac.2015.09.02326388182
    [Google Scholar]
  15. ShariatiniaZ. Carboxymethyl chitosan: Properties and biomedical applications.Int. J. Biol. Macromol.2018120Pt B1406141910.1016/j.ijbiomac.2018.09.13130267813
    [Google Scholar]
  16. BenediktsdóttirB.E. GudjónssonT. BaldurssonÓ. MássonM. N-alkylation of highly quaternized chitosan derivatives affects the paracellular permeation enhancement in bronchial epithelia in vitro.Eur. J. Pharm. Biopharm.2014861556310.1016/j.ejpb.2013.04.00223608635
    [Google Scholar]
  17. MaG. YangD. ZhouY. XiaoM. KennedyJ.F. NieJ. Preparation and characterization of water-soluble N-alkylated chitosan.Carbohydr. Polym.200874112112610.1016/j.carbpol.2008.01.028
    [Google Scholar]
  18. DattaP. ThakurG. ChatterjeeJ. DharaS. Biofunctional phosphorylated chitosan hydrogels prepared above pH 6 and effect of crosslinkers on gel properties towards biomedical applications.Soft Mater.2014121273510.1080/1539445X.2012.735315
    [Google Scholar]
  19. MalhotraK. ShankarS. ChauhanN. RaiR. SinghY. Design, characterization, and evaluation of antibacterial gels, Boc-D-Phe-γ4-L-Phe-PEA/chitosan and Boc-L-Phe-γ4-L-Phe-PEA/chitosan, for biomaterial-related infections.Mater. Sci. Eng. C202011011064810.1016/j.msec.2020.11064832204079
    [Google Scholar]
  20. SarabandiK. JafariS.M. Effect of chitosan coating on the properties of nanoliposomes loaded with flaxseed-peptide fractions: Stability during spray-drying.Food Chem.202031012595110.1016/j.foodchem.2019.12595131835229
    [Google Scholar]
  21. CaoS. HaoJ. WangY. ZhouX. WangF. Chitosan-coated nanoliposomes for the enhanced stability of walnut angiotensin-converting enzyme (ACE) inhibitory peptide.J. Food Sci.20238852130214010.1111/1750‑3841.1656237039471
    [Google Scholar]
  22. SakloetsakunD. IqbalJ. MillottiG. VetterA. Bernkop-SchnürchA. Thiolated chitosans: Influence of various sulfhydryl ligands on permeation-enhancing and P-gp inhibitory properties.Drug Dev. Ind. Pharm.201137664865510.3109/03639045.2010.53448421561400
    [Google Scholar]
  23. LuM. YuS. WangZ. XinQ. SunT. ChenX. LiuZ. ChenX. WengJ. LiJ. Zwitterionic choline phosphate functionalized chitosan with antibacterial property and superior water solubility.Eur. Polym. J.202013410982110.1016/j.eurpolymj.2020.109821
    [Google Scholar]
  24. CaoZ. WuM. ZhaoY. DaiL. ZengR. TuM. ZhaoJ. Bioinspired double-positively charged phosphodicholine-chitosan and zwitterionic phosphorylcholine-chitosan conjugates: The associated water structure, biocompatibility and antibacterial action.React. Funct. Polym.20161031810.1016/j.reactfunctpolym.2016.03.018
    [Google Scholar]
  25. LiuX. HuangH. LiuG. ZhouW. ChenY. JinQ. JiJ. Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions.Nanoscale2013593982399110.1039/c3nr00284e23546384
    [Google Scholar]
  26. QinY. LiP. GuoZ. Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications.Carbohydr. Polym.202023611600210.1016/j.carbpol.2020.11600232172836
    [Google Scholar]
  27. YuanY. WangZ. SuS. LinC. MiY. TanW. GuoZ. Self-assembled low molecular weight chitosan-based cationic micelle for improved water solubility, stability and sustained release of α-tocopherol.Food Chem.202342913688610.1016/j.foodchem.2023.13688637499506
    [Google Scholar]
  28. CasettariL. VllasaliuD. LamJ.K.W. SolimanM. IllumL. Biomedical applications of amino acid-modified chitosans: A review.Biomaterials201233307565758310.1016/j.biomaterials.2012.06.10422818987
    [Google Scholar]
  29. SchipperN.G.M. OlssonS. HoogstraateJ.A. deBoerA.G. VårumK.M. ArturssonP. Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement.Pharm. Res.199714792392910.1023/A:10121601027409244151
    [Google Scholar]
  30. LayekB. LippL. SinghJ. Cell penetrating peptide conjugated chitosan for enhanced delivery of nucleic acid.Int. J. Mol. Sci.20151612289122893010.3390/ijms16122614226690119
    [Google Scholar]
  31. HanF. DongY. SuZ. YinR. SongA. LiS. Preparation, characteristics and assessment of a novel gelatin–chitosan sponge scaffold as skin tissue engineering material.Int. J. Pharm.20144761-212413310.1016/j.ijpharm.2014.09.03625275938
    [Google Scholar]
  32. DengA. YangY. DuS. YangX. PangS. WangX. YangS. Preparation of a recombinant collagen-peptide (RHC)-conjugated chitosan thermosensitive hydrogel for wound healing.Mater. Sci. Eng. C202111911155510.1016/j.msec.2020.11155533321619
    [Google Scholar]
  33. HolmesT.C. Novel peptide-based biomaterial scaffolds for tissue engineering.Trends Biotechnol.2002201162110.1016/S0167‑7799(01)01840‑611742673
    [Google Scholar]
  34. SharmaP. PalV.K. RoyS. An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering.Biomater. Sci.20219113911393810.1039/D0BM02049D33973582
    [Google Scholar]
  35. MalcorJ.D. Mallein-GerinF. Biomaterial functionalization with triple-helical peptides for tissue engineering.Acta Biomater.202214812110.1016/j.actbio.2022.06.00335675889
    [Google Scholar]
  36. ZhuM. ZhongW. CaoW. ZhangQ. WuG. Chondroinductive/chondroconductive peptides and their-functionalized biomaterials for cartilage tissue engineering.Bioact. Mater.2022922123810.1016/j.bioactmat.2021.07.00434820567
    [Google Scholar]
  37. PandaJ.J. ChauhanV.S. Short peptide based self-assembled nanostructures: Implications in drug delivery and tissue engineering.Polym. Chem.20145154431444910.1039/C4PY00173G
    [Google Scholar]
  38. FirthA AggeliA BurkeJL YangX KirkhamJ Biomimetic self-assembling peptides as injectable scaffolds for hard tissue engineering.Nanomedicine20061218919910.2217/17435889.1.2.189
    [Google Scholar]
  39. GrayV.P. AmelungC.D. DutiI.J. LaudermilchE.G. LetteriR.A. LampeK.J. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering.Acta Biomater.2022140437510.1016/j.actbio.2021.10.03034710626
    [Google Scholar]
  40. YuZ. CaiZ. ChenQ. LiuM. YeL. RenJ. LiaoW. LiuS. Engineering β-sheet peptide assemblies for biomedical applications.Biomater. Sci.20164336537410.1039/C5BM00472A26700207
    [Google Scholar]
  41. KyleS. AggeliA. InghamE. McPhersonM.J. Recombinant self-assembling peptides as biomaterials for tissue engineering.Biomaterials201031369395940510.1016/j.biomaterials.2010.08.05120932572
    [Google Scholar]
  42. HaoZ. LiH. WangY. HuY. ChenT. ZhangS. GuoX. CaiL. LiJ. Supramolecular peptide nanofiber hydrogels for bone tissue engineering: from multihierarchical fabrications to comprehensive applications.Adv. Sci.2022911210382010.1002/advs.20210382035128831
    [Google Scholar]
  43. ReynoldsN.P. Amyloid-like peptide nanofibrils as scaffolds for tissue engineering: Progress and challenges (Review).Biointerphases201914404080110.1116/1.509833231284721
    [Google Scholar]
  44. RyanD.M. NilssonB.L. Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering.Polym. Chem.201231183310.1039/C1PY00335F
    [Google Scholar]
  45. WanS. BorlandS. RichardsonS.M. MerryC.L.R. SaianiA. GoughJ.E. Self-assembling peptide hydrogel for intervertebral disc tissue engineering.Acta Biomater.201646294010.1016/j.actbio.2016.09.03327677593
    [Google Scholar]
  46. ZhouY. LiuS. ZhaoM. WangC. LiL. YuanY. LiL. LiaoG. BresetteW. ZhangJ. ChenY. ChengJ. LuY. LiuJ. Injectable extracellular vesicle-released self-assembling peptide nanofiber hydrogel as an enhanced cell-free therapy for tissue regeneration.J. Control. Release20193169310410.1016/j.jconrel.2019.11.00331704110
    [Google Scholar]
  47. PhippsM.C. MonteF. MehtaM. KimH.K.W. Intraosseous delivery of bone morphogenic protein-2 using a self-assembling peptide hydrogel.Biomacromolecules20161772329233610.1021/acs.biomac.6b0010127285121
    [Google Scholar]
  48. ZhangK. ChooiW.H. LiuS. ChinJ.S. MurrayA. NizeticD. ChengD. ChewS.Y. Localized delivery of CRISPR/dCas9 via layer-by-layer self-assembling peptide coating on nanofibers for neural tissue engineering.Biomaterials202025612022510.1016/j.biomaterials.2020.12022532738650
    [Google Scholar]
  49. OkurZ. SenturkO.I. YilmazC. GulserenG. MammadovB. GulerM.O. TekinayA.B. Promotion of neurite outgrowth by rationally designed NGF-β binding peptide nanofibers.Biomater. Sci.2018671777179010.1039/C8BM00311D29770392
    [Google Scholar]
  50. LvX. SunC. HuB. ChenS. WangZ. WuQ. FuK. XiaZ. ShaoZ. WangB. Simultaneous recruitment of stem cells and chondrocytes induced by a functionalized self-assembling peptide hydrogel improves endogenous cartilage regeneration.Front. Cell Dev. Biol.2020886410.3389/fcell.2020.0086433015049
    [Google Scholar]
  51. KimS.H. HurW. KimJ.E. MinH.J. KimS. MinH.S. KimB.K. KimS.H. ChoiT.H. JungY. Self-assembling peptide nanofibers coupled with neuropeptide substance P for bone tissue engineering.Tissue Eng. Part A2015217-81237124610.1089/ten.tea.2014.047225411965
    [Google Scholar]
  52. ChoeS. BondC.W. HarringtonD.A. StuppS.I. McVaryK.T. PodlasekC.A. Peptide amphiphile nanofiber hydrogel delivery of sonic hedgehog protein to the cavernous nerve to promote regeneration and prevent erectile dysfunction.Nanomedicine20171319510110.1016/j.nano.2016.08.03227609775
    [Google Scholar]
  53. ZhaoW. LiY. ZhouA. ChenX. LiK. ChenS. QiaoB. JiangD. Controlled release of basic fibroblast growth factor from a peptide biomaterial for bone regeneration.R. Soc. Open Sci.20207419183010.1098/rsos.19183032431879
    [Google Scholar]
  54. LeeJ.Y. ChooJ.E. ChoiY.S. SuhJ.S. LeeS.J. ChungC.P. ParkY.J. Osteoblastic differentiation of human bone marrow stromal cells in self-assembled BMP-2 receptor-binding peptide-amphiphiles.Biomaterials200930213532354110.1016/j.biomaterials.2009.03.01819345406
    [Google Scholar]
  55. MuX. ShiL. PanS. HeL. NiuY. WangX. A customized self-assembling peptide hydrogel-wrapped stem cell factor targeting pulp regeneration rich in vascular-like structures.ACS Omega2020527165681657410.1021/acsomega.0c0126632685822
    [Google Scholar]
  56. BelloA.B. KimD. KimD. ParkH. LeeS.H. Engineering and functionalization of gelatin biomaterials: From cell culture to medical applications.Tissue Eng. Part B Rev.202026216418010.1089/ten.teb.2019.025631910095
    [Google Scholar]
  57. GorgievaS KokolV. Collagen-vs. gelatine-based biomaterials and their biocompatibility: review and perspectives.Biomaterials Appl. Nanomed.20111752
    [Google Scholar]
  58. HohenesterE. Structural biology of laminins.Essays Biochem.201963328529510.1042/EBC2018007531092689
    [Google Scholar]
  59. HalfterW. OertleP. MonnierC.A. CamenzindL. Reyes-LuaM. HuH. CandielloJ. LabilloyA. BalasubramaniM. HenrichP.B. PlodinecM. New concepts in basement membrane biology.FEBS J.2015282234466447910.1111/febs.1349526299746
    [Google Scholar]
  60. Sahab NegahS. KhooeiA. SaminiF. GorjiA. Laminin-derived Ile-Lys-Val-ala-Val: A promising bioactive peptide in neural tissue engineering in traumatic brain injury.Cell Tissue Res.2018371222323610.1007/s00441‑017‑2717‑629082446
    [Google Scholar]
  61. HosoyamaK. LazurkoC. MuñozM. McTiernanC.D. AlarconE.I. Peptide-based functional biomaterials for soft-tissue repair.Front. Bioeng. Biotechnol.2019720510.3389/fbioe.2019.0020531508416
    [Google Scholar]
  62. WangC. LiuY. FanY. LiX. The use of bioactive peptides to modify materials for bone tissue repair.Regen. Biomater.20174319120610.1093/rb/rbx01128596916
    [Google Scholar]
  63. PountosI. PanteliM. LampropoulosA. JonesE. CaloriG.M. GiannoudisP.V. The role of peptides in bone healing and regeneration: A systematic review.BMC Med.201614110310.1186/s12916‑016‑0646‑y27400961
    [Google Scholar]
  64. LenselinkE.A. Role of fibronectin in normal wound healing.Int. Wound J.201512331331610.1111/iwj.1210923742140
    [Google Scholar]
  65. ParisiL. ToffoliA. GhezziB. MozzoniB. LumettiS. MacalusoG.M. A glance on the role of fibronectin in controlling cell response at biomaterial interface.Jpn. Dent. Sci. Rev.2020561505510.1016/j.jdsr.2019.11.00231890058
    [Google Scholar]
  66. ZollingerA.J. SmithM.L. Fibronectin, the extracellular glue.Matrix Biol.201760-61273710.1016/j.matbio.2016.07.01127496349
    [Google Scholar]
  67. PradhanS. Farach-CarsonM.C. Mining the extracellular matrix for tissue engineering applications.Regen. Med.20105696197010.2217/rme.10.6121082894
    [Google Scholar]
  68. GomesS. LeonorI.B. ManoJ.F. ReisR.L. KaplanD.L. Natural and genetically engineered proteins for tissue engineering.Prog. Polym. Sci.201237111710.1016/j.progpolymsci.2011.07.00322058578
    [Google Scholar]
  69. ChakrabortyP. OvedH. BychenkoD. YaoY. TangY. Zilberzwige-TalS. WeiG. DvirT. GazitE. Nanoengineered peptide-based antimicrobial conductive supramolecular biomaterial for cardiac tissue engineering.Adv. Mater.20213326200871510.1002/adma.20200871534033154
    [Google Scholar]
  70. ParkS.H. ParkJ.Y. JiY.B. JuH.J. MinB.H. KimM.S. An injectable click-crosslinked hyaluronic acid hydrogel modified with a BMP-2 mimetic peptide as a bone tissue engineering scaffold.Acta Biomater.202011710812010.1016/j.actbio.2020.09.01332927087
    [Google Scholar]
  71. YeW. YangZ. CaoF. LiH. ZhaoT. ZhangH. ZhangZ. YangS. ZhuJ. LiuZ. ZhengJ. LiuH. MaG. GuoQ. WangX. Articular cartilage reconstruction with TGF-β1-simulating self-assembling peptide hydrogel-based composite scaffold.Acta Biomater.20221469410610.1016/j.actbio.2022.05.01235552000
    [Google Scholar]
  72. IslamM.M. ShahruzzamanM. BiswasS. Nurus SakibM. RashidT.U. Chitosan based bioactive materials in tissue engineering applications-A review.Bioact. Mater.20205116418310.1016/j.bioactmat.2020.01.01232083230
    [Google Scholar]
  73. Pita-LópezM.L. Fletes-VargasG. Espinosa-AndrewsH. Rodríguez-RodríguezR. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review.Eur. Polym. J.202114511017610.1016/j.eurpolymj.2020.110176
    [Google Scholar]
  74. XuJ. FangH. ZhengS. LiL. JiaoZ. WangH. NieY. LiuT. SongK. A biological functional hybrid scaffold based on decellularized extracellular matrix/gelatin/chitosan with high biocompatibility and antibacterial activity for skin tissue engineering.Int. J. Biol. Macromol.202118784084910.1016/j.ijbiomac.2021.07.16234339783
    [Google Scholar]
  75. BanoI. ArshadM. YasinT. GhauriM.A. YounusM. Chitosan: A potential biopolymer for wound management.Int. J. Biol. Macromol.201710238038310.1016/j.ijbiomac.2017.04.04728412341
    [Google Scholar]
  76. RibeiroM.P. EspigaA. SilvaD. BaptistaP. HenriquesJ. FerreiraC. SilvaJ.C. BorgesJ.P. PiresE. ChavesP. CorreiaI.J. Development of a new chitosan hydrogel for wound dressing.Wound Repair Regen.200917681782410.1111/j.1524‑475X.2009.00538.x19903303
    [Google Scholar]
  77. JinR. Moreira TeixeiraL.S. DijkstraP.J. KarperienM. van BlitterswijkC.A. ZhongZ.Y. FeijenJ. Injectable chitosan-based hydrogels for cartilage tissue engineering.Biomaterials200930132544255110.1016/j.biomaterials.2009.01.02019176242
    [Google Scholar]
  78. HoemannC.D. SunJ. LégaréA. McKeeM.D. BuschmannM.D. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle.Osteoarthritis Cartilage200513431832910.1016/j.joca.2004.12.00115780645
    [Google Scholar]
  79. Pezeshki-ModaressM. ZandiM. RajabiS. Tailoring the gelatin/chitosan electrospun scaffold for application in skin tissue engineering: An in vitro study.Prog. Biomater.20187320721810.1007/s40204‑018‑0094‑130141130
    [Google Scholar]
  80. JayashS.N. HashimN.M. MisranM. BaharuddinN.A. Formulation and in vitro and in vivo evaluation of a new osteoprotegerin–chitosan gel for bone tissue regeneration.J. Biomed. Mater. Res. A2017105239840710.1002/jbm.a.3591927684563
    [Google Scholar]
  81. YinY. YeF. CuiJ. ZhangF. LiX. YaoK. Preparation and characterization of macroporous chitosan–gelatin/β-tricalcium phosphate composite scaffolds for bone tissue engineering.J. Biomed. Mater. Res. A200367A384485510.1002/jbm.a.1015314613233
    [Google Scholar]
  82. NazeerM.A. YilgörE. YilgörI. Intercalated chitosan/hydroxyapatite nanocomposites: Promising materials for bone tissue engineering applications.Carbohydr. Polym.2017175384610.1016/j.carbpol.2017.07.05428917880
    [Google Scholar]
  83. MirandaD.G. MalmongeS.M. CamposD.M. AttikN.G. GrosgogeatB. GritschK. A chitosan-hyaluronic acid hydrogel scaffold for periodontal tissue engineering.J. Biomed. Mater. Res. B Appl. Biomater.201610481691170210.1002/jbm.b.3351626344054
    [Google Scholar]
  84. ShenR XuW XueY ChenL YeH ZhongE YeZ GaoJ YanY. The use of chitosan/PLA nano-fibers by emulsion electrospinning for periodontal tissue engineering.Artif. Cells Nanomed. Biotechnol.201846sup2419430
    [Google Scholar]
  85. DoenchI. Torres-RamosM. MontembaultA. Nunes de OliveiraP. HalimiC. ViguierE. HeuxL. SiadousR. ThiréR. Osorio-MadrazoA. Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering.Polymers20181011120210.3390/polym1011120230961127
    [Google Scholar]
  86. YangL. CongY. ZhangJ. GuZ. ShenL. GaoH. ZhengX. WangM. HeJ. Efficient fabrication of uniform, injectable, and shape-memory chitosan microsponges as cell carriers for tissue engineering.ACS Appl. Polym. Mater.2022431743175110.1021/acsapm.1c01587
    [Google Scholar]
  87. BrunP. ZamunerA. BattocchioC. CassariL. TodescoM. GrazianiV. IucciG. MarsottoM. TortoraL. SecchiV. DettinM. Bio-functionalized chitosan for bone tissue engineering.Int. J. Mol. Sci.20212211591610.3390/ijms2211591634072888
    [Google Scholar]
  88. BozorgiA. MozafariM. KhazaeiM. SoleimaniM. JamalpoorZ. Fabrication, characterization, and optimization of a novel copper-incorporated chitosan/gelatin-based scaffold for bone tissue engineering applications.Bioimpacts202212323324635677664
    [Google Scholar]
  89. BhushanS. SinghS. MaitiT.K. DasA. BaruiA. ChaudhariL.R. JoshiM.G. DuttD. Cerium oxide nanoparticles disseminated chitosan gelatin scaffold for bone tissue engineering applications.Int. J. Biol. Macromol.202323612381310.1016/j.ijbiomac.2023.12381336858088
    [Google Scholar]
  90. BrunP. ZamunerA. CassariL. D’AuriaG. FalcignoL. FranchiS. ContiniG. MarsottoM. BattocchioC. IucciG. DettinM. Chitosan covalently functionalized with peptides mapped on vitronectin and BMP-2 for bone tissue engineering.Nanomaterials20211111278410.3390/nano1111278434835549
    [Google Scholar]
  91. LimS.S. ChiangC.L. RosliN. ChewK.W. Functionalization of chitosan-tio2 nanotubes scaffolds with fibronectin for bone regeneration.J. Biomim. Biomater. Biomed. Eng.202361515710.4028/p‑k9wk3T
    [Google Scholar]
  92. SinghA.K. PramanikK. Fabrication and investigation of physicochemical and biological properties of 3D printed sodium alginate-chitosan blend polyelectrolyte complex scaffold for bone tissue engineering application.J. Appl. Polym. Sci.202314012e5364210.1002/app.53642
    [Google Scholar]
  93. ShenX. QuF. PeiY. LeiS. XiaS. LiangJ. LiS. SunX. LiuL. Repairing sciatic nerve injury with self-assembling peptide nanofiber scaffold-containing chitosan conduit.Front. Neurol.20221386771110.3389/fneur.2022.86771136313506
    [Google Scholar]
  94. WangY. LiY. HuangZ. YangB. MuN. YangZ. DengM. LiaoX. YinG. NieY. ChenT. MaH. Gene delivery of chitosan-graft-polyethyleneimine vectors loaded on scaffolds for nerve regeneration.Carbohydr. Polym.202229011949910.1016/j.carbpol.2022.11949935550777
    [Google Scholar]
  95. SiJ. LiT. YangX. LuX. Regulating Schwann cells and endothelial cells by YIGSR functionalized porous chitosan scaffolds for nerve regeneration.Mater. Today Commun.20243810803110.1016/j.mtcomm.2024.108031
    [Google Scholar]
  96. ChenJ. HuangD. WangL. HouJ. ZhangH. LiY. ZhongS. WangY. WuY. HuangW. 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation.J. Colloid Interface Sci.202057416217310.1016/j.jcis.2020.04.04032311538
    [Google Scholar]
  97. LiuP. LiM. YuH. FangH. YinJ. ZhuD. YangQ. KeQ. HuangY. GuoY. GaoY. ZhangC. Biphasic CK2.1-coated β-glycerophosphate chitosan/LL37-modified layered double hydroxide chitosan composite scaffolds enhance coordinated hyaline cartilage and subchondral bone regeneration.Chem. Eng. J.202141812953110.1016/j.cej.2021.129531
    [Google Scholar]
  98. Bahrami MiyanjiP. SemnaniD. Hossein RavandiA. KarbasiS. FakhraliA. MohammadiS. Fabrication and characterization of chitosan-gelatin / single-walled carbon nanotubes electrospun composite scaffolds for cartilage tissue engineering applications.Polym. Adv. Technol.2022331819510.1002/pat.5492
    [Google Scholar]
  99. PhatchayawatP.P. KhamkeawA. YodmuangS. PhisalaphongM. 3D bacterial cellulose-chitosan-alginate-gelatin hydrogel scaffold for cartilage tissue engineering.Biochem. Eng. J.202218410847610.1016/j.bej.2022.108476
    [Google Scholar]
  100. ZhengD. ChenT. HanL. LvS. YinJ. YangK. WangY. XuN. Synergetic integrations of bone marrow stem cells and transforming growth factor-β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue.Int. Wound J.20221951023103810.1111/iwj.1369935266304
    [Google Scholar]
  101. MasukoT. IwasakiN. YamaneS. FunakoshiT. MajimaT. MinamiA. OhsugaN. OhtaT. NishimuraS.I. Chitosan–RGDSGGC conjugate as a scaffold material for musculoskeletal tissue engineering.Biomaterials200526265339534710.1016/j.biomaterials.2005.01.06215814132
    [Google Scholar]
  102. DhandayuthapaniB. KrishnanU.M. SethuramanS. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering.J. Biomed. Mater. Res. B Appl. Biomater.201094B126427210.1002/jbm.b.3165120524203
    [Google Scholar]
  103. GomesS. RodriguesG. MartinsG. HenriquesC. SilvaJ.C. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering.Int. J. Biol. Macromol.20171021174118510.1016/j.ijbiomac.2017.05.00428487195
    [Google Scholar]
  104. HoM.H. WangD.M. HsiehH.J. LiuH.C. HsienT.Y. LaiJ.Y. HouL.T. Preparation and characterization of RGD-immobilized chitosan scaffolds.Biomaterials200526163197320610.1016/j.biomaterials.2004.08.03215603814
    [Google Scholar]
  105. TsaiW.B. ChenY.R. LiuH.L. LaiJ.Y. Fabrication of UV-crosslinked chitosan scaffolds with conjugation of RGD peptides for bone tissue engineering.Carbohydr. Polym.201185112913710.1016/j.carbpol.2011.02.003
    [Google Scholar]
  106. ParkK.M. JoungY.K. ParkK.D. LeeS.Y. LeeM.C. RGD-Conjugated chitosan-pluronic hydrogels as a cell supported scaffold for articular cartilage regeneration.Macromol. Res.200816651752310.1007/BF03218553
    [Google Scholar]
  107. KarakeçiliA.G. GümüşderelioğluM. Physico-chemical and thermodynamic aspects of fibroblastic attachment on RGDS-modified chitosan membranes.Colloids Surf. B Biointerfaces200861221622310.1016/j.colsurfb.2007.08.00917904828
    [Google Scholar]
  108. TiğliR.S. GümüşderelioğluM. Evaluation of RGD- or EGF-immobilized chitosan scaffolds for chondrogenic activity.Int. J. Biol. Macromol.200843212112810.1016/j.ijbiomac.2008.04.00318485469
    [Google Scholar]
  109. HanssonA. HashomN. FalsonF. RousselleP. JordanO. BorchardG. In vitro evaluation of an RGD-functionalized chitosan derivative for enhanced cell adhesion.Carbohydr. Polym.20129041494150010.1016/j.carbpol.2012.07.02022944407
    [Google Scholar]
  110. ChenS. ZhangM. ShaoX. WangX. ZhangL. XuP. ZhongW. ZhangL. XingM. ZhangL. A laminin mimetic peptide SIKVAV-conjugated chitosan hydrogel promoting wound healing by enhancing angiogenesis, re-epithelialization and collagen deposition.J. Mater. Chem. B Mater. Biol. Med.20153336798680410.1039/C5TB00842E32262473
    [Google Scholar]
  111. ChenJ. LiY. WangB. YangJ. HengB.C. YangZ. GeZ. LinJ. TGF-β1 affinity peptides incorporated within a chitosan sponge scaffold can significantly enhance cartilage regeneration.J. Mater. Chem. B Mater. Biol. Med.20186467568710.1039/C7TB02132A32254496
    [Google Scholar]
  112. KatoK. UtaniA. SuzukiN. MochizukiM. YamadaM. NishiN. MatsuuraH. ShinkaiH. NomizuM. Identification of neurite outgrowth promoting sites on the laminin α 3 chain G domain.Biochemistry20024135107471075310.1021/bi020180k12196012
    [Google Scholar]
  113. KumarM.N.V.R. MuzzarelliR.A.A. MuzzarelliC. SashiwaH. DombA.J. Chitosan chemistry and pharmaceutical perspectives.Chem. Rev.2004104126017608410.1021/cr030441b15584695
    [Google Scholar]
  114. ParkJ.H. ChoY.W. ChungH. KwonI.C. JeongS.Y. Synthesis and characterization of sugar-bearing chitosan derivatives: Aqueous solubility and biodegradability.Biomacromolecules2003441087109110.1021/bm034094r12857096
    [Google Scholar]
  115. MuzzarelliR.A.A. TanfaniF. EmanuelliM. MariottiS. N-(carboxymethylidene)chitosans and N-(carboxymethyl)chitosans: Novel chelating polyampholytes obtained from chitosan glyoxylate.Carbohydr. Res.1982107219921410.1016/S0008‑6215(00)80539‑X
    [Google Scholar]
  116. YamaguchiR. AraiY. ItohT. HiranoS. Preparation of partially N-succinylated chitosans and their cross-linked gels.Carbohydr. Res.198188117217510.1016/S0008‑6215(00)84614‑5
    [Google Scholar]
  117. YangJ. TianF. WangZ. WangQ. ZengY.J. ChenS.Q. Effect of chitosan molecular weight and deacetylation degree on hemostasis.J. Biomed. Mater. Res. B Appl. Biomater.200884B113113710.1002/jbm.b.3085317514656
    [Google Scholar]
  118. RobertsG.A. RobertsG.A. Derivatives of chitin and chitosan.Chitin Chem.1992116202
    [Google Scholar]
  119. TolaimateA. DesbrieresJ. RhaziM. AlaguiA. Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties.Polymer200344267939795210.1016/j.polymer.2003.10.025
    [Google Scholar]
  120. AnithaA. SowmyaS. KumarP.T.S. DeepthiS. ChennazhiK.P. EhrlichH. TsurkanM. JayakumarR. Chitin and chitosan in selected biomedical applications.Prog. Polym. Sci.20143991644166710.1016/j.progpolymsci.2014.02.008
    [Google Scholar]
  121. JanaS. FlorczykS.J. LeungM. ZhangM. High-strength pristine porous chitosan scaffolds for tissue engineering.J. Mater. Chem.201222136291629910.1039/c2jm16676c
    [Google Scholar]
  122. FourieJ. TauteF. du PreezL. de BeerD. Chitosan composite biomaterials for bone tissue engineering—a review.Regen. Eng. Transl. Med.20228112110.1007/s40883‑020‑00187‑7
    [Google Scholar]
  123. MartinsA.M. SantosM.I. AzevedoH.S. MalafayaP.B. ReisR.L. Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications.Acta Biomater.2008461637164510.1016/j.actbio.2008.06.00418635412
    [Google Scholar]
  124. HoM.H. KuoP.Y. HsiehH.J. HsienT.Y. HouL.T. LaiJ.Y. WangD.M. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods.Biomaterials200425112913810.1016/S0142‑9612(03)00483‑614580916
    [Google Scholar]
  125. ZhaoF. GraysonW.L. MaT. BunnellB. LuW.W. Effects of hydroxyapatite in 3-D chitosan–gelatin polymer network on human mesenchymal stem cell construct development.Biomaterials20062791859186710.1016/j.biomaterials.2005.09.03116225916
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037323136240910052119
Loading
/content/journals/cpps/10.2174/0113892037323136240910052119
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biopolymer; Chitosan; peptide; scaffolding; tissue engineering; tissue regeneration
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test