Skip to content
2000
image of TLR4 Targeting: A Promising Therapeutic Approach Across Multiple Human Diseases

Abstract

TLR4 stands at the forefront of innate immune responses, recognizing various pathogen-associated molecular patterns and endogenous ligands, thus serving as a pivotal mediator in the immune system's defense against infections and tissue damage. Beyond its canonical role in infection, emerging evidence highlights TLR4's involvement in numerous non-infectious human diseases, ranging from metabolic disorders to neurodegenerative conditions and cancer. Targeting TLR4 signaling pathways presents a promising therapeutic approach with broad applicability across these diverse pathological states. In metabolic disorders such as obesity and diabetes, dysregulated TLR4 activation contributes to chronic low-grade inflammation and insulin resistance, driving disease progression. In cardiovascular diseases, TLR4 signaling promotes vascular inflammation and atherogenesis, implicating its potential as a therapeutic target to mitigate cardiovascular risk. Neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, exhibit aberrant TLR4 activation linked to neuroinflammation and neuronal damage, suggesting TLR4 modulation as a strategy to attenuate neurodegeneration.

Additionally, in cancer, TLR4 signaling within the tumor microenvironment promotes tumor progression, metastasis, and immune evasion, underscoring its relevance as a target for anticancer therapy. Advances in understanding TLR4 signaling cascades and their contributions to disease pathogenesis have spurred the development of various pharmacological agents targeting TLR4. These agents range from small molecule inhibitors to monoclonal antibodies, with some undergoing preclinical and clinical evaluations. Furthermore, strategies involving TLR4 modulation through dietary interventions and microbiota manipulation offer additional avenues for therapeutic exploration. Hence, targeting TLR4 holds significant promise as a therapeutic strategy across a spectrum of human diseases, offering the potential to modulate inflammation, restore immune homeostasis, and impede disease progression.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037324425241018061548
2024-12-24
2025-01-22
Loading full text...

Full text loading...

References

  1. Płóciennikowska A. Hromada-Judycka A. Borzęcka K. Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell. Mol. Life Sci. 2015 72 3 557 581 10.1007/s00018‑014‑1762‑5 25332099
    [Google Scholar]
  2. Rocha D.M. Caldas A.P. Oliveira L.L. Bressan J. Hermsdorff H.H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016 244 211 215 10.1016/j.atherosclerosis.2015.11.015 26687466
    [Google Scholar]
  3. Zhang Y. Liang X. Bao X. Xiao W. Chen G. Toll-like receptor 4 (TLR4) inhibitors: Current research and prospective. Eur. J. Med. Chem. 2022 235 114291 10.1016/j.ejmech.2022.114291 35307617
    [Google Scholar]
  4. Firmal P. Shah V.K. Chattopadhyay S. Insight into TLR4-mediated immunomodulation in normal pregnancy and related disorders. Front. Immunol. 2020 11 807 10.3389/fimmu.2020.00807 32508811
    [Google Scholar]
  5. McGettrick A.F. O’Neill L.A.J. Toll‐like receptors: Key activators of leucocytes and regulator of haematopoiesis. Br. J. Haematol. 2007 139 2 185 193 10.1111/j.1365‑2141.2007.06802.x 17897294
    [Google Scholar]
  6. Khanmohammadi S. Rezaei N. Role of Toll‐like receptors in the pathogenesis of COVID‐19. J. Med. Virol. 2021 93 5 2735 2739 10.1002/jmv.26826 33506952
    [Google Scholar]
  7. Krüger C.L. Zeuner M.T. Cottrell G.S. Widera D. Heilemann M. Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization. Sci. Signal. 2017 10 503 eaan1308 10.1126/scisignal.aan1308 29089449
    [Google Scholar]
  8. Jiang Z. Georgel P. Du X. Shamel L. Sovath S. Mudd S. Huber M. Kalis C. Keck S. Galanos C. Freudenberg M. Beutler B. CD14 is required for MyD88-independent LPS signaling. Nat. Immunol. 2005 6 6 565 570 10.1038/ni1207 15895089
    [Google Scholar]
  9. Bruno K. Woller S.A. Miller Y.I. Yaksh T.L. Wallace M. Beaton G. Chakravarthy K. Targeting toll-like receptor-4 (TLR4)—an emerging therapeutic target for persistent pain states. Pain 2018 159 10 1908 1915 10.1097/j.pain.0000000000001306 29889119
    [Google Scholar]
  10. Karin M. Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annu. Rev. Immunol. 2000 18 1 621 663 10.1146/annurev.immunol.18.1.621 10837071
    [Google Scholar]
  11. Collins T. Read M.A. Neish A.S. Whitley M.Z. Thanos D. Maniatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF‐κB and cytokine‐inducible enhancers. FASEB J. 1995 9 10 899 909 10.1096/fasebj.9.10.7542214 7542214
    [Google Scholar]
  12. Tsuchiya H. Nakano R. Konno T. Okabayashi K. Narita T. Sugiya H. Activation of MEK/ERK pathways through NF-κB activation is involved in interleukin-1β-induced cyclooxygenease-2 expression in canine dermal fibroblasts. Vet. Immunol. Immunopathol. 2015 168 3-4 223 232 10.1016/j.vetimm.2015.10.003 26549149
    [Google Scholar]
  13. Moghimpour Bijani F. Vallejo J.G. Rezaei N. Toll-like receptor signaling pathways in cardiovascular diseases: Challenges and opportunities. Int. Rev. Immunol. 2012 31 5 379 395 10.3109/08830185.2012.706761 23083347
    [Google Scholar]
  14. Mohyuddin S.G. Qamar A. Hu C. Chen S.W. Wen J. Liu X. Ma X. Yu Z. Yong Y. Wu L.Y. Bao M.L. Ju X.H. Effect of chitosan on blood profile, inflammatory cytokines by activating TLR4/NF-κB signaling pathway in intestine of heat stressed mice. Sci. Rep. 2021 11 1 20608 10.1038/s41598‑021‑98931‑8 34663855
    [Google Scholar]
  15. Yu L. Yin M. Yang X. Lu M. Tang F. Wang H. Calpain inhibitor I attenuates atherosclerosis and inflammation in atherosclerotic rats through eNOS/NO/NF-κB pathway. Can. J. Physiol. Pharmacol. 2018 96 1 60 67 10.1139/cjpp‑2016‑0652 28758430
    [Google Scholar]
  16. Cheng A. Han C. Fang X. Sun J. Chen X. Wan F. Extractable and non‐extractable polyphenols from blueberries modulate LPS ‐induced expression of iNOS and COX ‐2 in RAW264. 7 macrophages via the NF‐κB signalling pathway. J. Sci. Food Agric. 2016 96 10 3393 3400 10.1002/jsfa.7519 26538333
    [Google Scholar]
  17. Funami K. Matsumoto M. Oshiumi H. Inagaki F. Seya T. Functional interfaces between TICAM-2/TRAM and TICAM-1/TRIF in TLR4 signaling. Biochem. Soc. Trans. 2017 45 4 929 935 10.1042/BST20160259 28630139
    [Google Scholar]
  18. Marongiu L. Gornati L. Artuso I. Zanoni I. Granucci F. Below the surface: The inner lives of TLR4 and TLR9. J. Leukoc. Biol. 2019 106 1 147 160 10.1002/JLB.3MIR1218‑483RR 30900780
    [Google Scholar]
  19. Liu S. Cai X. Wu J. Cong Q. Chen X. Li T. Du F. Ren J. Wu Y.T. Grishin N.V. Chen Z.J. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015 347 6227 aaa2630 10.1126/science.aaa2630 25636800
    [Google Scholar]
  20. Ullah M.O. Sweet M.J. Mansell A. Kellie S. Kobe B. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J. Leukoc. Biol. 2016 100 1 27 45 10.1189/jlb.2RI1115‑531R 27162325
    [Google Scholar]
  21. Lukhele S. Boukhaled G.M. Brooks D.G. Type I interferon signaling, regulation and gene stimulation in chronic virus infection. Semin. Immunol. 2019 43 101277 10.1016/j.smim.2019.05.001 31155227
    [Google Scholar]
  22. Cusson-Hermance N. Khurana S. Lee T.H. Fitzgerald K.A. Kelliher M.A. Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-kappaB activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem. 2005 280 44 36560 36566 10.1074/jbc.M506831200 16115877
    [Google Scholar]
  23. Sato S. Sugiyama M. Yamamoto M. Watanabe Y. Kawai T. Takeda K. Akira S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 2003 171 8 4304 4310 10.4049/jimmunol.171.8.4304 14530355
    [Google Scholar]
  24. Wolf D. Ley K. Immunity and Inflammation in Atherosclerosis. Circ. Res. 2019 124 2 315 327 10.1161/CIRCRESAHA.118.313591 30653442
    [Google Scholar]
  25. Childs B.G. Baker D.J. Wijshake T. Conover C.A. Campisi J. van Deursen J.M. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 2016 354 6311 472 477 10.1126/science.aaf6659 27789842
    [Google Scholar]
  26. Stary H.C. Chandler A.B. Glagov S. Guyton J.R. Insull W. Jr Rosenfeld M.E. Schaffer S.A. Schwartz C.J. Wagner W.D. Wissler R.W. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1994 89 5 2462 2478 10.1161/01.CIR.89.5.2462 8181179
    [Google Scholar]
  27. Vorobjeva N.V. Chernyak B.V. NETosis: Molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc.) 2020 85 10 1178 1190 10.1134/S0006297920100065 33202203
    [Google Scholar]
  28. Liu Y. Carmona-Rivera C. Moore E. Seto N.L. Knight J.S. Pryor M. Yang Z.H. Hemmers S. Remaley A.T. Mowen K.A. Kaplan M.J. Myeloid-specific deletion of peptidylarginine deiminase 4 mitigates atherosclerosis. Front. Immunol. 2018 9 1680 10.3389/fimmu.2018.01680 30140264
    [Google Scholar]
  29. Yang M. Chen Q. Mei L. Wen G. An W. Zhou X. Niu K. Liu C. Ren M. Sun K. Xiao Q. Zhang L. Neutrophil elastase promotes neointimal hyperplasia by targeting toll‐like receptor 4 (TLR4)–NF‐κB signalling. Br. J. Pharmacol. 2021 178 20 4048 4068 10.1111/bph.15583 34076894
    [Google Scholar]
  30. Tsourouktsoglou T.D. Warnatsch A. Ioannou M. Hoving D. Wang Q. Papayannopoulos V. Histones, DNA, and citrullination promote neutrophil extracellular trap inflammation by regulating the localization and activation of TLR4. Cell Rep. 2020 31 5 107602 10.1016/j.celrep.2020.107602 32375035
    [Google Scholar]
  31. Durham A.L. Speer M.Y. Scatena M. Giachelli C.M. Shanahan C.M. Role of smooth muscle cells in vascular calcification: Implications in atherosclerosis and arterial stiffness. Cardiovasc. Res. 2018 114 4 590 600 10.1093/cvr/cvy010 29514202
    [Google Scholar]
  32. Zhai M. Gong S. Luan P. Shi Y. Kou W. Zeng Y. Shi J. Yu G. Hou J. Yu Q. Jian W. Zhuang J. Feinberg M.W. Peng W. Extracellular traps from activated vascular smooth muscle cells drive the progression of atherosclerosis. Nat. Commun. 2022 13 1 7500 10.1038/s41467‑022‑35330‑1 36473863
    [Google Scholar]
  33. Wu H. Wang Y. Zhang Y. Xu F. Chen J. Duan L. Zhang T. Wang J. Zhang F. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox Biol. 2020 32 101500 10.1016/j.redox.2020.101500 32193146
    [Google Scholar]
  34. Jackson S.P. Darbousset R. Schoenwaelder S.M. Thromboinflammation: Challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019 133 9 906 918 10.1182/blood‑2018‑11‑882993 30642917
    [Google Scholar]
  35. Levi M. van der Poll T. Büller H.R. Bidirectional relation between inflammation and coagulation. Circulation 2004 109 22 2698 2704 10.1161/01.CIR.0000131660.51520.9A 15184294
    [Google Scholar]
  36. Szaba F.M. Smiley S.T. Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 2002 99 3 1053 1059 10.1182/blood.V99.3.1053 11807012
    [Google Scholar]
  37. Di Lorenzo F. Kubik Ł. Oblak A. Lorè N.I. Cigana C. Lanzetta R. Parrilli M. Hamad M.A. De Soyza A. Silipo A. Jerala R. Bragonzi A. Valvano M.A. Martín-Santamaría S. Molinaro A. Activation of human Toll-like receptor 4 (TLR4)·myeloid differentiation factor 2 (MD-2) by hypoacylated lipopolysaccharide from a clinical isolate of Burkholderia cenocepacia. J. Biol. Chem. 2015 290 35 21305 21319 10.1074/jbc.M115.649087 26160169
    [Google Scholar]
  38. Kawai T. Akira S. Toll-like receptor downstream signaling. Arthritis Res. 2005 7 1 12 19 10.1186/ar1469 15642149
    [Google Scholar]
  39. Yu Y. Ge N. Xie M. Sun W. Burlingame S. Pass A.K. Nuchtern J.G. Zhang D. Fu S. Schneider M.D. Fan J. Yang J. Phosphorylation of Thr-178 and Thr-184 in the TAK1 T-loop is required for interleukin (IL)-1-mediated optimal NFkappaB and AP-1 activation as well as IL-6 gene expression. J. Biol. Chem. 2008 283 36 24497 24505 10.1074/jbc.M802825200 18617512
    [Google Scholar]
  40. Smiley S.T. King J.A. Hancock W.W. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J. Immunol. 2001 167 5 2887 2894 10.4049/jimmunol.167.5.2887 11509636
    [Google Scholar]
  41. Hua F. Ren W. Zhu L. Plasminogen activator inhibitor type-1 deficiency exaggerates LPS-induced acute lung injury through enhancing Toll-like receptor 4 signaling pathway. Blood Coagul. Fibrinolysis 2011 22 6 480 486 10.1097/MBC.0b013e328346ef56 21577093
    [Google Scholar]
  42. Min L Wang H Qi H. Astragaloside IV inhibits the progression of liver cancer by modulating macrophage polarization through the TLR4/NF-κB/STAT3 signaling pathway. Am J Transl Res. 2022 14 3 1551 1566
    [Google Scholar]
  43. Vesga-Jiménez D.J. Martin C. Barreto G.E. Aristizábal-Pachón A.F. Pinzón A. González J. Fatty acids: An insight into the pathogenesis of neurodegenerative diseases and therapeutic potential. Int. J. Mol. Sci. 2022 23 5 2577 10.3390/ijms23052577 35269720
    [Google Scholar]
  44. Ren W. Wang Z. Hua F. Zhu L. Plasminogen activator inhibitor-1 regulates LPS-induced TLR4/MD-2 pathway activation and inflammation in alveolar macrophages. Inflammation 2015 38 1 384 393 10.1007/s10753‑014‑0042‑8 25342286
    [Google Scholar]
  45. Dörge H. Neumann T. Behrends M. Skyschally A. Schulz R. Kasper C. Erbel R. Heusch G. Perfusion-contraction mismatch with coronary microvascular obstruction: Role of inflammation. Am. J. Physiol. Heart Circ. Physiol. 2000 279 6 H2587 H2592 10.1152/ajpheart.2000.279.6.H2587 11087208
    [Google Scholar]
  46. O’Neill L.A.J. Bowie A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 2007 7 5 353 364 10.1038/nri2079 17457343
    [Google Scholar]
  47. Huang Z. Zhuang X. Xie C. Hu X. Dong X. Guo Y. Li S. Liao X. Exogenous hydrogen sulfide attenuates high glucose-induced cardiotoxicity by inhibiting NLRP3 inflammasome activation by suppressing TLR4/NF-κB pathway in H9c2 cells. Cell. Physiol. Biochem. 2016 40 6 1578 1590 10.1159/000453208 27997926
    [Google Scholar]
  48. Su Q. Li L. Sun Y. Yang H. Ye Z. Zhao J. Effects of the TLR4/Myd88/NF-κB signaling pathway on NLRP3 inflammasome in coronary microembolization-induced myocardial injury. Cell. Physiol. Biochem. 2018 47 4 1497 1508 10.1159/000490866 29940584
    [Google Scholar]
  49. Upadhayay S. Gupta R. Singh S. Mundkar M. Singh G. Kumar P. Involvement of the G-Protein-Coupled Estrogen Receptor-1 (GPER) signaling pathway in neurodegenerative disorders: A review. Cell. Mol. Neurobiol. 2023 43 5 1833 1847 10.1007/s10571‑022‑01301‑9 36307605
    [Google Scholar]
  50. Wang X. Lu Y. Sun Y. He W. Liang J. Li L. TAK-242 protects against apoptosis in coronary microembolization-induced myocardial injury in rats by suppressing TLR4/NF-κB signaling pathway. Cell. Physiol. Biochem. 2017 41 4 1675 1683 10.1159/000471248 28359050
    [Google Scholar]
  51. Fan C. Tang X. Ye M. Zhu G. Dai Y. Yao Z. Yao X. Qi-Li-Qiang-Xin alleviates isoproterenol-induced myocardial injury by inhibiting excessive autophagy via activating AKT/mTOR pathway. Front. Pharmacol. 2019 10 1329 10.3389/fphar.2019.01329 31780944
    [Google Scholar]
  52. Liu R. Zhang H.B. Yang J. Wang J.R. Liu J.X. Li C.L. Curcumin alleviates isoproterenol-induced cardiac hypertrophy and fibrosis through inhibition of autophagy and activation of mTOR. Eur. Rev. Med. Pharmacol. Sci. 2018 22 21 7500 7508 30468499
    [Google Scholar]
  53. Thangaiyan R. Robert B.M. Arjunan S. Govindasamy K. Nagarajan R.P. Preventive effect of apigenin against isoproterenol‐induced apoptosis in cardiomyoblasts. J. Biochem. Mol. Toxicol. 2018 32 11 e22213 10.1002/jbt.22213 30152906
    [Google Scholar]
  54. Kumari S. Katare P.B. Elancheran R. Nizami H.L. Paramesha B. Arava S. Sarma P.P. Kumar R. Mahajan D. Kumar Y. Devi R. Banerjee S.K. Musa balbisiana fruit rich in polyphenols attenuates isoproterenol-induced cardiac hypertrophy in rats via inhibition of inflammation and oxidative stress. Oxid. Med. Cell. Longev. 2020 2020 1 14 10.1155/2020/7147498 32082481
    [Google Scholar]
  55. Liao M. Xie Q. Zhao Y. Yang C. Lin C. Wang G. Liu B. Zhu L. Main active components of Si-Miao-Yong-An decoction (SMYAD) attenuate autophagy and apoptosis via the PDE5A-AKT and TLR4-NOX4 pathways in isoproterenol (ISO)-induced heart failure models. Pharmacol. Res. 2022 176 106077 10.1016/j.phrs.2022.106077 35026404
    [Google Scholar]
  56. Chen X. Xu S. Zhao C. Liu B. Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem. Biophys. Res. Commun. 2019 516 1 37 43 10.1016/j.bbrc.2019.06.015 31196626
    [Google Scholar]
  57. Wu L. Jia M. Xiao L. Wang Z. Yao R. Zhang Y. Gao L. TRIM-containing 44 aggravates cardiac hypertrophy via TLR4/NOX4-induced ferroptosis. J. Mol. Med. (Berl.) 2023 101 6 685 697 10.1007/s00109‑023‑02318‑3 37119283
    [Google Scholar]
  58. Rhee S.H. Hwang D. Murine TOLL-like receptor 4 confers lipopolysaccharide responsiveness as determined by activation of NF kappa B and expression of the inducible cyclooxygenase. J. Biol. Chem. 2000 275 44 34035 34040 10.1074/jbc.M007386200 10952994
    [Google Scholar]
  59. del Zoppo G. Ginis I. Hallenbeck J.M. Iadecola C. Wang X. Feuerstein G.Z. Inflammation and stroke: Putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol. 2000 10 1 95 112 10.1111/j.1750‑3639.2000.tb00247.x 10668900
    [Google Scholar]
  60. Caso J.R. Pradillo J.M. Hurtado O. Lorenzo P. Moro M.A. Lizasoain I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 2007 115 12 1599 1608 10.1161/CIRCULATIONAHA.106.603431 17372179
    [Google Scholar]
  61. Lehnardt S. Lachance C. Patrizi S. Lefebvre S. Follett P.L. Jensen F.E. Rosenberg P.A. Volpe J.J. Vartanian T. The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J. Neurosci. 2002 22 7 2478 2486 10.1523/JNEUROSCI.22‑07‑02478.2002 11923412
    [Google Scholar]
  62. Kol A. Sukhova G.K. Lichtman A.H. Libby P. Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression. Circulation 1998 98 4 300 307 10.1161/01.CIR.98.4.300 9711934
    [Google Scholar]
  63. Hopp S. Nolte M.W. Stetter C. Kleinschnitz C. Sirén A.L. Albert-Weissenberger C. Alleviation of secondary brain injury, posttraumatic inflammation, and brain edema formation by inhibition of factor XIIa. J. Neuroinflammation 2017 14 1 39 10.1186/s12974‑017‑0815‑8 28219400
    [Google Scholar]
  64. Sinha S.P. Avcu P. Spiegler K.M. Komaravolu S. Kim K. Cominski T. Servatius R.J. Pang K.C.H. Startle suppression after mild traumatic brain injury is associated with an increase in pro-inflammatory cytokines, reactive gliosis and neuronal loss in the caudal pontine reticular nucleus. Brain Behav. Immun. 2017 61 353 364 10.1016/j.bbi.2017.01.006 28089558
    [Google Scholar]
  65. McKee C.A. Lukens J.R. Emerging roles for the immune system in traumatic brain injury. Front. Immunol. 2016 7 556 10.3389/fimmu.2016.00556 27994591
    [Google Scholar]
  66. Corrigan F. Mander K.A. Leonard A.V. Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J. Neuroinflammation 2016 13 1 264 10.1186/s12974‑016‑0738‑9 27724914
    [Google Scholar]
  67. Guadagno J. Swan P. Shaikh R. Cregan S.P. Microglia-derived IL-1β triggers p53-mediated cell cycle arrest and apoptosis in neural precursor cells. Cell Death Dis. 2015 6 6 e1779 10.1038/cddis.2015.151 26043079
    [Google Scholar]
  68. Rosa J.M. Farré-Alins V. Ortega M.C. Navarrete M. Lopez-Rodriguez A.B. Palomino-Antolín A. Fernández-López E. Vila-del Sol V. Decouty C. Narros-Fernández P. Clemente D. Egea J. TLR4 pathway impairs synaptic number and cerebrovascular functions through astrocyte activation following traumatic brain injury. Br. J. Pharmacol. 2021 178 17 3395 3413 10.1111/bph.15488 33830504
    [Google Scholar]
  69. Jiang H. Wang Y. Liang X. Xing X. Xu X. Zhou C. Toll-like receptor 4 knockdown attenuates brain damage and neuroinflammation after traumatic brain injury via inhibiting neuronal autophagy and astrocyte activation. Cell. Mol. Neurobiol. 2018 38 5 1009 1019 10.1007/s10571‑017‑0570‑5 29222622
    [Google Scholar]
  70. Chen X. Wu S. Chen C. Xie B. Fang Z. Hu W. Chen J. Fu H. He H. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury. J. Neuroinflammation 2017 14 1 143 10.1186/s12974‑017‑0917‑3 28738820
    [Google Scholar]
  71. Zhong L. Xu Y. Zhuo R. Wang T. Wang K. Huang R. Wang D. Gao Y. Zhu Y. Sheng X. Chen K. Wang N. Zhu L. Can D. Marten Y. Shinohara M. Liu C.C. Du D. Sun H. Wen L. Xu H. Bu G. Chen X.F. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat. Commun. 2019 10 1 1365 10.1038/s41467‑019‑09118‑9 30911003
    [Google Scholar]
  72. De Rosa M. Pace U. Rega D. Costabile V. Duraturo F. Izzo P. Delrio P. Genetics, diagnosis and management of colorectal cancer (Review). Oncol. Rep. 2015 34 3 1087 1096 10.3892/or.2015.4108 26151224
    [Google Scholar]
  73. Singh N. Gurav A. Sivaprakasam S. Brady E. Padia R. Shi H. Thangaraju M. Prasad P.D. Manicassamy S. Munn D.H. Lee J.R. Offermanns S. Ganapathy V. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014 40 1 128 139 10.1016/j.immuni.2013.12.007 24412617
    [Google Scholar]
  74. Rooks M.G. Garrett W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016 16 6 341 352 10.1038/nri.2016.42 27231050
    [Google Scholar]
  75. Li R. Zhou R. Wang H. Li W. Pan M. Yao X. Zhan W. Yang S. Xu L. Ding Y. Zhao L. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ. 2019 26 11 2447 2463 10.1038/s41418‑019‑0312‑y 30850734
    [Google Scholar]
  76. Yu T Guo F Yu Y Sun T Ma D Han J Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017 170 3 548 563.e16 10.1016/j.cell.2017.07.008
    [Google Scholar]
  77. Sheyhidin I. Nabi G. Hasim A. Zhang R.P. Ainiwaer J. Ma H. Wang H. Overexpression of TLR3, TLR4, TLR7 and TLR9 in esophageal squamous cell carcinoma. World J. Gastroenterol. 2011 17 32 3745 3751 10.3748/wjg.v17.i32.3745 21990957
    [Google Scholar]
  78. Rousseau M.C. Hsu R.Y.C. Spicer J.D. McDonald B. Chan C.H.F. Perera R.M. Giannias B. Chow S.C. Rousseau S. Law S. Ferri L.E. Lipopolysaccharide-induced toll-like receptor 4 signaling enhances the migratory ability of human esophageal cancer cells in a selectin-dependent manner. Surgery 2013 154 1 69 77 10.1016/j.surg.2013.03.006 23809486
    [Google Scholar]
  79. Santarpia L. Lippman S.M. El-Naggar A.K. Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy. Expert Opin. Ther. Targets 2012 16 1 103 119 10.1517/14728222.2011.645805 22239440
    [Google Scholar]
  80. Wu K. Yang Y. Liu D. Qi Y. Zhang C. Zhao J. Zhao S. Activation of PPARγ suppresses proliferation and induces apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway. Oncotarget 2016 7 28 44572 44582 10.18632/oncotarget.10067 27323819
    [Google Scholar]
  81. Fels Elliott D.R. Perner J. Li X. Symmons M.F. Verstak B. Eldridge M. Bower L. O’Donovan M. Gay N.J. Fitzgerald R.C. Impact of mutations in Toll-like receptor pathway genes on esophageal carcinogenesis. PLoS Genet. 2017 13 5 e1006808 10.1371/journal.pgen.1006808 28531216
    [Google Scholar]
  82. Seki E. De Minicis S. Österreicher C.H. Kluwe J. Osawa Y. Brenner D.A. Schwabe R.F. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 2007 13 11 1324 1332 10.1038/nm1663 17952090
    [Google Scholar]
  83. Dapito D.H. Mencin A. Gwak G.Y. Pradere J.P. Jang M.K. Mederacke I. Caviglia J.M. Khiabanian H. Adeyemi A. Bataller R. Lefkowitch J.H. Bower M. Friedman R. Sartor R.B. Rabadan R. Schwabe R.F. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012 21 4 504 516 10.1016/j.ccr.2012.02.007 22516259
    [Google Scholar]
  84. Samuel M.S. Lopez J.I. McGhee E.J. Croft D.R. Strachan D. Timpson P. Munro J. Schröder E. Zhou J. Brunton V.G. Barker N. Clevers H. Sansom O.J. Anderson K.I. Weaver V.M. Olson M.F. Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 2011 19 6 776 791 10.1016/j.ccr.2011.05.008 21665151
    [Google Scholar]
  85. Levental K.R. Yu H. Kass L. Lakins J.N. Egeblad M. Erler J.T. Fong S.F.T. Csiszar K. Giaccia A. Weninger W. Yamauchi M. Gasser D.L. Weaver V.M. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009 139 5 891 906 10.1016/j.cell.2009.10.027 19931152
    [Google Scholar]
  86. de Vicente L.G. Pinto A.P. da Rocha A.L. Pauli J.R. de Moura L.P. Cintra D.E. Ropelle E.R. da Silva A.S.R. Role of TLR4 in physical exercise and cardiovascular diseases. Cytokine 2020 136 155273 10.1016/j.cyto.2020.155273 32932194
    [Google Scholar]
  87. Duffield J.S. Forbes S.J. Constandinou C.M. Clay S. Partolina M. Vuthoori S. Wu S. Lang R. Iredale J.P. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 2005 115 1 56 65 10.1172/JCI200522675 15630444
    [Google Scholar]
  88. Yang L.Y. Luo Q. Lu L. Zhu W.W. Sun H.T. Wei R. Lin Z.F. Wang X.Y. Wang C.Q. Lu M. Jia H.L. Chen J.H. Zhang J.B. Qin L.X. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J. Hematol. Oncol. 2020 13 1 3 10.1186/s13045‑019‑0836‑0 31907001
    [Google Scholar]
  89. Lu H. Xu X. Fu D. Gu Y. Fan R. Yi H. He X. Wang C. Ouyang B. Zhao P. Wang L. Xu P. Cheng S. Wang Z. Zou D. Han L. Zhao W. Butyrate-producing Eubacterium rectale suppresses lymphomagenesis by alleviating the TNF-induced TLR4/MyD88/NF-κB axis. Cell Host Microbe 2022 30 8 1139 1150.e7 10.1016/j.chom.2022.07.003 35952646
    [Google Scholar]
  90. Wang L. Zhao Y. Qian J. Sun L. Lu Y. Li H. Li Y. Yang J. Cai Z. Yi Q. Toll‐like receptor‐4 signaling in mantle cell lymphoma. Cancer 2013 119 4 782 791 10.1002/cncr.27792 22915070
    [Google Scholar]
  91. Due M.R. Piekarz A.D. Wilson N. Feldman P. Ripsch M.S. Chavez S. Yin H. Khanna R. White F.A. Neuroexcitatory effects of morphine-3-glucuronide are dependent on Toll-like receptor 4 signaling. J. Neuroinflammation 2012 9 1 725 10.1186/1742‑2094‑9‑200 22898544
    [Google Scholar]
  92. Wang H. Huang M. Wang W. Zhang Y. Ma X. Luo L. Xu X. Xu L. Shi H. Xu Y. Wang A. Xu T. Microglial TLR4-induced TAK1 phosphorylation and NLRP3 activation mediates neuroinflammation and contributes to chronic morphine-induced antinociceptive tolerance. Pharmacol. Res. 2021 165 105482 10.1016/j.phrs.2021.105482 33549727
    [Google Scholar]
  93. Liu T. Han Q. Chen G. Huang Y. Zhao L.X. Berta T. Gao Y.J. Ji R.R. Toll-like receptor 4 contributes to chronic itch, alloknesis, and spinal astrocyte activation in male mice. Pain 2016 157 4 806 817 10.1097/j.pain.0000000000000439 26645545
    [Google Scholar]
  94. Agalave N.M. Rudjito R. Farinotti A.B. Khoonsari P.E. Sandor K. Nomura Y. Szabo-Pardi T.A. Urbina C.M. Palada V. Price T.J. Erlandsson Harris H. Burton M.D. Kultima K. Svensson C.I. Sex-dependent role of microglia in disulfide high mobility group box 1 protein-mediated mechanical hypersensitivity. Pain 2021 162 2 446 458 10.1097/j.pain.0000000000002033 32773600
    [Google Scholar]
  95. Sorge R.E. LaCroix-Fralish M.L. Tuttle A.H. Sotocinal S.G. Austin J.S. Ritchie J. Chanda M.L. Graham A.C. Topham L. Beggs S. Salter M.W. Mogil J.S. Spinal cord Toll-like receptor 4 mediates inflammatory and neuropathic hypersensitivity in male but not female mice. J. Neurosci. 2011 31 43 15450 15454 10.1523/JNEUROSCI.3859‑11.2011 22031891
    [Google Scholar]
  96. Su W. Cui H. Wu D. Yu J. Ma L. Zhang X. Huang Y. Ma C. Suppression of TLR4-MyD88 signaling pathway attenuated chronic mechanical pain in a rat model of endometriosis. J. Neuroinflammation 2021 18 1 65 10.1186/s12974‑020‑02066‑y 33673857
    [Google Scholar]
  97. Akiyama T. Carstens M.I. Ikoma A. Cevikbas F. Steinhoff M. Carstens E. Mouse model of touch-evoked itch (alloknesis). J. Invest. Dermatol. 2012 132 7 1886 1891 10.1038/jid.2012.52 22418875
    [Google Scholar]
  98. Chen O. He Q. Han Q. Furutani K. Gu Y. Olexa M. Ji R.R. Mechanisms and treatments of neuropathic itch in a mouse model of lymphoma. J. Clin. Invest. 2023 133 4 e160807 10.1172/JCI160807 36520531
    [Google Scholar]
  99. O’Neill L.A.J. Bryant C.E. Doyle S.L. Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol. Rev. 2009 61 2 177 197 10.1124/pr.109.001073 19474110
    [Google Scholar]
  100. Neumann E. Lefèvre S. Zimmermann B. Gay S. Müller-Ladner U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol. Med. 2010 16 10 458 468 10.1016/j.molmed.2010.07.004 20739221
    [Google Scholar]
  101. Kowalski M.L. Wolska A. Grzegorczyk J. Hilt J. Jarzebska M. Drobniewski M. Synder M. Kurowski M. Increased responsiveness to toll-like receptor 4 stimulation in peripheral blood mononuclear cells from patients with recent onset rheumatoid arthritis. Mediators Inflamm. 2008 2008 1 132732 10.1155/2008/132732 18584044
    [Google Scholar]
  102. Chen Y. Sun W. Gao R. Su Y. Umehara H. Dong L. Gong F. The role of high mobility group box chromosomal protein 1 in rheumatoid arthritis. Rheumatology (Oxford) 2013 52 10 1739 1747 10.1093/rheumatology/ket134 23584368
    [Google Scholar]
  103. Campo G.M. Avenoso A. D’Ascola A. Prestipino V. Scuruchi M. Nastasi G. Calatroni A. Campo S. Hyaluronan differently modulates TLR‐4 and the inflammatory response in mouse chondrocytes. Biofactors 2012 38 1 69 76 10.1002/biof.202 22287316
    [Google Scholar]
  104. Bilaloglu S. Aphinyanaphongs Y. Jones S. Iturrate E. Hochman J. Berger J.S. Thrombosis in hospitalized patients with COVID-19 in a New York City Health System. JAMA 2020 324 8 799 801 10.1001/jama.2020.13372 32702090
    [Google Scholar]
  105. Piazza G. Campia U. Hurwitz S. Snyder J.E. Rizzo S.M. Pfeferman M.B. Morrison R.B. Leiva O. Fanikos J. Nauffal V. Almarzooq Z. Goldhaber S.Z. Registry of arterial and venous thromboembolic complications in patients with COVID-19. J. Am. Coll. Cardiol. 2020 76 18 2060 2072 10.1016/j.jacc.2020.08.070 33121712
    [Google Scholar]
  106. Barrett T.J. Lee A.H. Xia Y. Lin L.H. Black M. Cotzia P. Hochman J. Berger J.S. Platelet and vascular biomarkers associate with thrombosis and death in coronavirus disease. Circ. Res. 2020 127 7 945 947 10.1161/CIRCRESAHA.120.317803 32757722
    [Google Scholar]
  107. Bonaventura A. Vecchié A. Dagna L. Martinod K. Dixon D.L. Van Tassell B.W. Dentali F. Montecucco F. Massberg S. Levi M. Abbate A. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 2021 21 5 319 329 10.1038/s41577‑021‑00536‑9 33824483
    [Google Scholar]
  108. Mowery N.T. Terzian W.T.H. Nelson A.C. Acute lung injury. Curr. Probl. Surg. 2020 57 5 100777 10.1016/j.cpsurg.2020.100777 32505224
    [Google Scholar]
  109. Yang M. Acute Lung Injury in aortic dissection : New insights in anesthetic management strategies. J. Cardiothorac. Surg. 2023 18 1 147 10.1186/s13019‑023‑02223‑3 37069575
    [Google Scholar]
  110. Takeda K. Akira S. Toll-like receptors in innate immunity. Int. Immunol. 2004 17 1 1 14 10.1093/intimm/dxh186 15585605
    [Google Scholar]
  111. Kim H.J. Kim H. Lee J.H. Hwangbo C. Toll-like receptor 4 (TLR4): New insight immune and aging. Immun. Ageing 2023 20 1 67 10.1186/s12979‑023‑00383‑3 38001481
    [Google Scholar]
  112. Peri F. Piazza M. Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonists. Biotechnol. Adv. 2012 30 1 251 260 10.1016/j.biotechadv.2011.05.014 21664961
    [Google Scholar]
  113. Kawai T. Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010 11 5 373 384 10.1038/ni.1863 20404851
    [Google Scholar]
  114. Duan T. Du Y. Xing C. Wang H.Y. Wang R.F. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front. Immunol. 2022 13 812774 10.3389/fimmu.2022.812774 35309296
    [Google Scholar]
  115. Long M.E. Mallampalli R.K. Horowitz J.C. Pathogenesis of pneumonia and acute lung injury. Clin. Sci. (Lond.) 2022 136 10 747 769 10.1042/CS20210879 35621124
    [Google Scholar]
  116. World Health Organization Classification of atherosclerotic lesions. World Health Organ Tech Rep Ser. 1985 57 143 1 20
    [Google Scholar]
  117. Moran A.E. Forouzanfar M.H. Roth G.A. Mensah G.A. Ezzati M. Murray C.J.L. Naghavi M. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: The Global Burden of Disease 2010 study. Circulation 2014 129 14 1483 1492 10.1161/CIRCULATIONAHA.113.004042 24573352
    [Google Scholar]
  118. Gimbrone M.A. Jr García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 2016 118 4 620 636 10.1161/CIRCRESAHA.115.306301 26892962
    [Google Scholar]
  119. Costea P.I. Hildebrand F. Arumugam M. Bäckhed F. Blaser M.J. Bushman F.D. de Vos W.M. Ehrlich S.D. Fraser C.M. Hattori M. Huttenhower C. Jeffery I.B. Knights D. Lewis J.D. Ley R.E. Ochman H. O’Toole P.W. Quince C. Relman D.A. Shanahan F. Sunagawa S. Wang J. Weinstock G.M. Wu G.D. Zeller G. Zhao L. Raes J. Knight R. Bork P. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 2017 3 1 8 16 10.1038/s41564‑017‑0072‑8 29255284
    [Google Scholar]
  120. Wei J. Zhang Y. Li H. Wang F. Yao S. Toll-like receptor 4: A potential therapeutic target for multiple human diseases. Biomed. Pharmacother. 2023 166 115338 https://linkinghub.elsevier.com/retrieve/pii/S0753332223011290 10.1016/j.biopha.2023.115338 37595428
    [Google Scholar]
  121. Galeazzi M. Berteau M. Sebba A. Burmester G.R. Kvien T.K. Mease P.J. FRI0118 Dekavil (F8IL10) – update on the results of clinical trials investigating the immunocytokine in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2018 77 603 604
    [Google Scholar]
  122. Ye D Liu J Li Y Zhang X Wang Y Hu X Clinical update related to the first-in-human trial of SYS6002 (CRB-701), a next-generation nectin-4 targeting antibody drug conjugate. J. Clin. Oncol. 2024 42 suppl_16 3151
    [Google Scholar]
  123. Wesson W Zhou H Kim S Patel M Lewis N Martin T Characterizing clinical trials for CAR T targeting solid tumors from 2018 to 2023: A systematic review. J. Clin. Oncol. 2024 42 suppl_16 e15080
    [Google Scholar]
  124. Tan HN Lam K Roberts J Smith R Turner A Patel H Adverse events of patients treated with antibody-drug conjugates in phase 1 clinical trials at the Royal Marsden Drug Development Unit from 2014 to 2024. J. Clin. Oncol. 2024 42 suppl_1 e15020
    [Google Scholar]
  125. Farahnak K. Bai Y.Z. Yokoyama Y. Morkan D.B. Liu Z. Amrute J.M. De Filippis Falcon A. Terada Y. Liao F. Li W. Shepherd H.M. Hachem R.R. Puri V. Lavine K.J. Gelman A.E. Bharat A. Kreisel D. Nava R.G. B cells mediate lung ischemia/reperfusion injury by recruiting classical monocytes via synergistic B cell receptor/TLR4 signaling. J. Clin. Invest. 2024 134 6 e170118 10.1172/JCI170118 38488011
    [Google Scholar]
  126. Kawai T. Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011 34 5 637 650 10.1016/j.immuni.2011.05.006 21616434
    [Google Scholar]
  127. Mantovani A. Allavena P. The interaction of the immune system with tumors: A new paradigm. Cancer Immunol. Immunother. 2015 64 1 1 9 25432147
    [Google Scholar]
  128. Baker K.J. Matzinger P. The role of the immune system in cancer: A review. Cancer Immunol. Res. 2016 4 3 191 197
    [Google Scholar]
  129. Buchanan M.E. Tzeng S.C. The role of toll-like receptors in cancer: A review. Cancers (Basel) 2020 12 2 338 32028617
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037324425241018061548
Loading
/content/journals/cpps/10.2174/0113892037324425241018061548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test