Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Introduction

Circular Rydberg States (CRS) were studied theoretically and experimentally in numerous works. In particular, in the previous paper by one of us, there were derived analytical expressions for the energy of classical CRS in collinear electric () and magnetic () fields of arbitrary strengths imposed on a hydrogenic system (atom or ion). For the magnetic field of any strength, the author of that study gave formulas for the dependency of the classical ionization threshold () and the energy at this threshold (). He also analyzed the stability of the motion by going beyond the CRS. In addition, for two important particular cases previously studied in the literature – classical CRS in a magnetic field only and classical CRS in an electric field only – some new results were also presented in that paper, especially concerning the Stark effect.

Objective

In the present paper, we study analytically axially-symmetric CRS of a heliumic system (He atom or He-like ion) subjected to an electric or magnetic field of arbitrary strength.

Methods

In this investigation, analytical techniques were applied.

Results

We showed that in the case of the Stark effect, the difference in the unperturbed structure of the heliumic systems (compared to hydrogenic systems), , the non-negligible size, causes the decrease of the classical ionization threshold, as well as increases the energy and the orbit radius of the outer electron at the ionization threshold. Also, the allowance for the non-negligible size of the internal subsystem increases the maximum possible absolute value of the induced electric dipole moment. In the case of the Zeeman effect, we demonstrated that the non-negligible size of the inner system increases the energy and the orbit radius of the outer electron.

Conclusion

The allowance for the non-negligible size of the internal subsystem can strongly affect the properties of the axially symmetric circular states. We believe that our results are of fundamental importance.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348337887241109150308
2024-11-19
2025-09-08
Loading full text...

Full text loading...

References

  1. SigalI.M. Geometric theory of stark resonances in multielectron systems.Commun. Math. Phys.1988119228731410.1007/BF01217742
    [Google Scholar]
  2. GlushkovA.V. IvanovL.N. DC strong-field stark effect: Consistent quantum-mechanical approach.J. Phys. At. Mol. Opt. Phys.19932614L379L38510.1088/0953‑4075/26/14/001
    [Google Scholar]
  3. RaoJ. LiB. Resonances of the hydrogen atom in strong parallel magnetic and electric fields.Phys. Rev. A19955164526453010.1103/PhysRevA.51.45269912141
    [Google Scholar]
  4. ThemelisS.I. NicolaidesC.A. Complex energies and the polyelectronic stark problem.J. Phys. At. Mol. Opt. Phys.200033245561558010.1088/0953‑4075/33/24/308
    [Google Scholar]
  5. NeufeldO. SharabiY. Ben-AsherA. MoiseyevN. Calculating bound states resonances and scattering amplitudes for arbitrary 1D potentials with piecewise parabolas.J. Phys. A Math. Theor.2018514747530110.1088/1751‑8121/aae666
    [Google Scholar]
  6. KuznetsovaA.A. GlushkovA.V. IgnatenkoA.V. SvinarenkoA.A. TernovskyV.B. Spectroscopy of multielectron atomic systems in a DC electric field.Adv. Quantum Chem.20197828730610.1016/bs.aiq.2018.06.005
    [Google Scholar]
  7. StebbingsR.F. DunningF.B. Rydberg States of Atoms and Molecules.Cambridge, UKCambridge University Press1983
    [Google Scholar]
  8. NayfehM.N. ClarkC.W. Atomic Excitation and Recombination in External Fields.GaithersburgNBS1984
    [Google Scholar]
  9. LisitsaV.S. New results on the stark and zeeman effects in the hydrogen atom.Sov. Phys. Usp.1987301192795110.1070/PU1987v030n11ABEH002977
    [Google Scholar]
  10. SchmelcherP. SchweizerW. Atoms and Molecules in Strong External Fields.New YorkSpringer1998
    [Google Scholar]
  11. GlushkovA.V. Operator perturbation theory for atomic systems in a strong DC electric field.In:Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology. HotokkaM. ChamSpringer International Publishing201316117710.1007/978‑3‑319‑01529‑3_9
    [Google Scholar]
  12. HölzlC. GötzelmannA. PultineviciusE. WirthM. MeinertF. Long-lived circular Rydberg qubits of alkaline-earth atoms in optical tweezers.Phys. Rev. X202414202102410.1103/PhysRevX.14.021024
    [Google Scholar]
  13. RavonB. MéhaignerieP. MachuY. HernándezA.D. FavierM. RaimondJ.M. BruneM. SayrinC. Array of individual circular Rydberg atoms trapped in optical tweezers.Phys. Rev. Lett.2023131909340110.1103/PhysRevLett.131.09340137721832
    [Google Scholar]
  14. WuH. RichaudR. RaimondJ.M. BruneM. GleyzesS. Millisecond-lived circular Rydberg atoms in a room-temperature experiment.Phys. Rev. Lett.2023130202320210.1103/PhysRevLett.130.02320236706390
    [Google Scholar]
  15. MéhaignerieP. SayrinC. RaimondJ.M. BruneM. RouxG. Spin-motion coupling in a circular-Rydberg-state quantum simulator: Case of two atoms.Phys. Rev. A (Coll. Park)2023107606310610.1103/PhysRevA.107.063106
    [Google Scholar]
  16. XuL. JiaoL.G. LiuA. WangY.C. MontgomeryH.E. HoY.K. FritzscheS. Critical screening parameters of one-electron systems with screened Coulomb potentials: Circular Rydberg states.J. Phys. At. Mol. Opt. Phys.2023561717500210.1088/1361‑6455/aced2d
    [Google Scholar]
  17. CohenS.R. ThompsonJ.D. Quantum computing with circular Rydberg atoms.PRX Quantum20212303032210.1103/PRXQuantum.2.030322
    [Google Scholar]
  18. TeixeiraR.C. LarrouyA. MuniA. LachaudL. RaimondJ.M. GleyzesS. BruneM. Preparation of long-lived, non-autoionizing circular Rydberg states of strontium.Phys. Rev. Lett.20201252626300110.1103/PhysRevLett.125.26300133449789
    [Google Scholar]
  19. Cantat-MoltrechtT. CortiñasR. RavonB. MéhaignerieP. HarocheS. RaimondJ.M. FavierM. BruneM. SayrinC. Long-lived circular Rydberg states of laser-cooled rubidium atoms in a cryostat.Phys. Rev. Res.20202202203210.1103/PhysRevResearch.2.022032
    [Google Scholar]
  20. CortiñasR.G. FavierM. RavonB. MéhaignerieP. MachuY. RaimondJ.M. SayrinC. BruneM. Laser trapping of circular Rydberg atoms.Phys. Rev. Lett.20201241212320110.1103/PhysRevLett.124.12320132281867
    [Google Scholar]
  21. LindblomT.K. FørreM. LindrothE. SelstøS. Relativistic effects in photoionizing a circular Rydberg state in the optical regime.Phys. Rev. A (Coll. Park)2020102606310810.1103/PhysRevA.102.063108
    [Google Scholar]
  22. CardmanR. RaithelG. Circularizing Rydberg atoms with time-dependent optical traps.Phys. Rev. A (Coll. Park)2020101101343410.1103/PhysRevA.101.013434
    [Google Scholar]
  23. DietscheE.K. LarrouyA. HarocheS. RaimondJ.M. BruneM. GleyzesS. High-sensitivity magnetometry with a single atom in a superposition of two circular Rydberg states.Nat. Phys.201915432632910.1038/s41567‑018‑0405‑4
    [Google Scholar]
  24. NguyenT.L. RaimondJ.M. SayrinC. CortiñasR. Cantat-MoltrechtT. AssematF. DotsenkoI. GleyzesS. HarocheS. RouxG. JolicoeurT. BruneM. Towards quantum simulation with circular Rydberg atoms.Phys. Rev. X20188101103210.1103/PhysRevX.8.011032
    [Google Scholar]
  25. MorganA.A. ZhelyazkovaV. HoganS.D. Preparation of circular Rydberg states in helium with n ≥ 70 using a modified version of the crossed-fields method.Phys. Rev. A (Coll. Park)201898404341610.1103/PhysRevA.98.043416
    [Google Scholar]
  26. KamenskiA.A. OvsiannikovV.D. GlukhovI.L. Interatomic interactions and thermally induced shifts and broadenings of energy levels of atoms in circular Rydberg states.Quantum Electron.201949546447210.1070/QEL17000
    [Google Scholar]
  27. KamenskiA.A. ManakovN.L. MokhnenkoS.N. OvsiannikovV.D. ZenischevaA.A. van der Waals interaction of atoms in circular Rydberg states.Eur. Phys. J. D2018721017410.1140/epjd/e2018‑90164‑1
    [Google Scholar]
  28. AliyuM.M. UlugölA. AbumwisG. WüsterS. Transport on flexible Rydberg aggregates using circular states.Phys. Rev. A (Coll. Park)201898404360210.1103/PhysRevA.98.043602
    [Google Scholar]
  29. MacAdamK.B. Horsdal-PedersenE. Charge transfer from coherent elliptic states.J. Phys. At. Mol. Opt. Phys.20033611R167R19010.1088/0953‑4075/36/11/201
    [Google Scholar]
  30. DuttaS.K. FeldbaumD. Walz-FlanniganA. GuestJ.R. RaithelG. High-angular-momentum states in cold Rydberg gases.Phys. Rev. Lett.200186183993399610.1103/PhysRevLett.86.399311328078
    [Google Scholar]
  31. LeeE. FarrellyD. UzerT. A Saturnian atom.Opt. Express19971722122810.1364/OE.1.00022119373405
    [Google Scholar]
  32. GermannT.C. HerschbachD.R. DunnM. WatsonD.K. Circular Rydberg states of the hydrogen atom in a magnetic field.Phys. Rev. Lett.199574565866110.1103/PhysRevLett.74.65810058815
    [Google Scholar]
  33. ChengC.H. LeeC.Y. GallagherT.F. Production of circular Rydberg states with circularly polarized microwave fields.Phys. Rev. Lett.199473233078308110.1103/PhysRevLett.73.307810057282
    [Google Scholar]
  34. ChenL. CheretM. RousselF. SpiessG. New scheme for producing circular orbital states in combined RF and static fields.J. Phys. At. Mol. Opt. Phys.19932615L437L44310.1088/0953‑4075/26/15/002
    [Google Scholar]
  35. VainbergV.M. PopovV.S. SergeevA.V. The 1/n expansion for a hydrogen atom in an external field.Sov. Phys. JETP199071470
    [Google Scholar]
  36. VainbergV.M. MurV.D. PopovV.S. SergeevA.V. The hydrogen atom in a strong electric field.Sov. Phys. JETP198766258
    [Google Scholar]
  37. WunnerG. KostM. RuderH. “Circular” states of Rydberg atoms in strong magnetic fields.Phys. Rev. A Gen. Phys.19863321444144710.1103/PhysRevA.33.14449896780
    [Google Scholar]
  38. HuletR.G. HilferE.S. KleppnerD. Inhibited spontaneous emission by a Rydberg atom.Phys. Rev. Lett.198555202137214010.1103/PhysRevLett.55.213710032058
    [Google Scholar]
  39. BenderC.M. MlodinowL.D. PapanicolaouN. Semiclassical perturbation theory for the hydrogen atom in a uniform magnetic field.Phys. Rev. A Gen. Phys.19822531305131410.1103/PhysRevA.25.1305
    [Google Scholar]
  40. OksE. Circular Rydberg states of hydrogenlike systems in collinear electric and magnetic fields of arbitrary strengths: An exact analytical classical solution.Eur. Phys. J. D200428217117910.1140/epjd/e2003‑00308‑1
    [Google Scholar]
  41. BeletskyV.V. Essays on the Motion of Celestial Bodies.BaselBirkhäuser2001
    [Google Scholar]
  42. OksE. Analytical solution for the three-dimensional motion of a circumbinary planet around a binary star.New Astron.20207410130110.1016/j.newast.2019.101301
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348337887241109150308
Loading
/content/journals/cphs/10.2174/0127723348337887241109150308
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test