Skip to content
2000
image of Classical Stark and Zeeman Effects of Axially-symmetric Circular Rydberg States of He and He-like Ions

Abstract

Background

Circular Rydberg States (CRS) were studied theoretically and experimentally in numerous works. In particular, in the previous paper by one of us, there were derived analytical expressions for the energy of classical CRS in collinear electric () and magnetic () fields of arbitrary strengths imposed on a hydrogenic system (atom or ion). For the magnetic field of any strength, the author of that study gave formulas for the dependency of the classical ionization threshold () and the energy at this threshold (). He also analyzed the stability of the motion by going beyond the CRS. In addition, for two important particular cases previously studied in the literature – classical CRS in a magnetic field only and classical CRS in an electric field only – some new results were also presented in that paper, especially concerning the Stark effect.

Objective

In the present paper, we study analytically axially-symmetric CRS of a heliumic system (He atom or He-like ion) subjected to an electric or magnetic field of arbitrary strength.

Methods

In this investigation, analytical techniques were applied.

Results

We showed that in the case of the Stark effect, the difference in the unperturbed structure of the heliumic systems (compared to hydrogenic systems), , the non-negligible size, causes the decrease of the classical ionization threshold, as well as increases the energy and the orbit radius of the outer electron at the ionization threshold. Also, the allowance for the non-negligible size of the internal subsystem increases the maximum possible absolute value of the induced electric dipole moment. In the case of the Zeeman effect, we demonstrated that the non-negligible size of the inner system increases the energy and the orbit radius of the outer electron.

Conclusion

The allowance for the non-negligible size of the internal subsystem can strongly affect the properties of the axially symmetric circular states. We believe that our results are of fundamental importance.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348337887241109150308
2024-11-19
2025-01-15
Loading full text...

Full text loading...

References

  1. Sigal I.M. Geometric theory of Stark resonances in multielectron systems. Commun. Math. Phys. 1988 119 2 287 314 10.1007/BF01217742
    [Google Scholar]
  2. Glushkov A.V. Ivanov L.N. DC strong-field Stark effect: Consistent quantum-mechanical approach. J. Phys. At. Mol. Opt. Phys. 1993 26 14 L379 L385 10.1088/0953‑4075/26/14/001
    [Google Scholar]
  3. Rao J. Li B. Resonances of the hydrogen atom in strong parallel magnetic and electric fields. Phys. Rev. A 1995 51 6 4526 4530 10.1103/PhysRevA.51.4526 9912141
    [Google Scholar]
  4. Themelis S.I. Nicolaides C.A. Complex energies and the polyelectronic Stark problem. J. Phys. At. Mol. Opt. Phys. 2000 33 24 5561 5580 10.1088/0953‑4075/33/24/308
    [Google Scholar]
  5. Neufeld O. Sharabi Y. Ben-Asher A. Moiseyev N. Calculating bound states resonances and scattering amplitudes for arbitrary 1D potentials with piecewise parabolas. J. Phys. A Math. Theor. 2018 51 47 475301 10.1088/1751‑8121/aae666
    [Google Scholar]
  6. Kuznetsova A.A. Glushkov A.V. Ignatenko A.V. Svinarenko A.A. Ternovsky V.B. Spectroscopy of multielectron atomic systems in a DC electric field. Adv. Quantum Chem. 2019 78 287 306 10.1016/bs.aiq.2018.06.005
    [Google Scholar]
  7. Stebbings R.F. Dunning F.B. Rydberg States of Atoms and Molecules Cambridge University Press Cambridge, UK 1983
    [Google Scholar]
  8. Nayfeh M.N. Clark C.W. Atomic Excitation and Recombination in External Fields Gaithersburg NBS 1984
    [Google Scholar]
  9. Lisitsa V.S. New results on the Stark and Zeeman effects in the hydrogen atom. Sov. Phys. Usp. 1987 30 11 927 951 10.1070/PU1987v030n11ABEH002977
    [Google Scholar]
  10. Schmelcher P. Schweizer W. Atoms and Molecules in Strong External Fields New York Springer 1998
    [Google Scholar]
  11. Glushkov A.V. Operator perturbation theory for atomic systems in a strong DC electric field. Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology Hotokka M. Cham Springer International Publishing 2013 161 177 10.1007/978‑3‑319‑01529‑3_9
    [Google Scholar]
  12. Hölzl C. Götzelmann A. Pultinevicius E. Wirth M. Meinert F. Long-lived circular Rydberg qubits of alkaline-earth atoms in optical tweezers. Phys. Rev. X 2024 14 2 021024 10.1103/PhysRevX.14.021024
    [Google Scholar]
  13. Ravon B. Méhaignerie P. Machu Y. Hernández A.D. Favier M. Raimond J.M. Brune M. Sayrin C. Array of individual circular Rydberg atoms trapped in optical tweezers. Phys. Rev. Lett. 2023 131 9 093401 10.1103/PhysRevLett.131.093401 37721832
    [Google Scholar]
  14. Wu H. Richaud R. Raimond J.M. Brune M. Gleyzes S. Millisecond-lived circular Rydberg atoms in a room-temperature experiment. Phys. Rev. Lett. 2023 130 2 023202 10.1103/PhysRevLett.130.023202 36706390
    [Google Scholar]
  15. Méhaignerie P. Sayrin C. Raimond J.M. Brune M. Roux G. Spin-motion coupling in a circular-Rydberg-state quantum simulator: Case of two atoms. Phys. Rev. A (Coll. Park) 2023 107 6 063106 10.1103/PhysRevA.107.063106
    [Google Scholar]
  16. Xu L. Jiao L.G. Liu A. Wang Y.C. Montgomery H.E. Ho Y.K. Fritzsche S. Critical screening parameters of one-electron systems with screened Coulomb potentials: Circular Rydberg states. J. Phys. At. Mol. Opt. Phys. 2023 56 17 175002 10.1088/1361‑6455/aced2d
    [Google Scholar]
  17. Cohen S.R. Thompson J.D. Quantum computing with circular Rydberg atoms. PRX Quantum 2021 2 3 030322 10.1103/PRXQuantum.2.030322
    [Google Scholar]
  18. Teixeira R.C. Larrouy A. Muni A. Lachaud L. Raimond J.M. Gleyzes S. Brune M. Preparation of long-lived, non-autoionizing circular Rydberg states of strontium. Phys. Rev. Lett. 2020 125 26 263001 10.1103/PhysRevLett.125.263001 33449789
    [Google Scholar]
  19. Cantat-Moltrecht T. Cortiñas R. Ravon B. Méhaignerie P. Haroche S. Raimond J.M. Favier M. Brune M. Sayrin C. Long-lived circular Rydberg states of laser-cooled rubidium atoms in a cryostat. Phys. Rev. Res. 2020 2 2 022032 10.1103/PhysRevResearch.2.022032
    [Google Scholar]
  20. Cortiñas R.G. Favier M. Ravon B. Méhaignerie P. Machu Y. Raimond J.M. Sayrin C. Brune M. Laser trapping of circular Rydberg atoms. Phys. Rev. Lett. 2020 124 12 123201 10.1103/PhysRevLett.124.123201 32281867
    [Google Scholar]
  21. Lindblom T.K. Førre M. Lindroth E. Selstø S. Relativistic effects in photoionizing a circular Rydberg state in the optical regime. Phys. Rev. A (Coll. Park) 2020 102 6 063108 10.1103/PhysRevA.102.063108
    [Google Scholar]
  22. Cardman R. Raithel G. Circularizing Rydberg atoms with time-dependent optical traps. Phys. Rev. A (Coll. Park) 2020 101 1 013434 10.1103/PhysRevA.101.013434
    [Google Scholar]
  23. Dietsche E.K. Larrouy A. Haroche S. Raimond J.M. Brune M. Gleyzes S. High-sensitivity magnetometry with a single atom in a superposition of two circular Rydberg states. Nat. Phys. 2019 15 4 326 329 10.1038/s41567‑018‑0405‑4
    [Google Scholar]
  24. Nguyen T.L. Raimond J.M. Sayrin C. Cortiñas R. Cantat-Moltrecht T. Assemat F. Dotsenko I. Gleyzes S. Haroche S. Roux G. Jolicoeur T. Brune M. Towards quantum simulation with circular Rydberg atoms. Phys. Rev. X 2018 8 1 011032 10.1103/PhysRevX.8.011032
    [Google Scholar]
  25. Morgan A.A. Zhelyazkova V. Hogan S.D. Preparation of circular Rydberg states in helium with n ≥ 70 using a modified version of the crossed-fields method. Phys. Rev. A (Coll. Park) 2018 98 4 043416 10.1103/PhysRevA.98.043416
    [Google Scholar]
  26. Kamenski A.A. Ovsiannikov V.D. Glukhov I.L. Interatomic interactions and thermally induced shifts and broadenings of energy levels of atoms in circular Rydberg states. Quantum Electron. 2019 49 5 464 472 10.1070/QEL17000
    [Google Scholar]
  27. Kamenski A.A. Manakov N.L. Mokhnenko S.N. Ovsiannikov V.D. Zenischeva A.A. van der Waals interaction of atoms in circular Rydberg states. Eur. Phys. J. D 2018 72 10 174 10.1140/epjd/e2018‑90164‑1
    [Google Scholar]
  28. Aliyu M.M. Ulugöl A. Abumwis G. Wüster S. Transport on flexible Rydberg aggregates using circular states. Phys. Rev. A (Coll. Park) 2018 98 4 043602 10.1103/PhysRevA.98.043602
    [Google Scholar]
  29. MacAdam K.B. Horsdal-Pedersen E. Charge transfer from coherent elliptic states. J. Phys. At. Mol. Opt. Phys. 2003 36 11 R167 R190 10.1088/0953‑4075/36/11/201
    [Google Scholar]
  30. Dutta S.K. Feldbaum D. Walz-Flannigan A. Guest J.R. Raithel G. High-angular-momentum states in cold Rydberg gases. Phys. Rev. Lett. 2001 86 18 3993 3996 10.1103/PhysRevLett.86.3993 11328078
    [Google Scholar]
  31. Lee E. Farrelly D. Uzer T. A Saturnian atom. Opt. Express 1997 1 7 221 228 10.1364/OE.1.000221 19373405
    [Google Scholar]
  32. Germann T.C. Herschbach D.R. Dunn M. Watson D.K. Circular Rydberg states of the hydrogen atom in a magnetic field. Phys. Rev. Lett. 1995 74 5 658 661 10.1103/PhysRevLett.74.658 10058815
    [Google Scholar]
  33. Cheng C.H. Lee C.Y. Gallagher T.F. Production of circular Rydberg states with circularly polarized microwave fields. Phys. Rev. Lett. 1994 73 23 3078 3081 10.1103/PhysRevLett.73.3078 10057282
    [Google Scholar]
  34. Chen L. Cheret M. Roussel F. Spiess G. New scheme for producing circular orbital states in combined RF and static fields. J. Phys. At. Mol. Opt. Phys. 1993 26 15 L437 L443 10.1088/0953‑4075/26/15/002
    [Google Scholar]
  35. Vainberg V.M. Popov V.S. Sergeev A.V. The 1/n expansion for a hydrogen atom in an external field. Sov. Phys. JETP 1990 71 470
    [Google Scholar]
  36. Vainberg V.M. Mur V.D. Popov V.S. Sergeev A.V. The hydrogen atom in a strong electric field. Sov. Phys. JETP 1987 66 258
    [Google Scholar]
  37. Wunner G. Kost M. Ruder H. “Circular” states of Rydberg atoms in strong magnetic fields. Phys. Rev. A Gen. Phys. 1986 33 2 1444 1447 10.1103/PhysRevA.33.1444 9896780
    [Google Scholar]
  38. Hulet R.G. Hilfer E.S. Kleppner D. Inhibited spontaneous emission by a Rydberg atom. Phys. Rev. Lett. 1985 55 20 2137 2140 10.1103/PhysRevLett.55.2137 10032058
    [Google Scholar]
  39. Bender C.M. Mlodinow L.D. Papanicolaou N. Semiclassical perturbation theory for the hydrogen atom in a uniform magnetic field. Phys. Rev. A Gen. Phys. 1982 25 3 1305 1314 10.1103/PhysRevA.25.1305
    [Google Scholar]
  40. Oks E. Circular Rydberg states of hydrogenlike systems in collinear electric and magnetic fields of arbitrary strengths: An exact analytical classical solution. Eur. Phys. J. D 2004 28 2 171 179 10.1140/epjd/e2003‑00308‑1
    [Google Scholar]
  41. Beletsky V.V. Essays on the Motion of Celestial Bodies Birkhäuser Basel 2001
    [Google Scholar]
  42. Oks E. Analytical solution for the three-dimensional motion of a circumbinary planet around a binary star. New Astron. 2020 74 101301 10.1016/j.newast.2019.101301
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348337887241109150308
Loading
/content/journals/cphs/10.2174/0127723348337887241109150308
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test