Skip to content
2000
image of Gold Ring and Graphite-Based Plasmonic Photonic Crystal Sensor for Biomedical Applications

Abstract

Introduction

This research puts forward a cost-efficient high-efficiency plasmonic photonic crystal sensor for biomedical applications that functions in the near-infrared range.

Method

The sensor design is composed of multiple two-dimensional photonic crystal layers stacked in the order of SiO foundational layer, graphite layer, MgF waveguide, and finally a gold ring over the top. The graphite layer is deposited for optimum sensing and high absorption peaks and is state-of-the-art in this research work. Metal deposition of the gold layer is used for harnessing plasmonic properties that play a vital role in detecting small refractive index changes.

Result

The sensor design is investigated for a range of coupling incident angles and it is found that the sensor is responsive to a broad range of angles , 0o to 80o. The proposed sensor has given output peak values of more than 90% in the whole range of incident source angles.

Conclusion

Finally, water and 25% concentration of glucose samples are used for investigating sensor performance and it is noted that the sensor’s sensitivity reaches as high as 1675 nm/RIU-1 with a Figure of Merit (FOM) of 20.94 RIU-1. The sensor’s numerical simulations have been performed using Finite Element Method (FEM) and Finite Difference Time Domain (FDTD).

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348340085241218173241
2024-12-27
2025-01-15
Loading full text...

Full text loading...

References

  1. McGurn A. Plasmonics. Nanophotonics Springer Series in Optical Sciences 2018 213
    [Google Scholar]
  2. Achanta V.G. Surface waves at metal-dielectric interfaces: Material science perspective. Reviews in Physics 2020 5 100041 10.1016/j.revip.2020.100041
    [Google Scholar]
  3. Zhou H. Li X. Wang L. Liang Y. Jialading A. Wang Z. Zhang J. Application of SERS quantitative analysis method in food safety detection. Rev. Anal. Chem. 2021 40 1 173 186 10.1515/revac‑2021‑0132
    [Google Scholar]
  4. Sarkaleh A. Lahijani B. Saberkari H. Esmaeeli A. Optical ring resonators: A platform for biological sensing applications. J. Med. Signals Sens. 2017 7 3 185 191 10.4103/jmss.JMSS_9_17 28840120
    [Google Scholar]
  5. Naresh V. Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Basel) 2021 21 4 1109 10.3390/s21041109 33562639
    [Google Scholar]
  6. Cheng Y. Luo H. Chen F. Gong R. Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency. OSA Continuum 2019 2 7 2113 10.1364/OSAC.2.002113
    [Google Scholar]
  7. Yao Y. Zhou J. Liu Z. Liu X. Fu G. Liu G. Refractory materials and plasmonics based perfect absorbers. Nanotechnology 2021 32 13 132002 10.1088/1361‑6528/abd275 33302265
    [Google Scholar]
  8. Watanabe T. Yu M.-J. Lan H.-Y. Haraguchi M. Lu Y.-J. Visible plasmonic perfect absorber based on titanium nitride metamaterial. Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVIII 2020 10.1117/12.2568276
    [Google Scholar]
  9. Zhao D. Lin Z. Zhu W. Lezec H.J. Xu T. Agrawal A. Zhang C. Huang K. Recent advances in ultraviolet nanophotonics: From plasmonics and metamaterials to metasurfaces. Nanophotonics 2021 10 9 2283 2308 10.1515/nanoph‑2021‑0083
    [Google Scholar]
  10. Tong A. Sorrell T.C. Black A.J. Caillaud C. Chrzanowski W. Li E. Martinez-Martin D. McEwan A. Wang R. Motion A. Bedoya A.C. Huang J. Azizi L. Eggleton B.J. Research priorities for COVID-19 sensor technology. Nat. Biotechnol. 2021 39 2 144 147 10.1038/s41587‑021‑00816‑8 33462510
    [Google Scholar]
  11. Greenwood N.N. Earnshaw A. Chemistry of the elements 2nd ed. Butterworth-Heinemann Oxford 2008 1181
    [Google Scholar]
  12. Feng D.D. Biomedical information technology. 2nd ed London United Kingdom Academic Press, Elsevier 2020
    [Google Scholar]
  13. Nejat M. Nozhat N. Multi-band MIM refractive index biosensor based on Ag-air grating with equivalent circuit and T-matrix methods in near-infrared region. Sci. Rep. 2020 10 1 6357 10.1038/s41598‑020‑63459‑w 32286460
    [Google Scholar]
  14. Zhu Y. Zhang H. Li D. Zhang Z. Zhang S. Yi J. Wang W. Magnetic plasmons in a simple metallic nanogroove array for refractive index sensing. Opt. Express 2018 26 7 9148 9154 10.1364/OE.26.009148 29715870
    [Google Scholar]
  15. Zafar R. Nawaz S. Singh G. d’Alessandro A. Salim M. Plasmonics-based refractive index sensor for detection of hemoglobin concentration. IEEE Sens. J. 2018 18 11 4372 4377 10.1109/JSEN.2018.2826040
    [Google Scholar]
  16. Kazanskiy N.L. Butt M.A. Khonina S.N. Carbon dioxide gas sensor based on polyhexamethylene biguanide polymer deposited on silicon nano-cylinders metasurface. Sensors (Basel) 2021 21 2 378 10.3390/s21020378 33430512
    [Google Scholar]
  17. Khonina S.N. Butt M.A. Kazanskiy N.L. Numerical investigation of metasurface narrowband perfect absorber and a plasmonic sensor for a near-infrared wavelength range. J. Opt. 2021 23 6 065102 10.1088/2040‑8986/abf890
    [Google Scholar]
  18. CST Studio Suite 3D EM simulation and analysis software. Available from: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/
  19. “FDTD Simulation software for EM analysis,” 3D EM Sim software based on FDTD. Available from: https://www.flexcompute.com/tidy3d/solver/
  20. Gharbi T. Barchiesi D. Kessentini S. Maalej R. Fitting optical properties of metals by Drude-Lorentz and partial-fraction models in the [0.5;6] eV range. Opt. Mater. Express 2020 10 5 1129 10.1364/OME.388060
    [Google Scholar]
  21. Wang G. Yang H. Liang J. Chen Q. Preparation Methods and Application of Silicon Oxide Films 2014 https://www.atlantis-press.com/proceedings/meic-14/15074 10.2991/meic‑14.2014.108
    [Google Scholar]
  22. E–LINE|RAITH150. 2024 Available from: https://raith.com/products/multifunctional-ebl/ (accessed Oct. 13, 2024)
  23. Krishnan A. Huang N. Wu S.H. Martínez L.J. Povinelli M.L. Enhanced and selective optical trapping in a slot-graphite photonic crystal. Opt. Express 2016 24 20 23271 23279 10.1364/OE.24.023271 27828391
    [Google Scholar]
  24. Sugai Y. Sugata H. Sugawara T. Muhammad S. Hämäläinen J. Lamminmäki N. Kostamo J. Optical, chemical and coverage properties of magnesium fluoride formed by atomic layer deposition. Opt. Rev. 2024 31 2 242 246 10.1007/s10043‑024‑00867‑7
    [Google Scholar]
  25. Chen Y. Hung S.F. Lo W.K. Chen Y. Shen Y. Kafenda K. Su J. Xia K. Yang S. A universal method for depositing patterned materials in situ. Nat. Commun. 2020 11 1 5334 10.1038/s41467‑020‑19210‑0 33087744
    [Google Scholar]
  26. Shawrav M.M. Taus P. Wanzenboeck H.D. Schinnerl M. Stöger-Pollach M. Schwarz S. Steiger-Thirsfeld A. Bertagnolli E. Highly conductive and pure gold nanostructures grown by electron beam induced deposition. Sci. Rep. 2016 6 1 34003 10.1038/srep34003 27666531
    [Google Scholar]
  27. Rehman A. Khan Y. Ahmed U. Irfan M. Amirzada M.R. Butt M.A. A comparative study of the photonic crystals-based cavities and usage in all-optical-amplification phenomenon. Photon. Nanostructures 2024 61 101298 101298 10.1016/j.photonics.2024.101298
    [Google Scholar]
  28. Biessikirski A. Barański K. Pytlik M. Kuterasiński Ł. Biegańska J. Słowiński K. Application of silicon dioxide as the inert component or oxide component enhancer in ANFO. Energies 2021 14 8 2152 10.3390/en14082152
    [Google Scholar]
  29. Kazanskiy N.L. Khonina S.N. Butt M.A. Subwavelength grating double slot waveguide racetrack ring resonator for refractive index sensing application. Sensors (Basel) 2020 20 12 3416 10.3390/s20123416 32560484
    [Google Scholar]
  30. Wright S.F. Zadrazil I. Markides C.N. A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows. Exp. Fluids 2017 58 9 108 10.1007/s00348‑017‑2386‑y
    [Google Scholar]
  31. Sarapukdee P. Spenner C. Schulz D. Palzer S. Optimizing stability and performance of silver-based grating structures for surface plasmon resonance sensors. Sensors (Basel) 2023 23 15 6743 6743 10.3390/s23156743 37571527
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348340085241218173241
Loading
/content/journals/cphs/10.2174/0127723348340085241218173241
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: graphite layer ; refractive index ; FEM ; Biomedical sensors ; FDTD ; sensitivity ; plasmonics ; photonic crystals
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test