Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Background

Calculations of the solar modulation parameter (Φ) over the past millennia typically use the relationship between the production rate of cosmogenic isotopes, the earth's dipole moment, and the magnitude of Φ. The cosmogenic isotopes 14C and 10Be are typically used in these studies. When studying solar modulation, the cyclic change in dipole tilt is usually not taken into account, which affects estimates of past solar activity.

Methods

Tree rings are a reliable basis for obtaining a radiocarbon time scale (IntCal13). However, determining the concentration of 14C in tree rings is a difficult and controversial task. The time scale derived from the 10Be production rate simulation (GICC05) is less reliable. Nevertheless, there is a way to combine the accuracy of the radiocarbon time scale with the reliability of estimates of the 10Be production rate. This method is the synchronization of the radiocarbon and beryllium-10 series.

We have selected the most relevant methods for calculating the solar modulation parameter Φ for the Holocene. When calculating Φ, 10Be data synchronized with 14C data were used. The latest data on the earth's dipole moment were considered. Empirical Mode Decomposition (EMD) was used in the analysis of Φ.

Results

It has been shown that the first two decomposition modes are oscillating components with periods of 710 and 208 years, the amplitudes of which increase with time, reaching a maximum of 2500 BP. From contemplation, it follows that the 710-year oscillations are apparently caused by fluctuations in the tilt of the earth's dipole. After excluding the EMD component associated with the 710-year cyclicity, a corrected series was obtained for the solar modulation parameter, free from the influence of changes in the tilt of the magnetic dipole.

Conclusion

The rate of formation of cosmogenic radionuclides depends on the intensity of penetration of Galactic Cosmic Rays (GCRs) into the earth's atmosphere. Before reaching earth, GCRs must cross the heliosphere, where they are exposed to solar modulation. Adequate consideration of solar modulation parameters is important for the correct interpretation of the rate of production of cosmogenic isotopes and solar activity.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348284507240417071143
2024-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. UsoskinI.G. AlankoK. MursulaK. KovaltsovG.A. Heliospheric modulation strength during the neutron monitor era.Sol. Phys.2002207238939910.1023/A:1016266801300
    [Google Scholar]
  2. HoytD.V. SchattenK.H. Group sunspot numbers: A new solar activity reconstruction.Sol. Phys.1998179118921910.1023/A:1005007527816
    [Google Scholar]
  3. UsoskinI.G. SolankiS.K. KovaltsovG.A. Grand minima and maxima of solar activity: New observational constraints.A & A2007471301309
    [Google Scholar]
  4. EddyJ.A. The maunder minimum.Science197619242451189120210.1126/science.192.4245.1189 17771739
    [Google Scholar]
  5. BondG. KromerB. BeerJ. MuschelerR. EvansM.N. ShowersW. HoffmannS. Lotti-BondR. HajdasI. BonaniG. Persistent solar influence on North Atlantic climate during the Holocene.Science200129455492130213610.1126/science.1065680 11739949
    [Google Scholar]
  6. BeerJ. Neutron monitor records in broader historical context.Space Sci. Rev.2000931/210711910.1023/A:1026536226656
    [Google Scholar]
  7. ParkerE.N. The passage of energetic charged particles through interplanetary space.Planet. Space Sci.196513194910.1016/0032‑0633(65)90131‑5
    [Google Scholar]
  8. GleesonL.J. AxfordW.I. Solar modulation of galactic cosmic rays.Astrophys. J.19681541011101810.1086/149822
    [Google Scholar]
  9. FiskL.A. AxfordW.I. Solar modulation of galactic cosmic rays, 1.J. Geophys. Res.196974214973498610.1029/JA074i021p04973
    [Google Scholar]
  10. Caballero-LopezR.A. MoraalH. Limitations of the force field equation to describe cosmic ray modulation.J. Geophys. Res.2004109A12003JA01009810.1029/2003JA010098
    [Google Scholar]
  11. HerbstK. KoppA. HeberB. SteinhilberF. FichtnerH. SchererK. MatthiäD. On the importance of the local interstellar spectrum for the solar modulation parameter.J. Geophys. Res.2010115D12009JD01255710.1029/2009JD012557
    [Google Scholar]
  12. KorteM. ConstableC. DonadiniF. HolmeR. Reconstructing the Holocene geomagnetic field.Earth Planet. Sci. Lett.20113123-449750510.1016/j.epsl.2011.10.031
    [Google Scholar]
  13. McElhinnyM.W. SenanayakeW.E. Variations in the geomagnetic dipole 1: The past 50,000 years.J. Geomag. Geoelectr.1982341395110.5636/jgg.34.39
    [Google Scholar]
  14. YangS. OdahH. ShawJ. Variations in the geomagnetic dipole moment over the last 12 000 years.Geophys. J. Int.2000140115816210.1046/j.1365‑246x.2000.00011.x
    [Google Scholar]
  15. KorhonenK. DonadiniF. RiisagerP. PesonenL.J. GEOMAGIA50: An archeointensity database with PHP and MySQL.Geochem. Geophys. Geosyst.2008942007GC00189310.1029/2007GC001893
    [Google Scholar]
  16. KnudsenM.F. RiisagerP. DonadiniF. SnowballI. MuschelerR. KorhonenK. PesonenL.J. Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr.Earth Planet. Sci. Lett.20082721-231932910.1016/j.epsl.2008.04.048
    [Google Scholar]
  17. KorteM. ConstableC.G. Continuous geomagnetic field models for the past 7 millennia: 2.CALS7K. Geochem. Geophys. Geosyst.2005622004GC00080110.1029/2004GC000801
    [Google Scholar]
  18. ConstableC. KorteM. PanovskaS. Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years.Earth Planet. Sci. Lett.2016453788610.1016/j.epsl.2016.08.015
    [Google Scholar]
  19. MuschelerR. AdolphiF. KnudsenM.F. Assessing the differences between the IntCal and Greenland ice-core time scales for the last 14,000 years via the common cosmogenic radionuclide variations.Quat. Sci. Rev.2014106818710.1016/j.quascirev.2014.08.017
    [Google Scholar]
  20. MasarikJ. BeerJ. Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere.J. Geophys. Res.1999104D10120991211110.1029/1998JD200091
    [Google Scholar]
  21. KovaltsovG.A. UsoskinI.G. A new 3D numerical model of cosmogenic nuclide 10Be production in the atmosphere.Earth Planet. Sci. Lett.20102911-418218810.1016/j.epsl.2010.01.011
    [Google Scholar]
  22. VonmoosM. BeerJ. MuschelerR. Large variations in Holocene solar activity: Constraints from 10 Be in the Greenland Ice Core Project ice core.J. Geophys. Res.2006111A102005JA01150010.1029/2005JA011500
    [Google Scholar]
  23. MuschelerR. JoosF. BeerJ. MüllerS.A. VonmoosM. SnowballI. Solar activity during the last 1000yr inferred from radionuclide records.Quat. Sci. Rev.2007261-2829710.1016/j.quascirev.2006.07.012
    [Google Scholar]
  24. SteinhilberF. AbreuJ.A. BeerJ. Solar modulation during the Holocene.Astrophysics and Space Sciences Transactions2008411610.5194/astra‑4‑1‑2008
    [Google Scholar]
  25. SteinhilberF. AbreuJ.A. BeerJ. BrunnerI. ChristlM. FischerH. HeikkiläU. KubikP.W. MannM. McCrackenK.G. MillerH. MiyaharaH. OerterH. WilhelmsF. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings.Proc. Natl. Acad. Sci. USA2012109165967597110.1073/pnas.1118965109 22474348
    [Google Scholar]
  26. RothR. JoosF. A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: Implications of data and model uncertainties.Clim. Past2013941879190910.5194/cp‑9‑1879‑2013
    [Google Scholar]
  27. DergachevV.A. VasilievS.S. Long-term changes in the concentration of radiocarbon and the nature of the Hallstatt cycle.J. Atmos. Sol. Terr. Phys.2019182102410.1016/j.jastp.2018.10.005
    [Google Scholar]
  28. HuangN.E. ShenZ. LongS.R. WuM.C. ShihH.H. ZhengQ. YenN-C. TungC.C. LiuH.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.Proc.- Royal Soc., Math. Phys. Eng. Sci.1998454197190399510.1098/rspa.1998.0193
    [Google Scholar]
  29. GrootesP.M. van der PlichtH. Hessel De Vries: Radiocarbon pioneer from Groningen.Radiocarbon202164341943310.1017/RDC.2021.63
    [Google Scholar]
  30. NilssonA. MuschelerR. SnowballI. Millennial scale cyclicity in the geodynamo inferred from a dipole tilt reconstruction.Earth Planet. Sci. Lett.20113113-429930510.1016/j.epsl.2011.09.030
    [Google Scholar]
  31. KorteM. MandeaM. Magnetic poles and dipole tilt variation over the past decades to millennia.Earth Planets Space200860993794810.1186/BF03352849
    [Google Scholar]
  32. LombN.R. Least-squares frequency analysis of unequally spaced data.Astrophys. Space Sci.197639244746210.1007/BF00648343
    [Google Scholar]
  33. ScargleJ.D. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data.Astrophys. J.198226383585310.1086/160554
    [Google Scholar]
  34. Sunspot Index and Long-term Solar Observations.Available From: http://www.sidc.be/SILSO/home
    [Google Scholar]
  35. FinkelR.C. NishiizumiK. Beryllium 10 concentrations in the Greenland ice sheet project 2 ice core from 3–40 ka.J. Geophys. Res.1997102C12266992670610.1029/97JC01282
    [Google Scholar]
  36. JohnsenS.J. DansgaardW. WhiteW.C. The origin of Arctic precipitation under present and glacial conditions.Tellus. Ser. B198941452468
    [Google Scholar]
  37. MayewskiP.A. MeekerL.D. TwicklerM.S. WhitlowS. YangQ. LyonsW.B. PrenticeM. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000 year-long glaciochemical series.J. Geophys. Res.1997102C1226,34526,366
    [Google Scholar]
  38. ReimerP.J. INTCAL04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP.Radiocarbon20044631029105810.1017/S0033822200032999
    [Google Scholar]
  39. McCrackenK.G. McDonaldF.B. BeerJ. RaisbeckG. YiouF. A phenomenological study of the long‐term cosmic ray modulation, 850–1958 AD.J. Geophys. Res.2004109A122004JA01068510.1029/2004JA010685
    [Google Scholar]
  40. NilssonA. Assessing Holocene and late Pleistocene geomagnetic dipole field variability.Lund University2011
    [Google Scholar]
  41. TauxeL. Essentials of Paleomagnetism: Fifth Web Edition.Available From: https://earthref.org/MagIC/books/Tauxe/Essentials/ 2021
  42. AmitH. OlsonP. Geomagnetic dipole tilt changes induced by core flow.Phys. Earth Planet. Inter.20081663-422623810.1016/j.pepi.2008.01.007
    [Google Scholar]
  43. KudryavtsevI.V. Possible cause of differences between reconstructions of the heliospheric modulation potential in the past based on data on the 10Be content in the ice of the Antarctic and Greenland.Geomagn. Aeron.20216181216122010.1134/S0016793221080132
    [Google Scholar]
  44. KudryavtsevI.V. DergachevV.A. NagovitsynY.A. Reconstructions of the heliospheric modulation potential and earth climate variations over the past 20 000 years.Geomagn. Aeron.202262785185810.1134/S0016793222070155
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348284507240417071143
Loading
/content/journals/cphs/10.2174/0127723348284507240417071143
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test