Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

The challenge of energy conversion and enhancement has been a problem in the world of lighting technologies as the population and global industrialization grow rapidly. Solid-state lighting (SSL) has proven to be a better alternative in the illumination industry because of its environmentally friendly and high energy efficiency. Lanthanide-doped phosphors have gained global attention in SSL because they have versatile applications with enhanced overall performance and luminescence. This review delves into the advancement in lanthanide-doped phosphors for Solid-state lighting (SSL) applications. It discusses the in-depth analysis of how to tailor the crystal lattice design, optimize the host material for emission efficiency, and minimize the non-radiative pathways. This paper further discusses the lanthanide-doped phosphor composition, strategies to obtain desired emission spectra, and enhanced color rendering index with the Energy transfer mechanism and the synthesis techniques. This review also addresses 3 processes for expanding the light spectrum, current challenges, future directions, and emerging trends present in the lanthanide-doped phosphor in Solid-state lighting (SSL) applications.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348280880240115054806
2024-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. AndersonA. BoydK. BuendiaG. Center of sustainable systems, university of Michigan. US Environmental Footprint Factsheets Pub No CSS08-08 20222022
    [Google Scholar]
  2. TsaoJ. ColtrinM. Solid-state lighting technology perspective.CA, United StatesAlbuquerque, NM, and Livermore200610.2172/889939
    [Google Scholar]
  3. BerghA. CrafordG. DuggalA. HaitzR. The promise and challenge of solid-state lighting.Phys. Today20015412424710.1063/1.1445547
    [Google Scholar]
  4. LuoX. XieR.J. Recent progress on discovery of novel phosphors for solid state lighting.J. Rare Earths202038546447310.1016/j.jre.2020.01.016
    [Google Scholar]
  5. ChatterjeeD. KhandekarS. Hybrid solar simulator for long-term testing of photothermal materials.IEEE Trans. Instrum. Meas.2023721810.1109/TIM.2023.3295471
    [Google Scholar]
  6. NguyenQ.K. GlorieuxB. SebeG. YangT.H. YuY.W. SunC.C. Passive anti-leakage of blue light for phosphor-converted white LEDs with crystal nanocellulose materials.Sci. Rep.20231311303910.1038/s41598‑023‑39929‑2 37563271
    [Google Scholar]
  7. PashaeiB. KarimiS. ShahroosvandH. AbbasiP. PilkingtonM. BartolottaA. FrestaE. Fernandez-CestauJ. CostaR.D. BonaccorsoF. Polypyridyl ligands as a versatile platform for solid-state light-emitting devices.Chem. Soc. Rev.201948195033513910.1039/C8CS00075A 31418444
    [Google Scholar]
  8. PanigrahiK. NagA. Challenges and strategies to design phosphors for future white light emitting diodes.J. Phys. Chem. C2022126208553856410.1021/acs.jpcc.2c01679
    [Google Scholar]
  9. ChenD. XiangW. LiangX. ZhongJ. YuH. DingM. LuH. JiZ. Advances in transparent glass–ceramic phosphors for white light-emitting diodes—A review.J. Eur. Ceram. Soc.201535385986910.1016/j.jeurceramsoc.2014.10.002
    [Google Scholar]
  10. FangM.H. BaoZ. HuangW.T. LiuR.S. Evolutionary generation of phosphor materials and their progress in future applications for light-emitting diodes.Chem. Rev.202212213114741151310.1021/acs.chemrev.1c00952 35603576
    [Google Scholar]
  11. YanY. LuoC. LingS. LiangJ. LiaoS. HuangY. Enhancing quantum efficiency and thermal stability in Gd2SrAl2O7: Mn4+, Bi3+, Na+ far-red emitting phosphor by energy transfer and cation substitution strategy for indoor plant growth LED lighting.J. Alloys Compd.202394716960910.1016/j.jallcom.2023.169609
    [Google Scholar]
  12. GodithiS.B. SachdevaE. GargV. BrownR. KohlerC. RawalR. A review of advances for thermal and visual comfort controls in personal environmental control (PEC) systems.Intell. Build. Int.20191127510410.1080/17508975.2018.1543179
    [Google Scholar]
  13. LiuY. GuoY. LiuY. High‐mobility organic light‐emitting semiconductors and its optoelectronic devices.Small Struct.202121200008310.1002/sstr.202000083
    [Google Scholar]
  14. GriffiniG. Host matrix materials for luminescent solar concentrators: Recent achievements and forthcoming challenges.Front. Mater.201962910.3389/fmats.2019.00029
    [Google Scholar]
  15. TabanliS. YilmazH.C. BilirG. ErdemM. EryurekG. BartoloB.D. CollinsJ. Broadband, White Light Emission from Doped and Undoped Insulators.ECS J. Solid State Sci. Technol.201871R3199R321010.1149/2.0261801jss
    [Google Scholar]
  16. LegendreJ. ChapuisP.O. Overcoming non-radiative losses with AlGaAs PIN junctions for near-field thermophotonic energy harvesting.Appl. Phys. Lett.20221211919390210.1063/5.0116662
    [Google Scholar]
  17. AminM.R. StrobelP. SchnickW. SchmidtP.J. MoewesA. Energy levels of Eu 2+ states in the next-generation LED-phosphor SrLi 2 Al 2 O 2 N 2:Eu 2+.J. Mater. Chem. C Mater. Opt. Electron. Devices202210269740974710.1039/D2TC01372J
    [Google Scholar]
  18. ZhangH. ZhongJ. DuF. ChenL. ZhangX. MuZ. ZhaoW. Efficient and thermally stable broad-band near-infrared emission in a KAlP 2 O 7:Cr 3+ phosphor for nondestructive examination.ACS Appl. Mater. Interfaces2022149116631167110.1021/acsami.2c00200 35195983
    [Google Scholar]
  19. HofmanE. KhammangA. WrightJ.T. LiZ.J. McLaughlinP.F. DavisA.H. FranckJ.M. ChakrabortyA. MeulenbergR.W. ZhengW. Decoupling and coupling of the host–dopant interaction by manipulating dopant movement in core/shell quantum dots.J. Phys. Chem. Lett.202011155992599910.1021/acs.jpclett.0c01861 32633980
    [Google Scholar]
  20. ZhuoY. HariyaniS. ArmijoE. Abolade LawsonZ. BrgochJ. Evaluating thermal quenching temperature in eu 3+ -substituted oxide phosphors via machine learning.ACS Appl. Mater. Interfaces20201255244525010.1021/acsami.9b16065 31860258
    [Google Scholar]
  21. XiangY. LiuZ. GaoY. FengL. ZhouT. LiuM. ZhaoY. LaiX. BiJ. GaoD. Novel double perovskite Ca2Gd0.5Nb1-W5/6O6:0.5 Eu3+ red phosphors with excellent thermal stability and high color purity for white LEDs.Chem. Eng. J.202345614090110.1016/j.cej.2022.140901
    [Google Scholar]
  22. ZhengT. LuoL. DuP. LisS. Rodríguez-MendozaU.R. LavínV. MartínI.R. RunowskiM. Pressure-triggered enormous redshift and enhanced emission in Ca2Gd8Si6O26:Ce3+ phosphors: Ultrasensitive, thermally-stable and ultrafast response pressure monitoring.Chem. Eng. J.202244313641410.1016/j.cej.2022.136414
    [Google Scholar]
  23. RuanF. FanG. LiY. ZhouJ. LiN. FanD. ChenQ. Fluorescence properties and thermal stability of Sr2Gd1-xNbO6: xEu3+ with dual-wavelength excitation response.Opt. Mater.202314411434810.1016/j.optmat.2023.114348
    [Google Scholar]
  24. WangS. YaoY. KongJ. ZhaoS. SunZ. WuZ. LiL. LuoJ. Highly efficient white-light emission in a polar two-dimensional hybrid perovskite.Chem. Commun.201854324053405610.1039/C8CC01663A 29620108
    [Google Scholar]
  25. MorkoçH. MohammadS.N. High-luminosity blue and blue-green gallium nitride light-emitting diodes.Science19952675194515510.1126/science.267.5194.51 17840057
    [Google Scholar]
  26. KenteT. MhlangaS.D. Gallium nitride nanostructures: Synthesis, characterization and applications.J. Cryst. Growth2016444557210.1016/j.jcrysgro.2016.03.033
    [Google Scholar]
  27. ZhangN. LiuZ. The InGaN material system and blue/green emitters. Light-Emitting Diodes.Springer201920324310.1007/978‑3‑319‑99211‑2_6
    [Google Scholar]
  28. Van der HeggenD. JoosJ.J. FengA. FritzV. DelgadoT. GartmannN. WalfortB. RytzD. HagemannH. PoelmanD. VianaB. SmetP.F. Persistent Luminescence in Strontium Aluminate: A Roadmap to a Brighter Future.Adv. Funct. Mater.20223252220880910.1002/adfm.202208809
    [Google Scholar]
  29. EtafoN.O. OlivaJ. GarciaC.R. Mtz-EnríquezA.I. RuizJ.I. Avalos-BelmontesF. Lopez-BadilloC.M. Gomez-SolisC. Enhancing of the blue/NIR emission of novel BaLaAlO4:Yb3+(X mol%),Tm3+ (0.5 mol%) upconversion phosphors with the Yb3+ concentration (X = 0.5 to 6).Inorg. Chem. Commun.202213710919210.1016/j.inoche.2021.109192
    [Google Scholar]
  30. EtafoN. Rodriguez GarciaC. Esquivel-CastroT. León-MadridM. SantibañezA. OlivaJ. The effect of a Yb co-dopant on the blue upconversion and thermoluminescent emission of SrLaAlO4:Yb3+,Tm3+ phosphors.Coatings2023136100310.3390/coatings13061003
    [Google Scholar]
  31. SunL. DevakumarB. LiangJ. WangS. SunQ. HuangX. Highly efficient Ce 3+ → Tb 3+ energy transfer induced bright narrowband green emissions from garnet-type Ca 2 YZr 2 (AlO 4) 3:Ce 3+, Tb 3+ phosphors for white LEDs with high color rendering index.J. Mater. Chem. C Mater. Opt. Electron. Devices2019734104711048010.1039/C9TC03664D
    [Google Scholar]
  32. TongY. ChenY. ChenS. WeiR. ChenL. GuoH. Luminescent properties of Na2GdMg2(VO4)3:Eu3+ red phosphors for NUV excited pc-WLEDs.Ceram. Int.2021479123201232610.1016/j.ceramint.2021.01.083
    [Google Scholar]
  33. ZhaoH. SunD. LyuZ. ShenS. WangL. ZhouL. LuZ. WangJ. HeJ. YouH. An efficient blue-excitable broadband Y 3 ScAl 4 O 12:Ce 3+ garnet phosphor for WLEDs.Dalton Trans.20235235124701247710.1039/D3DT01898A 37602396
    [Google Scholar]
  34. LeiL. DongQ. GundogduK. SoF. Metal halide perovskites for laser applications.Adv. Funct. Mater.20213116201014410.1002/adfm.202010144
    [Google Scholar]
  35. VeldhuisS.A. BoixP.P. YantaraN. LiM. SumT.C. MathewsN. MhaisalkarS.G. Perovskite materials for light‐emitting diodes and lasers.Adv. Mater.201628326804683410.1002/adma.201600669 27214091
    [Google Scholar]
  36. ZhangL. MeiL. WangK. LvY. ZhangS. LianY. LiuX. MaZ. XiaoG. LiuQ. ZhaiS. ZhangS. LiuG. YuanL. GuoB. ChenZ. WeiK. LiuA. YueS. NiuG. PanX. SunJ. HuaY. WuW.Q. DiD. ZhaoB. TianJ. WangZ. YangY. ChuL. YuanM. ZengH. YipH.L. YanK. XuW. ZhuL. ZhangW. XingG. GaoF. DingL. Advances in the application of perovskite materials.Nano-Micro Lett.202315117710.1007/s40820‑023‑01140‑3 37428261
    [Google Scholar]
  37. WuT. QinZ. WangY. WuY. ChenW. ZhangS. CaiM. DaiS. ZhangJ. LiuJ. ZhouZ. LiuX. SegawaH. TanH. TangQ. FangJ. LiY. DingL. NingZ. QiY. ZhangY. HanL. The main progress of perovskite solar cells in 2020–2021.Nano-Micro Lett.202113115210.1007/s40820‑021‑00672‑w 34232444
    [Google Scholar]
  38. WeyherJ.L. KamlerG. NowakG. BorysiukJ. LucznikB. KryskoM. GrzegoryI. PorowskiS. Defects in GaN single crystals and homoepitaxial structures.J. Cryst. Growth2005281113514210.1016/j.jcrysgro.2005.03.020
    [Google Scholar]
  39. LuoD. SuR. ZhangW. GongQ. ZhuR. Minimizing non-radiative recombination losses in perovskite solar cells.Nat. Rev. Mater.201951446010.1038/s41578‑019‑0151‑y
    [Google Scholar]
  40. WuX. KimM. KwonH. WangY. Photochemical creation of fluorescent quantum defects in semiconducting carbon nanotube hosts.Angew. Chem. Int. Ed.201857364865310.1002/anie.201709626 29215774
    [Google Scholar]
  41. LiuQ. VandewalK. Understanding and suppressing non‐radiative recombination losses in non‐fullerene organic solar cells.Adv. Mater.20233535230245210.1002/adma.202302452 37201949
    [Google Scholar]
  42. PhungN. Al-AshouriA. MeloniS. MattoniA. AlbrechtS. UngerE.L. MerdasaA. AbateA. The role of grain boundaries on ionic defect migration in metal halide perovskites.Adv. Energy Mater.20201020190373510.1002/aenm.201903735
    [Google Scholar]
  43. KimS. HoodS.N. ParkJ.S. WhalleyL.D. WalshA. Quick-start guide for first-principles modelling of point defects in crystalline materials.JPhys Energy20202303600110.1088/2515‑7655/aba081
    [Google Scholar]
  44. ZhongK. BuR. JiaoF. LiuG. ZhangC. Toward the defect engineering of energetic materials: A review of the effect of crystal defects on the sensitivity.Chem. Eng. J.202242913231010.1016/j.cej.2021.132310
    [Google Scholar]
  45. FeldmannS. GangishettyM. BravićI. NeumannT. PengB. WinklerT. Exciton localization in doped perovskite nanocrystals enhances intrinsic radiative recombination. Physical Chemistry of Semiconductor Materials and Interfaces XX. CongreveD. NielsenC. MusserA.J. BaranD. SPIE20213910.1117/12.2594757
    [Google Scholar]
  46. RajaA. ChavesA. YuJ. ArefeG. HillH.M. RigosiA.F. BerkelbachT.C. NaglerP. SchüllerC. KornT. NuckollsC. HoneJ. BrusL.E. HeinzT.F. ReichmanD.R. ChernikovA. Coulomb engineering of the bandgap and excitons in two-dimensional materials.Nat. Commun.2017811525110.1038/ncomms15251 28469178
    [Google Scholar]
  47. WangJ. EwingR.C. BeckerU. Defect formation energy in pyrochlore: The effect of crystal size.Mater. Res. Express20141303550110.1088/2053‑1591/1/3/035501
    [Google Scholar]
  48. NagD. AggarwalT. SinhaS. SarkarR. BhuniaS. ChenY.F. GangulyS. SahaD. HorngR-H. LahaA. Carrier-induced defect saturation in green InGaN LEDs: A potential phenomenon to enhance efficiency at higher wavelength regime.ACS Photonics20218392693210.1021/acsphotonics.0c01969
    [Google Scholar]
  49. FornariR. Electronic materials and crystal growth. Single Crystals of Electronic Materials.Elsevier20191310.1016/B978‑0‑08‑102096‑8.00001‑X
    [Google Scholar]
  50. LinC.C. MeijerinkA. LiuR.S. Critical red components for next-generation white LEDs.J. Phys. Chem. Lett.20167349550310.1021/acs.jpclett.5b02433 26758988
    [Google Scholar]
  51. GeorgeN.C. DenaultK.A. SeshadriR. Phosphors for solid-state white lighting.Annu. Rev. Mater. Res.201343148150110.1146/annurev‑matsci‑073012‑125702
    [Google Scholar]
  52. KumarG. HaldarA. VijayaR. Photonic crystal based heterostructures in the control of emission and diffraction features.ISSS J. Micro Smart Syst.20221118111210.1007/s41683‑021‑00086‑1
    [Google Scholar]
  53. XiaZ. MeijerinkA. Ce 3+ -Doped garnet phosphors: Composition modification, luminescence properties and applications.Chem. Soc. Rev.201746127529910.1039/C6CS00551A 27834975
    [Google Scholar]
  54. UnithrattilS. KimH.J. GilK.H. VuN.H. HoangV.H. KimY.H. ArunkumarP. ImW.B. Engineering the lattice site occupancy of apatite-structure phosphors for effective broad-band emission through cation pairing.Inorg. Chem.201756105696570310.1021/acs.inorgchem.7b00310 28467077
    [Google Scholar]
  55. GopalakrishnaP.L.B. RajendranD.N. Effect of lanthanide ion co-doping on the luminescence in the cerium-doped zinc oxide-phosphor system.Spectrosc. Lett.201952843144010.1080/00387010.2019.1659824
    [Google Scholar]
  56. HalappaP. MathurA. DelvilleM.H. ShivakumaraC. Alkali metal ion co-doped Eu3+ activated GdPO4 phosphors: Structure and photoluminescence properties.J. Alloys Compd.20187401086109810.1016/j.jallcom.2018.01.087
    [Google Scholar]
  57. ParkW.B. SongY. PyoM. SohnK.S. Nonradiative energy transfer between two different activator sites in La_4−xCa_xSi_12O_3+xN_18−x:Eu^2+.Opt. Lett.201338101739174110.1364/OL.38.001739 23938929
    [Google Scholar]
  58. GautierR. LiX. XiaZ. MassuyeauF. Two-step design of a single-doped white phosphor with high color rendering.J. Am. Chem. Soc.201713941436143910.1021/jacs.6b12597 28098997
    [Google Scholar]
  59. DaiP. WangQ. XiangM. ChenT.M. ZhangX. ChiangY.W. ChanT-S. WangX. Composition-driven anionic disorder-order transformations triggered single-Eu2+-converted high-color-rendering white-light phosphors.Chem. Eng. J.202038012250810.1016/j.cej.2019.122508
    [Google Scholar]
  60. HuangY.F. ChiY.C. ChengC.H. TsaiC.T. WangW.C. HuangD.W. ChenL-Y. LinG-R. LuAG:Ce/CASN:Eu phosphor enhanced high-CRI R/G/B LD lighting fidelity.J. Mater. Chem. C Mater. Opt. Electron. Devices20197319556956310.1039/C9TC01586H
    [Google Scholar]
  61. HermusM. PhanP.C. DukeA.C. BrgochJ. Tunable optical properties and increased thermal quenching in the blue-emitting phosphor series: Ba 2 (Y1– x Lux)5B5O17:Ce3+ (x = 0–1).Chem. Mater.201729125267527510.1021/acs.chemmater.7b01416
    [Google Scholar]
  62. GiordanoL. DuH. CastaingV. LuanF. GuoD. VianaB. Enhanced red-UC luminescence through Ce3+ co-doping in NaBiF4:Yb3+/Ho3+(Er3+)/Ce3+ phosphors prepared by ultrafast coprecipitation approach.Opt. Mater.: X.20221610019910.1016/j.omx.2022.100199
    [Google Scholar]
  63. OhJ.H. OhJ.R. ParkH.K. SungY.G. DoY.R. New paradigm of multi-chip white LEDs: combination of an InGaN blue LED and full down-converted phosphor-converted LEDs.Opt. Express201119S3A270A27910.1364/OE.19.00A270 21643368
    [Google Scholar]
  64. ZhangZ. LiJ. YangN. LiangQ. XuY. FuS. YanJ. ZhouJ. ShiJ. WuM. A novel multi-center activated single-component white light-emitting phosphor for deep UV chip-based high color-rendering WLEDs.Chem. Eng. J.202039012460110.1016/j.cej.2020.124601
    [Google Scholar]
  65. ZhangX. ZhuZ. GuoZ. SunZ. YangZ. ZhangT. ZhangJ. WuZ. WangZ. Dopant preferential site occupation and high efficiency white emission in K 2 BaCa(PO 4) 2:Eu 2+, Mn 2+ phosphors for high quality white LED applications.Inorg. Chem. Front.2019651289129810.1039/C9QI00138G
    [Google Scholar]
  66. LengZ. ZhangD. BaiH. HeH. QingQ. ZhaoJ. TangZ. A zero-thermal-quenching perovskite-like phosphor with an ultra-narrow-band blue-emission for wide color gamut backlight display applications.J. Mater. Chem. C Mater. Opt. Electron. Devices2021939137221373210.1039/D1TC03317D
    [Google Scholar]
  67. GreenM.A. KeeversM.J. ThomasI. LasichJ.B. EmeryK. KingR.R. 40% efficient sunlight to electricity conversion.Prog. Photovolt. Res. Appl.201523668569110.1002/pip.2612
    [Google Scholar]
  68. SoumyaC. DeepanrajB. RanjithaJ. A review on solar photovoltaic systems and its application in electricity generation.AIP Conf. Proc.2021239602001110.1063/5.0066291
    [Google Scholar]
  69. AndreaniL.C. BozzolaA. KowalczewskiP. LiscidiniM. RedoriciL. Silicon solar cells: Toward the efficiency limits.Adv. Phys. X201941154830510.1080/23746149.2018.1548305
    [Google Scholar]
  70. RasoolS. YeopJ. AnN.G. KimJ.W. KimJ.Y. Role of charge‐carrier dynamics toward the fabrication of efficient air‐processed organic solar cells.Small Methods2023230057810.1002/smtd.202300578 37649231
    [Google Scholar]
  71. KocherginV. NeelyL. JaoC.Y. RobinsonH.D. Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices.Appl. Phys. Lett.2011981313330510.1063/1.3574091
    [Google Scholar]
  72. ZhangP. WangT. ChangX. GongJ. Effective charge carrier utilization in photocatalytic conversions.Acc. Chem. Res.201649591192110.1021/acs.accounts.6b00036 27075166
    [Google Scholar]
  73. YamaguchiM. DimrothF. GeiszJ.F. Ekins-DaukesN.J. Multi-junction solar cells paving the way for super high-efficiency.J. Appl. Phys.20211292424090110.1063/5.0048653
    [Google Scholar]
  74. ChauhanV. KumarY. GuptaD. SharmaA. Quantum dots and nanoparticles in light-emitting diodes and displays applications. Advanced Materials for Solid State Lighting.Springer202325327710.1007/978‑981‑99‑4145‑2_10
    [Google Scholar]
  75. JinG.Q. ChauC.V. ArambulaJ.F. GaoS. SesslerJ.L. ZhangJ.L. Lanthanide porphyrinoids as molecular theranostics.Chem. Soc. Rev.202251146177620910.1039/D2CS00275B 35792133
    [Google Scholar]
  76. ZhuX. ZhangH. ZhangF. Ligand-based surface engineering of lanthanide nanoparticles for bioapplications.ACS Mater. Lett.2022491815183010.1021/acsmaterialslett.2c00528
    [Google Scholar]
  77. XuD. Lanthanide-activated upconversion luminescent nanomaterials. Upconversion Nanoparticles (UCNPs) for Functional Applications.Springer202316519210.1007/978‑981‑99‑3913‑8_7
    [Google Scholar]
  78. FengR. LiG. KoC.N. ZhangZ. WanJ.B. ZhangQ.W. Long‐lived second near‐infrared luminescent probes: An emerging role in time‐resolved luminescence bioimaging and biosensing.Small Struct.202342220013110.1002/sstr.202200131
    [Google Scholar]
  79. LiX. LiangH. ZhengC. ZhaoC. BaiS. ZhaoX. ZhangH. ZhuY. White light emitting diodes based on lanthanide ions doped Cs2NaInCl6 double perovskites.J. Alloys Compd.202396617154210.1016/j.jallcom.2023.171542
    [Google Scholar]
  80. RafiqueR. KailasaS.K. ParkT.J. Upconversion-luminescent nanomaterials for biomedical applications. Upconversion Nanophosphors.Elsevier202233737410.1016/B978‑0‑12‑822842‑5.00005‑4
    [Google Scholar]
  81. PhamH. MillerL.W. Lanthanide-based resonance energy transfer biosensors for live-cell applications. Methods Enzymol.202165129131110.1016/bs.mie.2021.01.010
    [Google Scholar]
  82. TiwariA. DhobleS.J. Tunable lanthanide/transition metal ion‐doped novel phosphors for possible application in w‐LEDs: A review.Luminescence202035143310.1002/bio.3712 31647168
    [Google Scholar]
  83. RevathyJ.S. AbrahamM. JagannathG. RajendranD.N. DasS. Microwave-assisted synthesis of GdOF: Eu3+/Tb3+ ultrafine phosphor powders suitable for advanced forensic and security ink applications.J. Colloid Interface Sci.20236411014103210.1016/j.jcis.2023.03.082 36996681
    [Google Scholar]
  84. YaoJ. YangM. DuanY. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy.Chem. Rev.2014114126130617810.1021/cr200359p 24779710
    [Google Scholar]
  85. WangT. WangX. YangR. LiC. Recent advances in ternary organic solar cells based on förster resonance energy transfer.Sol. RRL2021512210049610.1002/solr.202100496
    [Google Scholar]
  86. Cardoso Dos SantosM. AlgarW.R. MedintzI.L. HildebrandtN. Quantum dots for Förster Resonance Energy Transfer (FRET).Trends Analyt. Chem.202012511581910.1016/j.trac.2020.115819
    [Google Scholar]
  87. GrazonC. ChernM. LallyP. BaerR.C. FanA. LecommandouxS. KlapperichC. DennisA.M. GalaganJ.E. GrinstaffM.W. The quantum dot vs. organic dye conundrum for ratiometric FRET-based biosensors: Which one would you chose?Chem. Sci.202213226715673110.1039/D1SC06921G 35756504
    [Google Scholar]
  88. YangQ. HuZ. ZhuS. MaR. MaH. MaZ. WanH. ZhuT. JiangZ. LiuW. JiaoL. SunH. LiangY. DaiH. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance.J. Am. Chem. Soc.201814051715172410.1021/jacs.7b10334 29337545
    [Google Scholar]
  89. WallaceB. AtzbergerP.J. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency.PLoS One2017125e017712210.1371/journal.pone.0177122 28542211
    [Google Scholar]
  90. SteeleJ.M. RamnaraceC.M. FarnerW.R. Controlling FRET enhancement using plasmon modes on gold nanogratings.J. Phys. Chem. C201712140223532236010.1021/acs.jpcc.7b07317
    [Google Scholar]
  91. JoglekarA. ChenR. LawrimoreJ. A sensitized emission based calibration of FRET efficiency for probing the architecture of macromolecular machines.Cell. Mol. Bioeng.20136436938210.1007/s12195‑013‑0290‑y 24319499
    [Google Scholar]
  92. WangJ. ShengT. ZhuX. LiQ. WuY. ZhangJ. LiuJ. ZhangY. Spectral engineering of lanthanide-doped upconversion nanoparticles and their biosensing applications.Mater. Chem. Front.2021541743177010.1039/D0QM00910E
    [Google Scholar]
  93. LiuJ. WangQ. SangX. HuH. LiS. ZhangD. LiuC. WangQ. ZhangB. WangW. SongF. Modulated luminescence of lanthanide materials by local surface plasmon resonance effect.Nanomaterials2021114103710.3390/nano11041037 33921613
    [Google Scholar]
  94. WadsworthA. HamidZ. KoscoJ. GaspariniN. McCullochI. The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications.Adv. Mater.20203238200176310.1002/adma.202001763 32754970
    [Google Scholar]
  95. ZhangC. BaktashA. ZhongJ.X. ChenW. BaiY. HaoM. ChenP. HeD. DingS. SteeleJ.A. LinT. LyuM. WenX. WuW-Q. WangL. Dual metal‐assisted defect engineering towards high‐performance perovskite solar cells.Adv. Funct. Mater.20223252220807710.1002/adfm.202208077
    [Google Scholar]
  96. ShindeK.N. DhobleS.J. SwartH.C. ParkK. Basic mechanisms of photoluminescence. Phosphate Phosphors for Solid-State Lighting.Springer2012415910.1007/978‑3‑642‑34312‑4_2
    [Google Scholar]
  97. WangY. DingJ. ZhouX. WangY. Promotion of efficiency and thermal stability by restraining dynamic energy migration based on the highly symmetric rigid structure in the n-UV excitation green emission garnet phosphors.Chem. Eng. J.202038112252810.1016/j.cej.2019.122528
    [Google Scholar]
  98. LinY.C. BettinelliM. KarlssonM. Unraveling the mechanisms of thermal quenching of luminescence in Ce 3+ -doped garnet phosphors.Chem. Mater.201931113851386210.1021/acs.chemmater.8b05300
    [Google Scholar]
  99. LvX. GuoN. XiaoR. MaQ. LiuR. YangM. ShaoB. OuyangR. Tuning the thermal quenching properties of Ga3+-modified LiTaO3:Bi3+ phosphor through defect engineering strategy.J. Lumin.202325511960910.1016/j.jlumin.2022.119609
    [Google Scholar]
  100. FangZ. HeH. GanL. LiJ. YeZ. Understanding the role of lithium doping in reducing nonradiative loss in lead halide perovskites.Adv. Sci.2018512180073610.1002/advs.201800736 30581694
    [Google Scholar]
  101. MoonH. LeeC. LeeW. KimJ. ChaeH. Stability of quantum dots, quantum dot films, and quantum dot light‐emitting diodes for display applications.Adv. Mater.20193134180429410.1002/adma.201804294 30650209
    [Google Scholar]
  102. ChaudharyB. JainN.K. MurugesanJ. PatelV. Exploring temperature-controlled friction stir powder additive manufacturing process for multi-layer deposition of aluminum alloys.J. Mater. Res. Technol.20222026026810.1016/j.jmrt.2022.07.049
    [Google Scholar]
  103. SuttonR.J. EperonG.E. MirandaL. ParrottE.S. KaminoB.A. PatelJ.B. HörantnerM.T. JohnstonM.B. HaghighiradA.A. MooreD.T. SnaithH.J. Bandgap‐tunable cesium lead halide perovskites with high thermal stability for efficient solar cells.Adv. Energy Mater.201668150245810.1002/aenm.201502458
    [Google Scholar]
  104. YangT. GaoL. LuJ. MaC. DuY. WangP. DingZ. WangS. XuP. LiuD. LiH. ChangX. FangJ. TianW. YangY. LiuS. ZhaoK. One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells.Nat. Commun.202314183910.1038/s41467‑023‑36229‑1 36792606
    [Google Scholar]
  105. AydinE. UgurE. YildirimB.K. AllenT.G. DallyP. RazzaqA. CaoF. XuL. VishalB. YazmaciyanA. SaidA.A. ZhumagaliS. AzmiR. BabicsM. FellA. XiaoC. De WolfS. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells.Nature2023623798873273810.1038/s41586‑023‑06667‑4 37769785
    [Google Scholar]
  106. SchmidtF. AmreinM. HedwigS. Kober-CzernyM. ParacchinoA. HolappaV. SuhonenR. SchäfferA. ConstableE.C. SnaithH.J. LenzM. Organic solvent free PbI2 recycling from perovskite solar cells using hot water.J. Hazard. Mater.202344713082910.1016/j.jhazmat.2023.130829 36682249
    [Google Scholar]
  107. ZanoniK.P.S. Pérez-del-ReyD. DreessenC. RodkeyN. SessoloM. SoltanpoorW. Morales-MasisM. BolinkH.J. Tin(IV) oxide electron transport layer via industrial-scale pulsed laser deposition for planar perovskite solar cells.ACS Appl. Mater. Interfaces20231527326213262810.1021/acsami.3c04387 37368062
    [Google Scholar]
  108. HuangY.M. James SinghK. HsiehT.H. LangpoklakpamC. LeeT.Y. LinC.C. LiY. ChenF.C. ChenS.C. KuoH.C. HeJ.H. Gateway towards recent developments in quantum dot-based light-emitting diodes.Nanoscale202214114042406410.1039/D1NR05288H 35246672
    [Google Scholar]
  109. MannaL. The Bright and Enlightening Science of Quantum Dots.Nano Lett.202323219673967610.1021/acs.nanolett.3c03904 37870455
    [Google Scholar]
  110. ChenX. LinX. ZhouL. SunX. LiR. ChenM. YangY. HouW. WuL. CaoW. ZhangX. YanX. ChenS. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling.Nat. Commun.202314128410.1038/s41467‑023‑35954‑x 36650161
    [Google Scholar]
  111. GaoY. LiB. LiuX. ShenH. SongY. SongJ. YanZ. YanX. ChongY. YaoR. WangS. LiL.S. FanF. DuZ. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting.Nat. Nanotechnol.202318101168117410.1038/s41565‑023‑01441‑z 37474685
    [Google Scholar]
  112. YuanJ. TianJ. Ligand engineering of CsPbI 3 quantum dots for efficient solar cells.J. Phys. Chem. C202312726125201252710.1021/acs.jpcc.3c02711
    [Google Scholar]
  113. BronsteinH. NielsenC.B. SchroederB.C. McCullochI. The role of chemical design in the performance of organic semiconductors.Nat. Rev. Chem.202042667710.1038/s41570‑019‑0152‑9 37128048
    [Google Scholar]
  114. LiY. HuangB. ZhangX. DingJ. ZhangY. XiaoL. WangB. ChengQ. HuangG. ZhangH. YangY. QiX. ZhengQ. ZhangY. QiuX. LiangM. ZhouH. Lifetime over 10000 hours for organic solar cells with Ir/IrOx electron-transporting layer.Nat. Commun.2023141124110.1038/s41467‑023‑36937‑8 36871022
    [Google Scholar]
  115. WangS. WangB. HeS. WangY. ChengJ. LiY. Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells via introducing binary-mixed organic electron transport layers.New J. Chem.202347105048505510.1039/D2NJ05127C
    [Google Scholar]
  116. MutluA. ÇırakD. YeşilT. ZaferC. GultekinB. New additive as Li+ source for charge transfer improvement at triple-cation perovskite/Spiro-OMeTAD interface.Org. Electron.202311310667410.1016/j.orgel.2022.106674
    [Google Scholar]
  117. WengelerB. Organic Electronics -New printed Electrodes Concepts.Institut Fur Thermische Verfahrenstechnik2020
    [Google Scholar]
  118. TalapinD.V. SteckelJ. Quantum dot light-emitting devices.MRS Bull.201338968569110.1557/mrs.2013.204
    [Google Scholar]
  119. ZhouY. HerzL.M. JenA.K.Y. SalibaM. Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells.Nat. Energy20227979480710.1038/s41560‑022‑01096‑5
    [Google Scholar]
  120. KumarA. DuttaS. KimS. KwonT. PatilS.S. KumariN. JeevanandhamS. LeeI.S. Solid-state reaction synthesis of nanoscale materials: Strategies and applications.Chem. Rev.202212215127481286310.1021/acs.chemrev.1c00637 35715344
    [Google Scholar]
  121. Katbe, CR Synthesis and application of photoluminescent doped lanthanide oxide microspheres using the reaction-diffusion framework (RDF). Thesis; Faculty of Arts and Sciences2023
    [Google Scholar]
  122. AyachiF. SaidiK. ChaabaniW. DammakM. Synthesis and luminescence properties of Er3+ doped and Er3+–Yb3+ codoped phosphovanadate YP0.5V0.5O4 phosphors.J. Lumin.202124011845110.1016/j.jlumin.2021.118451
    [Google Scholar]
  123. DeviH.J. LoitongbamR.S. SinghW.R. Luminescence switching in Ce 3+ ion sensitized YPO 4:Tb 3+ through Redox reaction.Mater. Res. Bull.201792748410.1016/j.materresbull.2017.03.056
    [Google Scholar]
  124. YanY. ShangM. HuangS. WangY. SunY. DangP. LinJ. Photoluminescence properties of AScSi 2 O 6:Cr 3+ (A = Na and Li) phosphors with high efficiency and thermal stability for near-infrared phosphor-converted light-emitting diode light sources.ACS Appl. Mater. Interfaces20221468179819010.1021/acsami.1c23940 35113521
    [Google Scholar]
  125. VishwakarmaP.K. RaiS.B. BahadurA. Enhanced green up/down-conversion emissions through phase transformation in Ho3+/Yb3+ co-doped Y2O3:ZrO2 phosphors in presence of Na+ ions.Opt. Mater.202313911381410.1016/j.optmat.2023.113814
    [Google Scholar]
  126. So RuiA. AlessandroM. LuisS. RocíoE.R.H. Sol-Gel Derived Optical and Photonic MaterialsElsevier202010.1016/C2018‑0‑02962‑X
    [Google Scholar]
  127. FengS. XuR. New materials in hydrothermal synthesis.Acc. Chem. Res.200134323924710.1021/ar0000105 11263882
    [Google Scholar]
  128. ZhouJ. LeañoJ.L.Jr LiuZ. JinD. WongK.L. LiuR.S. BünzliJ.C.G. Impact of lanthanide nanomaterials on photonic devices and smart applications.Small20181440180188210.1002/smll.201801882 30066496
    [Google Scholar]
  129. XiaD. LiJ. GaoM. ZhouT. ZhaoS. ZhangJ. LiG. Lanthanide-hydrogel with reversible dual-stimuli responsive luminescent switching property for data protection.Inorg. Chim. Acta202355612163310.1016/j.ica.2023.121633
    [Google Scholar]
  130. StaszakK. WieszczyckaK. MarturanoV. TylkowskiB. Lanthanides complexes – Chiral sensing of biomolecules.Coord. Chem. Rev.2019397769010.1016/j.ccr.2019.06.017
    [Google Scholar]
  131. BottrillM. KwokL. LongN.J. Lanthanides in magnetic resonance imaging.Chem. Soc. Rev.200635655757110.1039/b516376p 16729149
    [Google Scholar]
  132. ZhaoC. GaoY. ZhouD. ZhuF. ChenJ. QiuJ. High-efficiency dual-mode luminescence of metal halide perovskite Cs3Bi2Cl9:Er3+ and its use in optical temperature measurement with high sensitivity.J. Alloys Compd.202394416913410.1016/j.jallcom.2023.169134
    [Google Scholar]
  133. ZhangY. LiuS. ZhaoZ.S. WangZ. ZhangR. LiuL. HanZ-B. Recent progress in lanthanide metal–organic frameworks and their derivatives in catalytic applications.Inorg. Chem. Front.20218359061910.1039/D0QI01191F
    [Google Scholar]
  134. ZengM. RenA. WuW. ZhaoY. ZhanC. YaoJ. Lanthanide MOFs for inducing molecular chirality of achiral stilbazolium with strong circularly polarized luminescence and efficient energy transfer for color tuning.Chem. Sci.202011349154916110.1039/D0SC02856H 34123164
    [Google Scholar]
  135. DongH. SunL.D. YanC.H. Energy transfer in lanthanide upconversion studies for extended optical applications.Chem. Soc. Rev.20154461608163410.1039/C4CS00188E 25242465
    [Google Scholar]
  136. LuL. SunM. LuQ. WuT. HuangB. High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy.Nano Energy20217910543710.1016/j.nanoen.2020.105437
    [Google Scholar]
  137. KumarA. KumarA. ChandH. KrishnanV. Upconversion nanomaterials for photocatalytic applications. Upconversion Nanophosphors.Elsevier202239140610.1016/B978‑0‑12‑822842‑5.00014‑5
    [Google Scholar]
  138. SinghP. KachhapS. SinghP. SinghS.K. Lanthanide-based hybrid nanostructures: Classification, synthesis, optical properties, and multifunctional applications.Coord. Chem. Rev.202247221479510.1016/j.ccr.2022.214795
    [Google Scholar]
  139. SarkarD. GanguliS. SamantaT. MahalingamV. Design of lanthanide-doped colloidal nanocrystals: Applications as phosphors, sensors, and photocatalysts.Langmuir201935196211623010.1021/acs.langmuir.8b01593 30149717
    [Google Scholar]
  140. LiH. BaiG. LianY. LiY. ChenL. ZhangJ. XuS. Advances in near-infrared-activated lanthanide-doped optical nanomaterials: Imaging, sensing, and therapy.Mater. Des.202323111203610.1016/j.matdes.2023.112036
    [Google Scholar]
  141. RavinaP.K. PoriaK. SahuM.K. KumarA. Anu DahiyaS. DeopaN. RaoA.S. Energy transfer mechanisms and color-tunable luminescence of Tm 3+/Tb 3+/Eu 3+ co-doped Sr 4 Nb 2 O 9 phosphors for high-quality white light-emitting diodes.RSC Advances20231348336753368710.1039/D3RA05519A 38020000
    [Google Scholar]
  142. NareshV. AdusumalliV.N.K.B. ParkY.I. LeeN. NIR triggered NaYF4:Yb3+,Tm3+@NaYF4/CsPb(Br1-x/Ix)3 composite for up-converted white-light emission and dual-model anti-counterfeiting applications.Mater. Today Chem.20222310075210.1016/j.mtchem.2021.100752
    [Google Scholar]
  143. KuntiA.K. BanerjeeD. Lanthanide-doped phosphor: An overview. Phosphor Handbook.Elsevier2023477210.1016/B978‑0‑323‑90539‑8.00006‑1
    [Google Scholar]
  144. AyoubI. SehgalR. SharmaV. SehgalR. SwartH.C. KumarV. Rare-earth doped inorganic materials for light-emitting applications.Advanced Materials for Solid State Lighting202313010.1007/978‑981‑99‑4145‑2_1
    [Google Scholar]
  145. Bispo-JrA.G. de MoraisA.J. CaladoC.M.S. MazaliI.O. SigoliF.A. Lanthanide-doped luminescent perovskites: A review of synthesis, properties, and applications.J. Lumin.202225211940610.1016/j.jlumin.2022.119406
    [Google Scholar]
  146. MatakganeM. MokoenaT.P. MhlongoM.R. Recent trends of oxides heterostructures based upconversion phosphors for improving power efficiencies of solar cells: A review.Inorg. Chem. Commun.202315611120210.1016/j.inoche.2023.111202
    [Google Scholar]
  147. KrishnanR. SwartH.C. Luminescence properties of octahedrally and tetrahedrally coordinated Mo6+ in the solid solutions: Judd–Ofelt investigation.J. Phys. Chem. Solids202014410951910.1016/j.jpcs.2020.109519
    [Google Scholar]
  148. SaidiK. Hernández-ÁlvarezC. RunowskiM. DammakM. Rafael Martín BenenzuelaI. Temperature and pressure sensing using an optical platform based on upconversion luminescence in NaSrY(MoO 4) 3 codoped with Er 3+ and Yb 3+ nanophosphors.ACS Appl. Nano Mater.2023620194311944210.1021/acsanm.3c04031
    [Google Scholar]
  149. HariyaniS. BrgochJ. Garcia-SantamariaF. SistaS.P. MurphyJ.E. SetlurA.A. From lab to lamp: Understanding downconverter degradation in LED packages.J. Appl. Phys.20221321919090110.1063/5.0122735
    [Google Scholar]
  150. Peña-GarcíaA. SalataF. The perspective of total lighting as a key factor to increase the sustainability of strategic activities.Sustainability2020127275110.3390/su12072751
    [Google Scholar]
  151. ChitnisD. Thejo kalyaniN. SwartH.C. DhobleS.J. Escalating opportunities in the field of lighting.Renew. Sustain. Energy Rev.20166472774810.1016/j.rser.2016.06.041
    [Google Scholar]
  152. DattR. BishnoiS. HughesD. MahajanP. SinghA. GuptaR. AryaS. GuptaV. TsoiW.C. Downconversion materials for perovskite solar cells.Sol. RRL202268220026610.1002/solr.202200266
    [Google Scholar]
  153. ZhaoM. LiaoH. MolokeevM.S. ZhouY. ZhangQ. LiuQ. XiaZ. Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition.Light Sci. Appl.2019813810.1038/s41377‑019‑0148‑8 30992988
    [Google Scholar]
  154. MehareM.D. MehareC.M. SwartH.C. DhobleS.J. Recent development in color tunable phosphors: A review.Prog. Mater. Sci.202313310106710.1016/j.pmatsci.2022.101067
    [Google Scholar]
  155. ZhangC. UchikoshiT. TakedaT. HirosakiN. Research progress on surface modifications for phosphors used in light-emitting diodes (LEDs).Phys. Chem. Chem. Phys.20232536242142423310.1039/D3CP01658G 37691583
    [Google Scholar]
  156. LimbuS. SinghL.R. Downconverted significant luminescence enhancement and structural confinement of a dichromatic nanophosphor for potential applications in NUV-triggered cool pc-WLEDs.J. Mol. Struct.2023128613554910.1016/j.molstruc.2023.135549
    [Google Scholar]
  157. ParauhaY.R. DhobleS.J. Enhancement of photoluminescence and tunable properties for Ce3+, Eu2+ activated Na2CaSiO4 downconversion phosphor: A novel approach towards spectral conversion.J. Lumin.202225111917310.1016/j.jlumin.2022.119173
    [Google Scholar]
  158. NairG.B. TamboliS. DhobleS.J. SwartH.C. Conversion phosphors: An overview. Phosphor Handbook.Elsevier2023739810.1016/B978‑0‑323‑90539‑8.00012‑7
    [Google Scholar]
  159. YangY. LiF. LuY. DuY. WangL. ChenS. OuyangX. LiY. ZhaoL. ZhaoJ. DengB. YuR. CaGdSbWO8:Sm3+: A deep-red tungstate phosphor with excellent thermal stability for horticultural and white lighting applications.J. Lumin.202225111923410.1016/j.jlumin.2022.119234
    [Google Scholar]
  160. KumarP. SinghD. GuptaI. SinghS. NehraS. KumarR. Er3+-doped Y4Al2O9 nanophosphors for advance display applications: Synthesis, crystal chemistry and down conversion photoluminescent investigation.Mater. Chem. Phys.202330112761010.1016/j.matchemphys.2023.127610
    [Google Scholar]
  161. WeiJ. LiuZ. SunZ. LiY. WuC. ZhaoL. Upconversion boosting pollutants degradation efficiency in wide-spectrum responsive photocatalysts.Chemosphere2022309Pt 113667910.1016/j.chemosphere.2022.136679 36195128
    [Google Scholar]
  162. GarciaC.R. OlivaJ. CarranzaJ. Mtz-EnriquezA.I. Hdz-GarciaH.M. SantibañezA. ChavezD. Green Upconversion of a SrLaAlO4:Yb,Er Phosphor and Its Application for LED Illumination.J. Electron. Mater.20235221357136510.1007/s11664‑022‑10091‑1
    [Google Scholar]
  163. WangY. LiY. MaC. WenZ. YuanX. CaoY. Temperature sensing properties of NaYTiO4: Yb/Tm phosphors based on near-infrared up-conversion luminescence.J. Lumin.202224811891710.1016/j.jlumin.2022.118917
    [Google Scholar]
  164. SunX. JiangS. HuangH. LiH. JiaB. MaT. Solar energy catalysis.Angew. Chem. Int. Ed.20226129e20220488010.1002/anie.202204880 35471594
    [Google Scholar]
  165. ChenX. YaoW. WangQ. WuW. Designing multicolor dual‐mode lanthanide‐doped NaLuF4/Y2O3 composites for advanced anticounterfeiting.Adv. Opt. Mater.202082190120910.1002/adom.201901209
    [Google Scholar]
  166. GouH. WuQ. LuoL. LiW. DuP. Reengineering the thermometric behaviors of Er3+/Yb3+-codoped Gd2Mo3O12 microparticles via dual-mode luminescence manipulation.Ceram. Int.20234923382973830410.1016/j.ceramint.2023.09.162
    [Google Scholar]
  167. AyachiF. SaidiK. DammakM. ChaabaniW. Mediavilla-MartínezI. JiménezJ. Dual-mode luminescence of Er3+/Yb3+ codoped LnP0.5V0.5O4 (Ln=Y, Gd, La) for highly sensitive optical nanothermometry.Mater. Today Chem.20232710135210.1016/j.mtchem.2022.101352
    [Google Scholar]
  168. BaiX. CunY. XuZ. ZiY. HaiderA.A. UllahA. KhanI. QiuJ. SongZ. YangZ. Multiple Anti-Counterfeiting and optical storage of reversible dual-mode luminescence modification in photochromic CaWO4: Yb3+, Er3+, Bi3+ phosphor.Chem. Eng. J.202242913233310.1016/j.cej.2021.132333
    [Google Scholar]
  169. KumarP. Kanika SinghS. LahonR. GundimedaA. GuptaG. GuptaB.K. A strategy to design lanthanide doped dual-mode phosphor mediated spectral convertor for solar cell applications.J. Lumin.201819620721310.1016/j.jlumin.2017.12.035
    [Google Scholar]
  170. LiuL. PengS. LinP. WangR. ZhongH. SunX. SongL. ShiJ. ZhangY. High-level information encryption based on optical nanomaterials with multi-mode luminescence and dual-mode reading.Inorg. Chem. Front.20229174433444110.1039/D2QI00889K
    [Google Scholar]
  171. LabakiH.P. BorgesF.H. CaixetaF.J. GonçalvesR.R. Widely dual tunable visible and near infrared emission in Pr3+-doped yttrium tantalate: Pr3+ concentration dependence on radiative transitions from 3P0 to the 1D2.J. Lumin.202123611807310.1016/j.jlumin.2021.118073
    [Google Scholar]
  172. DongB. YuanY. DingM. BaiW. WuS. JiZ. Efficient dual-mode luminescence from lanthanide-doped core–shell nanoarchitecture for anti-counterfeiting applications.Nanotechnology2020313636570510.1088/1361‑6528/ab9676 32454473
    [Google Scholar]
  173. XuL. LiY. PanQ. WangD. LiS. WangG. ChenY. ZhuP. QinW. Dual-mode light-emitting lanthanide metal–organic frameworks with high water and thermal stability and their application in white LEDs.ACS Appl. Mater. Interfaces20201216189341894310.1021/acsami.0c02999 32233390
    [Google Scholar]
  174. LiH. LiL. MeiL. ZhaoW. ZhouX. WangY. HuaY. DuP. Thermally stable rare-earth-free double perovskite phosphors toward dual-mode optical thermometry and dual-functional lighting sources.J. Mater. Chem. C Mater. Opt. Electron. Devices20231137126371264810.1039/D3TC02471G
    [Google Scholar]
  175. ChenC. JinM. XiangJ. ZhengJ. GuoP. GuoC. Blue-red dual color emitting phosphor Cs2NaLuCl6: Sb3+, Ho3+ for plant growth LEDs.Ceram. Int.20234915252322523910.1016/j.ceramint.2023.05.056
    [Google Scholar]
  176. WangX. ShiJ. LiP. ZhengS. SunX. ZhangH. LuPO4:Nd3+ nanophosphors for dual-mode deep tissue NIR-II luminescence/CT imaging.J. Lumin.201920942042610.1016/j.jlumin.2019.02.028
    [Google Scholar]
  177. ZhuG. ChenL. ZengF. GuL. YuX. LiX. JiangJ. GuoG. CaoJ. TangK. ZhuH. Daldrup-LinkH.E. WuM. GdVO 4:Eu 3+, Bi 3+ nanoparticles as a contrast agent for MRI and luminescence bioimaging.ACS Omega2019414158061581410.1021/acsomega.9b00444 31592157
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348280880240115054806
Loading
/content/journals/cphs/10.2174/0127723348280880240115054806
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test