Skip to content
2000
image of Aero-space and Astro-cosmic Microbial Studies: A Vulgar Epithet Yet an Unattended Potential Nursing/Distribution Hub of Pathogenic Strains

Abstract

Introduction

The ubiquity of microorganisms has in recent times extended relevance from the physical environment to outer space/cosmic environment. Such outer space/cosmic environments were over time reported microbe free, however recent report showed otherwise implicating space/cosmic travel.

Method

Diverse interest-based investigators have raised unanswered questions while others yet remain probable. Bio-scientific evaluation of astro-cosmic dynamics possesses the potential of revealing the appropriate status, arrangement, and/or position of microbes especially as global drives focus on controlling microbial spread/proliferation.

Results

The study determines microbes in space and astro-cosmic environment as vulgar epithet yet an unattended potential nursing/distribution hub of pathogenic strains applying science mapping review tools. Using the Preferred-Reporting-Items-for-Systematic-Reviews-and-Meta-Analyses (PRISMA), major scientific databases (Scopus, Web of Science, and PubMed) were searched for required and related data on astro-cosmic studies. A 7-decadal evaluation of authors' published documents using the non-parametric ANOVA test (Kruskal-Wallis H test) and Lotka’s model was applied. Among the three searched databases, Web of Science ranked least in retrieved documents (130) followed by PubMed (331) and Scopus (409) with total documents retrieved as 693 between 1954-2023. Further results revealed that production/publication distribution was significant only in the first decade using Lotk’s model with an annual growth rate of 5.23%. It was also observed that more than 40 topics of interest/conceptual thematic were trending in association with astro-microbiological studies.

Conclusion

A focus on these topics and their associated themes possess the potential for understanding the future position of the microbes in outer space, the distribution of potentially pathogenic strains from outer space and necessitates global interest for such studies.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348323844241029174502
2024-12-03
2025-01-15
Loading full text...

Full text loading...

References

  1. Milojevic T. Weckwerth W. Molecular mechanisms of microbial survivability in outer space: A systems biology approach. Front. Microbiol. 2020 11 923 10.3389/fmicb.2020.00923 32499769
    [Google Scholar]
  2. Zhang X. Fang X. Liu C. Genomic and proteomic analysis of Escherichia coli after spaceflight reveals changes involving metabolic pathways. Arch. Med. Res. 2015 46 3 181 185 10.1016/j.arcmed.2015.03.007 25846064
    [Google Scholar]
  3. Wang Y. Yuan Y. Liu J. Su L. Chang D. Guo Y. Chen Z. Fang X. Wang J. Li T. Zhou L. Fang C. Yang R. Liu C. Transcriptomic and proteomic responses of Serratia marcescens to spaceflight conditions involve large-scale changes in metabolic pathways. Adv. Space Res. 2014 53 7 1108 1117 10.1016/j.asr.2014.01.018
    [Google Scholar]
  4. Sancho L.G. de la Torre R. Horneck G. Ascaso C. de los Rios A. Pintado A. Wierzchos J. Schuster M. Lichens survive in space: Results from the 2005 LICHENS experiment. Astrobiology 2007 7 3 443 454 10.1089/ast.2006.0046 17630840
    [Google Scholar]
  5. Su L. Zhou L. Liu J. Cen Z. Wu C. Wang T. Zhou T. Chang D. Guo Y. Fang X. Wang J. Li T. Yin S. Dai W. Zhou Y. Zhao J. Fang C. Yang R. Liu C. Phenotypic, genomic, transcriptomic and proteomic changes in Bacillus cereus after a short-term space flight. Adv. Space Res. 2014 53 1 18 29 10.1016/j.asr.2013.08.001
    [Google Scholar]
  6. Van Mulders S.E. Stassen C. Daenen L. Devreese B. Siewers V. van Eijsden R.G.E. Nielsen J. Delvaux F.R. Willaert R. The influence of microgravity on invasive growth in Saccharomyces cerevisiae. Astrobiology 2011 11 1 45 55 10.1089/ast.2010.0518 21345087
    [Google Scholar]
  7. Chukwuka G.E. Igere B.E. Ofesi A.O. Adeola M.O. Onianwah I.F. Antibiocompetent and bacteriocidal relevance of ascorbic acid on coliforms isolated from feces of apparently healthy students in Rivers Nigeria. Dutse J. Pur. Appl. Sci. 2023 9 3a 137 146 10.4314/dujopas.v9i3a.14
    [Google Scholar]
  8. Igere BE Ehwarieme AD Okolie EC Gxalo O 2021
  9. Igere B.E. Onohuean H. Nwodo U.U. Modern knowledge-scape possess petite influence on the factual persistence of resistance determinants (ARGs/MGEs): A map and assessment of discharged wastewater and water bodies. Heliyon 2022 a 8 12 e12253 10.1016/j.heliyon.2022.e12253 36568670
    [Google Scholar]
  10. Igere B.E. Onohuean H. Nwodo U.U. Water bodies are potential hub for spatio-allotment of cell-free nucleic acid and pandemic: A pentadecadal (1969–2021) critical review on particulate cell-free DNA reservoirs in water nexus. Bull. Natl. Res. Cent. 2022 b 46 1 56 10.1186/s42269‑022‑00750‑y 35283621
    [Google Scholar]
  11. Igere B.E. Peter W.O. Beshiru A. Distribution/spread of superbug and potential ESKAPE-B pathogens amongst domestic and environmental activities: A public health concern. Discovery 2022 c 58 313 1 20
    [Google Scholar]
  12. Leys N.M. Hendrickx L. De Boever P. Baatout S. Mergeay M. Space flight effects on bacterial physiology. J. Biol. Regul. Homeost. Agents 2004 18 2 193 199 15471227
    [Google Scholar]
  13. Li J. Liu F. Wang Q. Ge P. Woo P.C.Y. Yan J. Zhao Y. Gao G.F. Liu C.H. Liu C. Genomic and transcriptomic analysis of NDM-1 Klebsiella pneumoniae in spaceflight reveal mechanisms underlying environmental adaptability. Sci. Rep. 2014 4 1 6216 10.1038/srep06216 25163721
    [Google Scholar]
  14. Nicholson W.L. Moeller R. Horneck G. PROTECT Team Transcriptomic responses of germinating Bacillus subtilis spores exposed to 1.5 years of space and simulated martian conditions on the EXPOSE-E experiment PROTECT. Astrobiology 2012 12 5 469 486 10.1089/ast.2011.0748 22680693
    [Google Scholar]
  15. Wilson J. W. Ott C. M. Quick L. Davis R. Höner zu Bentrup K. Crabbé A. Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PLoS One 2008 3 e3923 10.1371/journal.pone.0003923
    [Google Scholar]
  16. Aunins T.R. Erickson K.E. Prasad N. Levy S.E. Jones A. Shrestha S. Mastracchio R. Stodieck L. Klaus D. Zea L. Chatterjee A. Spaceflight Modifies Escherichia coli gene expression in response to antibiotic exposure and reveals role of oxidative stress response. Front. Microbiol. 2018 9 310 10.3389/fmicb.2018.00310 29615983
    [Google Scholar]
  17. Baker P.W. Leff L.G. Mir space station bacteria responses to modeled reduced gravity under starvation conditions. Adv. Space Res. 2006 38 6 1152 1158 10.1016/j.asr.2006.05.014 15836494
    [Google Scholar]
  18. Horneck G. Stöffler D. Ott S. Hornemann U. Cockell C.S. Moeller R. Meyer C. de Vera J.P. Fritz J. Schade S. Artemieva N.A. Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: First phase of lithopanspermia experimentally tested. Astrobiology 2008 8 1 17 44 10.1089/ast.2007.0134 18237257
    [Google Scholar]
  19. Benoit M.R. Klaus D.M. Microgravity, bacteria, and the influence of motility. Adv. Space Res. 2007 39 7 1225 1232 10.1016/j.asr.2006.10.009
    [Google Scholar]
  20. Zea L. Prasad N. Levy S.E. Stodieck L. Jones A. Shrestha S. Klaus D. A molecular genetic basis explaining altered bacterial behavior in space. PLoS One 2016 11 11 e0164359 10.1371/journal.pone.0164359 27806055
    [Google Scholar]
  21. Bertalanffy L.V. Der organismus als physikalisches system betrachtet. Naturwissenschaften 1940 33 522 531
    [Google Scholar]
  22. Chiang A.J. Malli Mohan G.B. Singh N.K. Vaishampayan P.A. Kalkum M. Venkateswaran K. Alteration of proteomes in first- generation cultures of Bacillus pumilus spores exposed to outer space. mSystems 2019 4 4 e00195-19 10.1128/mSystems.00195‑19 31186338
    [Google Scholar]
  23. Chopra V. Fadl A.A. Sha J. Chopra S. Galindo C.L. Chopra A.K. Alterations in the virulence potential of enteric pathogens and bacterial-host cell interactions under simulated microgravity conditions. J. Toxicol. Environ. Health A 2006 69 14 1345 1370 10.1080/15287390500361792 16760141
    [Google Scholar]
  24. Taylor P. Impact of space flight on bacterial virulence and antibiotic susceptibility. Infect. Drug Resist. 2015 8 249 262 10.2147/IDR.S67275 26251622
    [Google Scholar]
  25. Nicholson W.L. Munakata N. Horneck G. Melosh H.J. Setlow P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 2000 64 3 548 572 10.1128/MMBR.64.3.548‑572.2000 10974126
    [Google Scholar]
  26. Orsini S.S. Lewis A.M. Rice K.C. Investigation of simulated microgravity effects on Streptococcus mutans physiology and global gene expression. NPJ Microgravity 2017 3 1 4 10.1038/s41526‑016‑0006‑4 28649626
    [Google Scholar]
  27. Ott E. Fuchs F.M. Moeller R. Hemmersbach R. Kawaguchi Y. Yamagishi A. Weckwerth W. Milojevic T. Molecular response of Deinococcus radiodurans to simulated microgravity explored by proteometabolomic approach. Sci. Rep. 2019 a 9 1 18462 10.1038/s41598‑019‑54742‑6 31804539
    [Google Scholar]
  28. Vaishampayan P.A. Rabbow E. Horneck G. Venkateswaran K.J. Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions. Astrobiology 2012 12 5 487 497 10.1089/ast.2011.0738 22680694
    [Google Scholar]
  29. Horneck G. Klaus D.M. Mancinelli R.L. Space Microbiology. Microbiol. Mol. Biol. Rev. 2010 74 1 121 156 10.1128/MMBR.00016‑09 20197502
    [Google Scholar]
  30. Weckwerth W. Green systems biology — From single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J. Proteomics 2011 75 1 284 305 10.1016/j.jprot.2011.07.010 21802534
    [Google Scholar]
  31. Wilson J.W. Ott C.M. zu Bentrup K.H. Ramamurthy R. Quick L. Porwollik S. Cheng P. McClelland M. Tsaprailis G. Radabaugh T. Hunt A. Fernandez D. Richter E. Shah M. Kilcoyne M. Joshi L. Nelman-Gonzalez M. Hing S. Parra M. Dumars P. Norwood K. Bober R. Devich J. Ruggles A. Goulart C. Rupert M. Stodieck L. Stafford P. Catella L. Schurr M.J. Buchanan K. Morici L. McCracken J. Allen P. Baker-Coleman C. Hammond T. Vogel J. Nelson R. Pierson D.L. Stefanyshyn-Piper H.M. Nickerson C.A. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl. Acad. Sci. USA 2007 104 41 16299 16304 10.1073/pnas.0707155104 17901201
    [Google Scholar]
  32. Saffary R. Nandakumar R. Spencer D. Robb F.T. Davila J.M. Swartz M. Ofman L. Thomas R.J. DiRuggiero J. Microbial survival of space vacuum and extreme ultraviolet irradiation: strain isolation and analysis during a rocket flight. FEMS Microbiol. Lett. 2002 215 1 163 168 10.1111/j.1574‑6968.2002.tb11386.x 12393217
    [Google Scholar]
  33. Weckwerth W. Systemtheoretische konzepte der genomweiten molekularen analyse und datenintegration in der biologie. aus der schriftenreihe der hülsenberger gespräche. Hamburg Heigener Europrint GmbH 2016 68 71
    [Google Scholar]
  34. Weckwerth W. Toward a unification of system-theoretical principles in biology and ecology—the stochastic lyapunov matrix equation and its inverse application. Front. Appl. Math. Stat. 2019 5 29 10.3389/fams.2019.00029
    [Google Scholar]
  35. Sun X. Weckwerth W. COVAIN: a toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data. Metabolomics 2012 8 S1 81 93 10.1007/s11306‑012‑0399‑3
    [Google Scholar]
  36. Ott E. Kawaguchi Y. Özgen N. Yamagishi A. Rabbow E. Rettberg P. Weckwerth W. Milojevic T. Proteomic and metabolomic profiling of Deinococcus radiodurans recovering after exposure to simulated low earth orbit vacuum conditions. Front. Microbiol. 2019 b 10 909 10.3389/fmicb.2019.00909 31110498
    [Google Scholar]
  37. Ott E. Kawaguchi Y. Kölbl D. Chaturvedi P. Nakagawa K. Yamagishi A. Weckwerth W. Milojevic T. Proteometabolomic response of Deinococcus radiodurans exposed to UVC and vacuum conditions: Initial studies prior to the Tanpopo space mission. PLoS One 2017 12 12 e0189381 10.1371/journal.pone.0189381 29244852
    [Google Scholar]
  38. Moher D. Liberati A. Tetzlaff J. Altman D.G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009 6 7 e1000097 10.1371/journal.pmed.1000097 19621072
    [Google Scholar]
  39. Ekundayo T.C. Igere B.E. Iwu C.D. Oluwafemi Y.D. Tiamiyu A.M. Adesina I.A. Anuoluwa I.A. Ekundayo E.A. Bello O.O. Olaniyi O.O. Ijabadeniyi O.A. Prevalence of laribacter hongkongensis in food and environmental matrices: A systematic review and meta-analysis. Food Microbiol. 2022 107 104089 10.1016/j.fm.2022.104089 35953181
    [Google Scholar]
  40. Pao M.L. Lotka’s law: A testing procedure. Inf. Process. Manage. 1985 21 4 305 320 10.1016/0306‑4573(85)90055‑X
    [Google Scholar]
  41. Arunasri K. Adil M. Venu Charan K. Suvro C. Himabindu R. S. Shivaji S. Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression. PLoS One 2013 8 e57860 10.1371/journal.pone.s0057860
    [Google Scholar]
  42. Blachowicz A. Chiang A.J. Elsaesser A. Kalkum M. Ehrenfreund P. Stajich J.E. Torok T. Wang C.C.C. Venkateswaran K. Proteomic and metabolomic characteristics of extremophilic fungi under simulated mars conditions. Front. Microbiol. 2019 10 1013 10.3389/fmicb.2019.01013 31156574
    [Google Scholar]
  43. Crabbé A. Nielsen-Preiss S. M. Woolley C. M. Barrila J. Buchanan K. McCracken J. Spaceflight enhances cell aggregation and random budding in Candida albicans. PLoS One 2013 8 e80677 10.1371/journal.pone.0080677
    [Google Scholar]
  44. Morrison M.D. Fajardo-Cavazos P. Nicholson W.L. Comparison of Bacillus subtilis transcriptome profiles from two separate missions to the international space station. NPJ Microgravity 2019 5 1 1 10.1038/s41526‑018‑0061‑0 30623021
    [Google Scholar]
  45. Nicholson W.L. Ancient micronauts: Interplanetary transport of microbes by cosmic impacts. Trends Microbiol. 2009 17 6 243 250 10.1016/j.tim.2009.03.004 19464895
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348323844241029174502
Loading
/content/journals/cphs/10.2174/0127723348323844241029174502
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test