Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

In this study, we prove that it is necessary to introduce the non-zero gluon masses into the fundamental Lagrangian of Quantum Chromodynamics in order to describe the mass gap in the reaction of electron-positron annihilation into hadrons. Further, in this work, a new restriction on the gluon masses is imposed, and the renormalized theory with non-zero Lagrangian gluon masses is presented.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348288455240424105345
2024-01-01
2024-11-07
Loading full text...

Full text loading...

References

  1. GrossD.J. WilczekF. Ultraviolet behavior of non-abelian gauge theories.Phys. Rev. Lett.197330261343134610.1103/PhysRevLett.30.1343
    [Google Scholar]
  2. PolitzerH.D. Reliable Perturbative Results for Strong Interactions?Phys. Rev. Lett.197330261346134910.1103/PhysRevLett.30.1346
    [Google Scholar]
  3. ’t HooftG. Report at the Marseille Conference on Yang-Mills Fields Colloquium on Renormalization of Yang-Mills Fields and Applications to Particle Physics.19 Jun 1972, Marseilles, France, p. 234, 1972
    [Google Scholar]
  4. HiggsP.W. Broken symmetries, massless particles and gauge fields.Phys. Lett.196412213213310.1016/0031‑9163(64)91136‑9
    [Google Scholar]
  5. EnglertF. BroutR. Broken symmetry and the mass of gauge vector mesons.Phys. Rev. Lett.196413932132310.1103/PhysRevLett.13.321
    [Google Scholar]
  6. CornwallJ.M. Quark confinement and vortices in massive gauge-invariant QCD.Nucl. Phys. B1979157339241210.1016/0550‑3213(79)90111‑1
    [Google Scholar]
  7. CornwallJ.M. Dynamical mass generation in continuum QCD.Phys. Rev. D Part. Fields198226145310.1103/PhysRevD.26.1453
    [Google Scholar]
  8. GrazianiF.R. The gluon condensate and the effective gluon mass.Z. Phys.198733397
    [Google Scholar]
  9. AguilarA.C. PapavassiliouJ. Power law running of the effective gluon mass.Eur. Phys. J. A200835218920510.1140/epja/i2008‑10535‑4
    [Google Scholar]
  10. LeinweberD.B. SkullerudJ.I. WilliamsA.G. ParrinelloC. Asymptotic scaling and infrared behavior of the gluon propagator.Phys. Rev. D Part. Fields199960909450710.1103/PhysRevD.60.094507
    [Google Scholar]
  11. YangC.N. MillsR.L. Conservation of isotopic spin and isotopic gauge invariance.Phys. Rev.195496119119510.1103/PhysRev.96.191
    [Google Scholar]
  12. LarinS.A. On mass-shell renormalizability of the massive Yang-Mills theory.Phys. Part. Nuclei.20134438639010.1134/S1063779613020202
    [Google Scholar]
  13. FaddeevL.D. SlavnovA.A. Gauge fields. Introduction to quantum theory.Front. Phys.1980501232
    [Google Scholar]
  14. FaddeevL.D. SlavnovA.A. Gauge fields. Introduction to quantum theory.Front. Phys.1991831217
    [Google Scholar]
  15. DaviesJ. GröberR. MaierA. RauhT. SteinhauserM. Top quark mass dependence of the Higgs boson-gluon form factor at three loops.Phys. Rev. D201910003401710.1103/PhysRevD.100.034017
    [Google Scholar]
  16. BurikhamP. HarkoT. LakeM.J. The QCD mass gap and quark deconfinement scales as mass bounds in strong gravity.Eur. Phys. J. C20177780310.1140/epjc/s10052‑017‑5381‑9
    [Google Scholar]
  17. FrascaM. GhoshalA. GrooteS. Confinement in QCD and generic Yang-Mills theories with matter representations.Phys. Lett. B202384613820910.1016/j.physletb.2023.138209
    [Google Scholar]
  18. DuarteA.G. OliveiraO. SilvaP.J. Lattice gluon and ghost propagators and the strong coupling in ure SU(3) Yang-Mills theory: Finite lattice spacing and volume effects.Phys. Rev. D201796909850210.1103/PhysRevD.94.014502
    [Google Scholar]
  19. BoucaudPh. De SotoF. Rodríguez-QuinteroJ. ZafeiropoulosS. Lattice gluon and ghost propagators and the strong coupling in pure SU(3) Yang-Mills theory: Finite lattice spacing and volume effects.Phys. Rev. D201796909850110.1103/PhysRevD.96.098501
    [Google Scholar]
  20. DuarteA.G. OliveiraO. SilvaP.J. Lattice gluon and ghost propagators, and the strong coupling in pure su(3) yang-mills theory: finite lattice spacing and volume effects.Phys. Rev. D201694101450210.1103/PhysRevD.94.014502
    [Google Scholar]
  21. NarisonS. QCD as a Theory of Hadrons: From Partons to Confinement.Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.200217110.48550/arXiv.hep‑ph/0205006
    [Google Scholar]
  22. Gomez DummD. GrunfeldA.G. ScoccolaN.N. On covariant nonlocal chiral quark models with separable interactions.Phys. Rev. D20067405402610.1103/PhysRevD.74.054026
    [Google Scholar]
  23. El-NabulsiR.A. AnukoolW. Spontaneous symmetry breaking and massive photons from a Fresnel-type potential. Pramana -.J. Phys.202396186410.1007/s12043‑022‑02440‑w
    [Google Scholar]
  24. El-NabulsiR.A. AnukoolW. Spontaneous symmetry breaking and massive photons from a Fresnel-type potential.Pramana202296418610.1007/s12043‑022‑02440‑w
    [Google Scholar]
  25. WetterichC. Higgs picture of the QCD-vacuum.AIP Conf Proc200473911235910.1063/1.1843594
    [Google Scholar]
  26. BraunJ. FisterL. PawlowskiJ.M. RenneckeF. From quarks and gluons to hadrons: Chiral symmetry breaking in dynamical QCD.Phys. Rev. D201694303401610.1103/PhysRevD.94.034016
    [Google Scholar]
  27. LarinS.A. The mass-gap in quantum chromodynamics and a restriction on gluon masses.Part Fiel Phys2020202005045710.20944/preprints202005.0457.v3
    [Google Scholar]
  28. CollinsJ.C. Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion.Cambridge University Press198410.1017/CBO9780511622656
    [Google Scholar]
  29. GribovV.N. Quantization of non-Abelian gauge theories.Nucl. Phys. B19781391-211910.1016/0550‑3213(78)90175‑X
    [Google Scholar]
  30. KällenG. On the definition of the renormalization constants in quantum electrodynamics.Helv. Phys. Acta195225417
    [Google Scholar]
  31. LehmannH. On the Properties of propagation functions and renormalization contants of quantized fields.Nuovo Cim.19541134210.1007/BF02783624
    [Google Scholar]
  32. LarinS.A. Quantum Chromodynamics with massive gluons.AIP Conf Proc20161701107000310.1063/1.4938688
    [Google Scholar]
  33. KniehlB.A. KühnJ.H. QCD corrections to the Z decay rate.Nucl. Phys. B1990329354757310.1016/0550‑3213(90)90070‑T
    [Google Scholar]
  34. LarinS.A. van RitbergenT. VermaserenJ.A.M. The Large quark mass expansion of Gamma (Z0 ---> hadrons) and Gamma (tau- ---> tau-neutrino + hadrons) in the order alpha-s**3.Nucl. Phys. B19954381-227830410.1016/0550‑3213%2894%2900574‑X
    [Google Scholar]
  35. BogoliubovN.N. ParasiukO.S. On the Multiplication of the causal function in the quantum theory of fields.Acta Math.195797227
    [Google Scholar]
  36. HeppK. Proof of the Bogoliubov-Parasiuk theorem on renormalization.Commun. Math. Phys.19662130132610.1007/BF01773358
    [Google Scholar]
  37. SymanzikK. Renormalizable models with simple symmetry breaking.Commun. Math. Phys.1970161488010.1007/BF01645494
    [Google Scholar]
  38. SlavnovA.A. Ward identities in gauge theories.Theor. Math. Phys.19721029910410.1007/BF01090719
    [Google Scholar]
  39. TaylorJ.C. Ward identities and charge renormalization of the Yang-Mills field.Nucl. Phys. B197133243644410.1016/0550‑3213(71)90297‑5
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348288455240424105345
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test