Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Background

Currently, some modern spectroscopic applications require sub-terahertz and terahertz continuous-wave electromagnetic radiation sources with power levels from 0.1 to 100 W. Gyrotron, a powerful high-frequency vacuum electronics device, is considered one of the promising sources for these aims.

Methods

Modification of the gyrotron design promotes the widespread use of these devices for DNP/NMR spectroscopy.

Results

Promising non-canonical concepts are presented, the features of which compare favorably with the classical gyrotron scheme.

Conclusion

The gyrotron concepts we considered allow us to master the terahertz range and develop a unique gyrotron installation for each scientific group, considering the specifics of their scientific research.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348284884240330042150
2024-01-01
2024-11-07
Loading full text...

Full text loading...

References

  1. ZapevalovV.E. Evolution of the gyrotrons.Radiophys. Quantum Electron.2012548-950751810.1007/s11141‑012‑9326‑8
    [Google Scholar]
  2. NusinovichG.S. ThummM.K.A. PetelinM.I. The gyrotron at 50: Historical overview.J. Infrared Millim. Terahertz Waves201435432538110.1007/s10762‑014‑0050‑7
    [Google Scholar]
  3. GlyavinM.Y. IdeharaT. SabchevskiS.P. Development of THz gyrotrons at IAP RAS and FIR UF and their applications in physical research and high-power THz technologies.IEEE Trans. Terahertz Sci. Technol.20155578879710.1109/TTHZ.2015.2442836
    [Google Scholar]
  4. KumarN. SinghU. BeraA. SinhaA.K. A review on the sub-THz/THz gyrotrons.Infrared Phys. Technol.201676385110.1016/j.infrared.2016.01.015
    [Google Scholar]
  5. TemkinR.J. Development of terahertz gyrotrons for spectroscopy at MIT.Terahertz Science and Technology20147119
    [Google Scholar]
  6. IdeharaT. SabchevskiS.P. Development and application of gyrotrons at fir uf.IEEE Trans. Plasma Sci.20184672452245910.1109/TPS.2017.2775678
    [Google Scholar]
  7. LewisR.A. A review of terahertz sources.J. Phys. D Appl. Phys.2014473737400110.1088/0022‑3727/47/37/374001
    [Google Scholar]
  8. GrekhovG.A.V. GranatsteinV.L. Applications of high-power microwaves.Boston, LondonArtech House1994
    [Google Scholar]
  9. GlyavinM.Y. DenisovG.G. ZapevalovV.E. KoshelevM.A. TretyakovM.Y. TsvetkovA.I. High power terahertz sources for spectroscopy and material diagnostics.Phys. Uspekhi201659659560410.3367/UFNe.2016.02.037801
    [Google Scholar]
  10. SabchevskiS. GlyavinM. Development and application of thz gyrotrons for advanced spectroscopic methods.Photonics202310218921910.3390/photonics10020189
    [Google Scholar]
  11. RosayM. TometichL. PawseyS. BaderR. SchauweckerR. BlankM. BorchardP.M. CauffmanS.R. FelchK.L. WeberR.T. TemkinR.J. GriffinR.G. MaasW.E. Solid-state dynamic nuclear polarization at 263 GHz: Spectrometer design and experimental results.Phys. Chem. Chem. Phys.201012225850586010.1039/c003685b 20449524
    [Google Scholar]
  12. PolenovaT. BudingerT.F. Ultrahigh field NMR and MRI: Science at a crossroads. Report on a jointly-funded NSF, NIH and DOE workshop, held on November 12-13, 2015 in Bethesda, Maryland, USA.J. Magn. Reson.20162668186
    [Google Scholar]
  13. GriffinR.G. SwagerT.M. TemkinR.J. High frequency dynamic nuclear polarization: New directions for the 21st century.J. Magn. Reson.201930612813310.1016/j.jmr.2019.07.019 31327537
    [Google Scholar]
  14. DenysenkovV. PrandoliniM.J. GafurovM. SezerD. EndewardB. PrisnerT.F. Liquid state DNP using a 260 GHz high power gyrotron.Phys. Chem. Chem. Phys.201012225786579010.1039/c003697h 20461255
    [Google Scholar]
  15. BlankM. FelchK. L. Millimeter-wave sources for DNP-NMR.eMagRes20187155166
    [Google Scholar]
  16. BratmanV.L. KalynovY.K. MakhalovP.B. FedotovA.E. New versions of terahertz radiation sources for dynamic nuclear polarization in nuclear magnetic resonance spectroscopy.Radiophys. Quantum Electron.2014568-953254110.1007/s11141‑014‑9456‑2
    [Google Scholar]
  17. ZapevalovV.E. Non-canonical gyrotrons.Radiophys. Quantum ElectronCopenhagen, Denmark201861(4)27228010.1007/s11141‑018‑9888‑1
    [Google Scholar]
  18. SabchevskiS.P. GlyavinM.Y. NusinovichG.S. The progress in the studies of mode interaction in gyrotrons.J. Infrared Millim. Terahertz Waves2022431-214710.1007/s10762‑022‑00845‑7
    [Google Scholar]
  19. NusinovichG.S. Introduction to the physics of Gyrotrons.Baltimore, MarylandThe Johns Hopkins University Press2001
    [Google Scholar]
  20. TsimringSh.E. Electron beams and microwave vacuum electronics.Hoboken, New JerseyJohn Wiley and Sons, Inc.2007
    [Google Scholar]
  21. TorrezanA.C. ShapiroM.A. SirigiriJ.R. TemkinR.J. GriffinR.G. Operation of a continuously frequency-tunable second-harmonic cw 330-ghz gyrotron for dynamic nuclear polarization.IEEE Trans. Electron Dev.20115882777278310.1109/TED.2011.2148721
    [Google Scholar]
  22. QiX.B. DuC.H. LiuP.K. Broadband continuous frequency tuning in a terahertz gyrotron with tapered cavity.IEEE Trans. Electron Dev.201562124278428410.1109/TED.2015.2493563
    [Google Scholar]
  23. SabchevskiS.P. IdeharaT. A numerical study on finite-bandwidth resonances of high-order axial modes (HOAN) in gyrotron cavity.J. Infrared Millim. Terahertz Waves201536762865310.1007/s10762‑015‑0161‑9
    [Google Scholar]
  24. FedotovA.E. RozentalR.M. ZotovaI.V. GinzburgN.S. SergeevA.S. TarakanovV.P. GlyavinM.Y. IdeharaT. Frequency tunable sub-THz gyrotron for direct measurements of positronium hyperfine structure.J. Infrared Millim. Terahertz Waves2018391097598310.1007/s10762‑018‑0522‑2
    [Google Scholar]
  25. IdeharaT. OgawaI. MitsudoS. PereyaslavetsM. NishidaN. YoshidaK. Development of frequency tunable, medium power gyrotrons (Gyrotron FU series) as submillimeter wave radiation sources.IEEE Trans. Plasma Sci.199927234035410.1109/27.772260
    [Google Scholar]
  26. ZavolskyN.A. ZapevalovV.E. ZuevA.S. PlankinO.P. SedovA.S. SemenovE.S. Analysis of the methods of discrete and smooth frequency tuning in gyrotrons for spectroscopy, on the example of a generator operated in the 0.20–0.27 THz frequency range.Radiophys. Quantum Electron.201861643644410.1007/s11141‑018‑9905‑4
    [Google Scholar]
  27. AnanichevA.A. SedovA.S. TsvetkovA.I. ChekmarevN.V. The use of simultaneous tuning of several control parameters to stabilize the radiation power of a subterahertz gyrotron when tuning the generation frequency.Instrum. Exp. Tech.202265226226610.1134/S0020441222020099
    [Google Scholar]
  28. FokinA.P. TsvetkovA.I. ManuilovV.N. SedovA.S. BozhkovV.G. GennebergV.A. MovshevichB.Z. GlyavinM.Y. Control of sub-terahertz gyrotron frequency by modulation-anode voltage: Comparison of theoretical and experimental results.Rev. Sci. Instrum.2019901212470510.1063/1.5132831 31893824
    [Google Scholar]
  29. FokinA. GlyavinM. GolubiatnikovG. LubyakoL. MorozkinM. MovschevichB. TsvetkovA. DenisovG. High-power sub-terahertz source with a record frequency stability at up to 1 Hz.Sci. Rep.201881431710.1038/s41598‑018‑22772‑1 29531359
    [Google Scholar]
  30. GolubyatnikovG.Y. KoshelevM.A. TsvetkovA.I. FokinA.P. AnanichevA.A. GlyavinM.Y. Tret’yakovM.Y. Application of gyrotrons for molecular gas spectroscopy.Radiophys. Quantum Electron.202265315716910.1007/s11141‑023‑10202‑w
    [Google Scholar]
  31. LaA. IdeharaT. MoriH. SaitoT. OgawaI. MitsudoS. Detailed design of a CW 1 THz gyrotron (gyrotron FU CW III) using a 20 T superconducting magnet.Int. J. Infrared Millim. Waves200728531532810.1007/s10762‑007‑9215‑y
    [Google Scholar]
  32. IdeharaT. TsuchiyaH. WatanabeO. Agusu La, Mitsudo S. The first experiment of a THz gyrotron with pulse magnet.Int. J. Infrared Millim. Waves200627331933110.1007/s10762‑006‑9084‑9
    [Google Scholar]
  33. ZapevalovV.E. ZuevA.S. ParshinV.V. SemenovE.S. SerovE.A. Reduction of ohmic losses in the cavities of low-power terahertz gyrotrons.Radiophys. Quantum Electron.202164424025010.52452/00213462_2021_64_04_265
    [Google Scholar]
  34. VenediktovN.P. DubrovV.V. ZapevalovV.E. KornishinS.Y. KotovA.V. KuftinA.N. MalyginO.V. SedovA.S. FiksA.S. TsalolikhinV.I. Experimental study of a continuous-wave high-stability second-harmonic gyrotron for spectroscopy of dynamically polarized nuclei.Radiophys. Quantum Electron.201053423724310.1007/s11141‑010‑9222‑z
    [Google Scholar]
  35. GlyavinM.Y. ChirkovA.V. DenisovG.G. FokinA.P. KholoptsevV.V. KuftinA.N. LuchininA.G. GolubyatnikovG.Y. MalyginV.I. MorozkinM.V. ManuilovV.N. ProyavinM.D. SedovA.S. SokolovE.V. TaiE.M. TsvetkovA.I. ZapevalovV.E. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media.Rev. Sci. Instrum.201586505470510.1063/1.4921322 26026544
    [Google Scholar]
  36. GlyavinM.Y. KuftinA.N. MorozkinM.V. ProyavinM.D. FokinA.P. ChirkovA.V. ManuilovV.N. SedovA.S. SoluyanovaE.A. SobolevD.I. TaiE.M. TsvetkovA.I. LuchininA.G. KornishinS.Y. DenisovG.G. A 250-watts, 0.5-thz continuous-wave second-harmonic gyrotron.IEEE Electron Device Lett.202142111666166910.1109/LED.2021.3113022
    [Google Scholar]
  37. VlasovS.N. ZavolskyN.A. ZapevalovV.E. KoposovaE.V. MoiseevM.A. Axisymmetric multistage cavity resonators.Radiophys. Quantum Electron.200952964265410.1007/s11141‑010‑9173‑4
    [Google Scholar]
  38. MelnikovaM.M. RozhnevA.G. RyskinN.M. TatematsuY. FukunariM. YamaguchiY. SaitoT. Electromagnetic modeling of a complex-cavity resonator for the 0.4-THz second-harmonic frequency-tunable gyrotron.IEEE Trans. Electron Dev.201764125141514610.1109/TED.2017.2764874
    [Google Scholar]
  39. VlasovS.N. KoposovaE.V. Pavel’evA.B. KhizhnyakV.I. Gyrotrons with echelette resonators.Radiophys. Quantum Electron.199639645846210.1007/BF02122392
    [Google Scholar]
  40. BelousovV.I. VlasovS.N. ZavolskyN.A. ZapevalovV.E. KoposovaE.V. KornishinS.Y. KuftinA.N. MoiseevM.A. KhizhnyakV.I. Studies of a gyrotron with the echelette cavity.Radiophys. Quantum Electron.201457644645410.1007/s11141‑014‑9527‑4
    [Google Scholar]
  41. DumbrajsO. NusinovichG.S. Coaxial gyrotrons: Past, present, and future.IEEE Trans. Plasma Sci.200432393494610.1109/TPS.2004.829976
    [Google Scholar]
  42. ShcherbininV.I. MoskvitinaY.K. AvramidisK.A. JelonnekJ. Improved mode selection in coaxial cavities for subterahertz second-harmonic gyrotron.IEEE Trans. Electron Dev.20206772933293910.1109/TED.2020.2996179
    [Google Scholar]
  43. BandurkinI.V. KalynovY.K. MakhalovP.B. OsharinI.V. SavilovA.V. ZheleznovI.V. Simulations of sectioned cavity for high-harmonic gyrotron.IEEE Trans. Electron Dev.201764130030510.1109/TED.2016.2629029
    [Google Scholar]
  44. BandurkinI.V. FokinA.P. GlyavinM.Y. LuchininA.G. OsharinI.V. SavilovA.V. Demonstration of a selective oversized cavity in a terahertz second-harmonic gyrotron.IEEE Electron Device Lett.20204191412141510.1109/LED.2020.3010445
    [Google Scholar]
  45. SprangleP. VomvoridisJ.L. ManheimerW.M. A classical electron cyclotron quasioptical maser.Appl. Phys. Lett.198138531031310.1063/1.92369
    [Google Scholar]
  46. FlifletA.W. HargreavesT.A. FischerR.P. ManheimerW.M. SprangleP. Review of quasi-optical gyrotron development.J. Fusion Energy199091315810.1007/BF01057321
    [Google Scholar]
  47. NusinovichG.S. To the theory of gyrotrons with confocal resonators.Phys. Plasmas201926505310710.1063/1.5099909
    [Google Scholar]
  48. BandurkinI.V. KalynovaG.I. KalynovY.K. OsharinI.V. SavilovA.V. ShchegolkovD.Y. Mode selective azimuthally asymmetric cavity for terahertz gyrotrons.IEEE Trans. Electron Dev.202168134735210.1109/TED.2020.3039209
    [Google Scholar]
  49. SamsonovS.V. DenisovG.G. BogdashovA.A. GachevI.G. Cyclotron resonance maser with zigzag quasi-optical transmission line: Concept and modeling.IEEE Trans. Electron Dev.202168115846585010.1109/TED.2021.3114141
    [Google Scholar]
  50. JoryH.R. TrivelpieceA.W. Charged‐particle motion in large‐amplitude electromagnetic fields.J. Appl. Phys.19683973053306010.1063/1.1656732
    [Google Scholar]
  51. HarrietS.B. McDermottD.B. GallagherD.A. LuhmannN.C. Cusp gun TE/sub 21/second-harmonic ka-band gyro-twt amplifier.IEEE Trans. Plasma Sci.200230390991410.1109/TPS.2002.802151
    [Google Scholar]
  52. IdeharaT. OgawaI. MitsudoS. IwataY. WatanabeS. ItakuraY. OhashiK. KobayashiH. YokoyamaT. ZapevalovV. GlyavinM. KuftinA. MalyginO. SabchevskiS. Development of a high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet.Vacuum200577453954610.1016/j.vacuum.2004.09.022
    [Google Scholar]
  53. BratmanV.L. IdeharaT. KalynovY.K. ManuilovV.N. SamsonovS.V. ZavolskyN.A. Design of a powerful and compact THz oscillator.Int. J. Infrared Millim. Waves20062781063107110.1007/s10762‑006‑9094‑7
    [Google Scholar]
  54. BratmanV.L. KalynovY.K. ManuilovV.N. Large-orbit subterahertz and terahertz gyrotrons.Radiophys. Quantum Electron.200952747248110.1007/s11141‑009‑9157‑4
    [Google Scholar]
  55. BratmanV.L. KalynovY.K. ManuilovV.N. Large-orbit gyrotron operation in the terahertz frequency range.Phys. Rev. Lett.20091022424510110.1103/PhysRevLett.102.245101 19659020
    [Google Scholar]
  56. KalynovYu.K. ManuilovV.N. FiksA.Sh. ZavolskiyN.A. Powerful continuous-wave sub-terahertz electron maser operating at the 3rd cyclotron harmonic.Appl. Phys. Lett.20191142121350210.1063/1.5094875
    [Google Scholar]
  57. ZapevalovV.E. TsimringS.E. Multibeam gyrotrons.Radiophys. Quantum Electron.1990331195496010.1007/BF01039240
    [Google Scholar]
  58. ZapevalovV.E. ManuilovV.N. MalyginO.V. TsimringS.E. High-power twin-beam gyrotrons operating at the second gyrofrequency harmonic.Radiophys. Quantum Electron.199437323724010.1007/BF01054034
    [Google Scholar]
  59. IdeharaT. GlyavinM. KuleshovA. SabchevskiS. ManuilovV. ZaslavskyV. ZotovaI. SedovA. A novel THz-band double-beam gyrotron for high-field DNP-NMR spectroscopy.Rev. Sci. Instrum.201788909470810.1063/1.4997994 28964246
    [Google Scholar]
  60. JerbyE. KesarA. KorolM. LeiL. DikhtyarV. Cyclotron-resonance-maser arrays.IEEE Trans. Plasma Sci.199927244545510.1109/27.772272
    [Google Scholar]
  61. ZapevalovV.E. ZuevA.S. PlankinO.P. SemenovE.S. New gyrotron concept: Multi-barrel gyrotron. Photonics & Electromagnetics Research Symposium (PIERS),2021
    [Google Scholar]
  62. ZapevalovV.E. ZuevA.S. KuftinA.N. Multibarrel gyrotrons.Radiophys. Quantum Electron.20206329710510.1007/s11141‑020‑10038‑8
    [Google Scholar]
  63. ZapevalovV.E. ZuevA.S. PlankinO.P. SemenovE.S. Multi-barrel gyrotron for DNP/NMR spectroscopy.Radiophys. Quantum Electron.202366111810.52452/00213462_2023_66_01_1
    [Google Scholar]
  64. SamsonovS.V. LeshchevaK.A. ManuilovV.N. Multitube helical-waveguide gyrotron traveling-wave amplifier: Device concept and electron-optical system modeling.IEEE Trans. Electron Dev.20206783385339010.1109/TED.2020.3001491
    [Google Scholar]
  65. GelvichE.A. BorisovL.M. ZharyY.V. ZakurdayevA.D. PobedonostsevA.S. PoogninV.I. The new generation of high-power multiple-beam klystrons.IEEE Trans. Microw. Theory Tech.1993411151910.1109/22.210224
    [Google Scholar]
  66. PalmerR.B. FernowR.C. FischerJ. GallardoJ.C. KirkH.G. UlcS. WangH. ZhaoY. EppleyK. HerrmannsfeldtW. MillerR. YuD. The cluster klystron demonstration experiment.Nucl. Instrum. Methods Phys. Res. A19953661116 https://api.semanticscholar.org/CorpusID:120503579 10.1016/0168‑9002(95)00609‑5
    [Google Scholar]
  67. KorolyovA.N. GelvichE.A. ZharyY.V. ZakurdayevA.D. PoogninV.I. Multiple-beam klystron amplifiers: Performance parameters and development trends.IEEE Trans. Plasma Sci.20043231109111810.1109/TPS.2004.828807
    [Google Scholar]
  68. ConwayG.D. Report on the eighth international reflectometry workshop (IRW8) (St Petersburg, Russia, 2–4 May 2007).Nucl. Fusion200747121710171410.1088/0029‑5515/47/12/009
    [Google Scholar]
  69. SkvortsovaN.N. BatanovG.M. KolikL.V. MalakhovD.V. Opportunities for plasma diagnostics in fusion devices by means of terahertz sources.2009
    [Google Scholar]
  70. SakamotoK. TsuneokaM. KasugaiA. ImaiT. KariyaT. HayashiK. MitsunakaY. Major Improvement of Gyrotron Efficiency with Beam Energy Recovery.Phys. Rev. Lett.199473263532353510.1103/PhysRevLett.73.3532
    [Google Scholar]
  71. ManuilovV.N. MorozkinM.V. LukshaO.I. GlyavinM.Yu. Gyrotron collector systems: Types and capabilities.Infrared Physics & Technology201891465410.1016/j.infrared.2018.03.024
    [Google Scholar]
  72. SirigiriJ.R. MalyT. Integrated high-frequency generator system utilizing the magnetic field of the target application.US8786284B22011
  73. BratmanV.L. FedotovA.E. KalynovY.K. MakhalovP.B. OsharinI.V. Numerical study of a low-voltage gyrotron (“gyrotrino”) for dnp/nmr spectroscopy.IEEE Trans. Plasma Sci.201745464464810.1109/TPS.2017.2673550
    [Google Scholar]
  74. BratmanV.L. KalynovY.K. KulaginO.P. LeontyevA.N. MakhalovP.B. ManuilovV.N. OsharinI.V. SavilovA.V. FedotovA.E. FokinA.P. ChirkovA.V. A compact thz source for enhancing the sensitivity of nuclear magnetic resonance spectroscopy with dynamic nuclear polarization.Bull. Russ. Acad. Sci., Physics201882121592159510.3103/S1062873818120274
    [Google Scholar]
  75. ZavolskyN.A. ZapevalovV.E. MoiseevM.A. SedovA.S. Study of subterahertz gyrotrons for dnp spectroscopy at the institute of applied physics ras. News from universities.Applied nonlinear dynamics.2012203708010.18500/0869‑6632‑2012‑20‑3‑70‑80
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348284884240330042150
Loading
/content/journals/cphs/10.2174/0127723348284884240330042150
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test