Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Introduction

In our previous published papers, considering 3 large atomic gravitational constants assumed to be associated with weak, strong and electromagnetic interactions, we have proposed the existence of a nuclear charge of magnitude, =2.95 and developed a nuclear mass formula associated with strong and weak interactions having 4 simple terms and only one energy coefficient.

Methods

Two important assumptions are that there exists a weak fermion of rest energy 585 GeV and strong coupling constant is the squared ratio of electromagnetic charge and nuclear charge. The aim of this paper is associated with understanding the mystery of the quantum of magnetic flux, Planck’s quantum radiation constant and Reduced Planck’s constant. Proceeding further, quark charges, strong coupling constant, nuclear stability, nuclear binding energy, medium and heavy atomic X-ray levels and celestial magnetic moments can be understood in a unified approach. It may also be noted that, by considering the integral nature of elementary particle masses, it seems possible to understand the discreteness of angular momentum.

Results

Considering our proposed =2.95 as a characteristic nuclear charge, it seems possible to understand the integral nature of quarks electromagnetic charge. With this idea, neutron, proton and pion decay can be understood very easily.

Conclusion

In all the cases, the up quark of charge (±2e) seems to play a crucial role in the internal transformation of the down quark of charge (±e) and external observable elementary basic elementary particles. It needs further study at the fundamental level. Proceeding further, quantum of magnetic flux, Planck’s radiation constant and Reduced Planck’s constant can be understood with our 4G model of final unification.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348291145240427074503
2024-01-01
2024-11-07
Loading full text...

Full text loading...

References

  1. GrossD. Einstein and the search for Unification.Curr. Sci.2005891220342040
    [Google Scholar]
  2. van DongenJ. Index.Einstein’s Unification.Cambridge University Press201020821310.1017/CBO9780511781377
    [Google Scholar]
  3. LandsmanN.P. Einstein’s Unification by Jeroen van Dongen.Math. Intell.2011332626410.1007/s00283‑011‑9202‑y
    [Google Scholar]
  4. SchweberS.S. Unifying EinsteinJeroen van Dongen. Einstein’s Unification., 2011, 213. Schweber, S.S. Review of Einstein’s Unification Illus. Bibl. index van DongenJ. Cambridge University PressCambridge2011102473974210.1086/663617
    [Google Scholar]
  5. NugayevRinat M. Einstein's Revolution: A Study in Theory Unification.Sharjah, UAEBentham Science Publishers201810.2174/97816810863541180101
    [Google Scholar]
  6. OppenheimJ. SparaciariC. ŠodaB. Weller-DaviesZ. Gravitationally induced decoherence vs space-time diffusion: testing the quantum nature of gravity.Nat. Commun.2023141791010.1038/s41467‑023‑43348‑2 38049417
    [Google Scholar]
  7. EinsteinA. PodolskyB. RosenN. Can quantum-mechanical description of physical reality be considered complete?Phys. Rev.1935471077778010.1103/PhysRev.47.777
    [Google Scholar]
  8. BohrN. Can quantum-mechanical description of physical reality be considered complete?Phys. Rev.193548869670210.1103/PhysRev.48.696
    [Google Scholar]
  9. BellJ.S. On the einstein-podolsky-rosen paradox.Physics Physique Fizika19641319520010.1103/PhysicsPhysiqueFizika.1.195
    [Google Scholar]
  10. GreenbergerD.M. HorneM.A. ShimonyA. ZeilingerA. Bell’s theorem without inequalities.Am. J. Phys.199058121131114310.1119/1.16243
    [Google Scholar]
  11. TuZ. KharzeevD. UllrichT. The EPR paradox and quantum entanglement at sub-nucleonic scales.Phys. Rev. Lett.202012406200110.1103/PhysRevLett.124.062001 32109114
    [Google Scholar]
  12. MukhiS. String theory: a perspective over the last 25 years.Classical and Quantum Gravity.2011281515300110.1088/0264‑9381/28/15/153001
    [Google Scholar]
  13. BanksT. SeibergN. Symmetries and strings in field theory and gravity.Phys. Rev. D Part. Fields Gravit. Cosmol.201183808401910.1103/PhysRevD.83.084019
    [Google Scholar]
  14. GrossD.J. HarveyJ.A. MartinecE. RohmR. Heterotic String.Phys. Rev. Lett.198554650250510.1103/PhysRevLett.54.502 10031535
    [Google Scholar]
  15. DixonL.J. KaplunovskyV.S. VafaC. On four-dimensional gauge theories from type II superstrings.Nucl. Phys. B1987294438210.1016/0550‑3213(87)90572‑4
    [Google Scholar]
  16. MaharanaA. PaltiE. Models of particle physics from type IIB string theory and f-theory: a review.Int. J. Mod. Phys. A20132805n06133000510.1142/S0217751X13300056
    [Google Scholar]
  17. PabloA. Cano and Alejandro Ruipérez. String gravity in D = 4.Phys. Rev. D2022105044022
    [Google Scholar]
  18. SeshavatharamU.V.S. LakshminarayanaS. Role of four gravitational constants in nuclear structure.Mapana-J. Sci.20191812110.12723/mjs.48.2
    [Google Scholar]
  19. SeshavatharamU.V.S. NaiduT.G. LakshminarayanaS. To confirm the existence of heavy weak fermion of rest energy 585 GeV.AIP Conf. Proc.20222451020003-, 02000302000610.1063/5.0095313
    [Google Scholar]
  20. SeshavatharamU.V.S. LakshminarayanaS. EPR argument and mystery of the reduced Planck’s constant.Algebras, Groups, and Geometries.2020364801822
    [Google Scholar]
  21. SeshavatharamU.V.S. LakshminarayanaS. 4G model of final unification – A brief report.J. Phys. Conf. Ser.20222197101202910.1088/1742‑6596/2197/1/012029
    [Google Scholar]
  22. SeshavatharamU.V.S. LakshminarayanaS. Is reduced Planck’s constant - an outcome of electroweak gravity?Mapana J. Sci.20201911
    [Google Scholar]
  23. SeshavatharamU.V.S. LakshminarayanaS. On the compactification and reformation of string theory with three large atomic gravitational con-stants.Int. J. Physi. Res.202191424810.14419/ijpr.v9i1.31432
    [Google Scholar]
  24. SinhaK.P. Gauge theories of weak and strong gravity.Pramana198423220521410.1007/BF02846517
    [Google Scholar]
  25. SivaramC. SinhaK.P. Strong gravity, black holes, and hadrons.Phys. Rev. D Part. Fields19771661975197810.1103/PhysRevD.16.1975
    [Google Scholar]
  26. SalamA. SivaramC. Strong gravity approach to QCD and confinement.Mod. Phys. Lett. A.19938432110.1142/S0217732393000325
    [Google Scholar]
  27. Onofrio, Roberto On weak interactions as short-distance manifestations of gravity.Mod. Phys. Lett. A.2013287135002210.1142/S0217732313500223
    [Google Scholar]
  28. OnofrioR. Proton radius puzzle and quantum gravity at the Fermi scale.Europhys. Lett.201310422000210.1209/0295‑5075/104/20002
    [Google Scholar]
  29. Onofrio, Roberto High-energy density implications of a gravitoweak unification scenario.Mod. Phys. Lett. A.2014291135018710.1142/S0217732313501873
    [Google Scholar]
  30. SeshavatharamU.V.S. LakshminarayanaS. 4G model of fractional charge strong-weak super symmetry.Int. Astron. Astrophy. Res. J.2020213155
    [Google Scholar]
  31. SeshavatharamU.V.S. LakshminarayanaS. Super symmetry in strong and weak interactions.Int. J. Mod. Phys. E.201019226310.1142/S021830131001473X
    [Google Scholar]
  32. BrackT. ZybachB. BalabdaouiF. KaufmannS. PalmegianoF. TomasinaJ-C. BlunierS. ScheiwillerD. FankhauserJ. DualJ. Dynamic measurement of gravitational coupling between resonating beams in the hertz regime.Nat. Phys.202218895295710.1038/s41567‑022‑01642‑8
    [Google Scholar]
  33. TiesingaE. MohrP.J. NewellD.B. TaylorB.N. CODATA recommended values of the fundamental physical constants: 2018.Rev. Mod. Phys.202193202501010.1103/RevModPhys.93.025010 36733295
    [Google Scholar]
  34. LoderF. KampfA.P. KoppT. MannhartJ. SchneiderC.W. BarashY.S. Magnetic flux periodicity of h/e in superconducting loops.Nat. Phys.20084211211510.1038/nphys813
    [Google Scholar]
  35. JacakJ.E. Magnetic flux quantum in 2D correlated states of multiparticle charged system.New J. Phys.202022909302710.1088/1367‑2630/abae68
    [Google Scholar]
  36. Planck, Max On the law of distribution of energy in the normal spectrum.Int. Mod. Phys.19014553563
    [Google Scholar]
  37. RussellC.T. DoughertyM.K. Magnetic fields of the outer planets.Space Sci. Rev.20101521-425126910.1007/s11214‑009‑9621‑7
    [Google Scholar]
  38. Durand-ManterolaH.J. Dipolar magnetic moment of the bodies of the solar system and the Hot Jupiters.Planet. Space Sci.200957121405141110.1016/j.pss.2009.06.024
    [Google Scholar]
  39. SeshavatharamU.V.S. LakshminarayanaS. To validate the role of electromagnetic and strong gravitational constants via the strong elementary charge.Univer. J. Phys. Applic.20159521622510.13189/ujpa.2015.090503
    [Google Scholar]
  40. PenroseR. Chandrasekhar, black holes, and singularities.J. Astrophys. Astron.1996173-421323110.1007/BF02702305
    [Google Scholar]
  41. GibbonsG.W. The maximum tension principle in general relativity.Found. Phys.200232121891190110.1023/A:1022370717626
    [Google Scholar]
  42. SeshavatharamU.V.S. LakshminarayanaS. Final unification with Schwarzschild’s Interaction.J. Appl. Phys. Sci. Int.2015311222
    [Google Scholar]
  43. BohrN.I. On the constitution of atoms and molecules.Lond. Edinb. Dublin Philos. Mag. J. Sci.19132615112510.1080/14786441308634955
    [Google Scholar]
  44. MoseleyH.G.J. LXXX. The high-frequency spectra of the elements. Part II.Lond. Edinb. Dublin Philos. Mag. J. Sci.19142716070371310.1080/14786440408635141
    [Google Scholar]
  45. WhitakerM A B. The Bohr-Moseley synthesis and a simple model for atomic x-ray energies.Eur. J. Phys.199920321322010.1088/0143‑0807/20/3/312
    [Google Scholar]
  46. MyersW. D. SwiateckiW. J. Nuclear properties according to the thomas-fermi model.LBL-36557 Rev.1995UC413
    [Google Scholar]
  47. MyersW.D. SwiateckiW.J. Table of nuclear masses according to the 1994 Thomas-Fermi model. University Libraries.United StatesUNT Digital Library1994141
    [Google Scholar]
  48. XiaX.W. LimY. ZhaoP.W. LiangH.Z. QuX.Y. ChenY. LiuH. ZhangL.F. ZhangS.Q. KimY. MengJ. The limits of the nuclear land-scape explored by the relativistic continuum Hartree–Bogoliubov theory.At. Data Nucl. Data Tables2018121-122121510.1016/j.adt.2017.09.001
    [Google Scholar]
  49. MavrodievS.C. DeliyergiyevM.A. Modification of the nuclear landscape in the inverse problem framework using the generalized Bethe–Weizsäcker mass formula.Int. J. Mod. Phys. E2018272185001510.1142/S0218301318500155
    [Google Scholar]
  50. SeshavatharamU.V.S. LakshminarayanaS.H.K. Cherop KhannaK.M. Three unified nuclear binding energy formulae.World Sci. News20221633077
    [Google Scholar]
  51. SeshavatharamU.V.S. LakshminarayanaS. On the combined role of strong and electroweak interactions in understanding nuclear binding energy scheme.Mapana J. Sci.2021201118
    [Google Scholar]
  52. KharzeevD.E. Mass radius of the proton.Phys. Rev. D2021104505401510.1103/PhysRevD.104.054015
    [Google Scholar]
  53. PesetC. PinedaA. TomalakO. The proton radius (puzzle?) and its relatives.Prog. Part. Nucl. Phys.202112110390110.1016/j.ppnp.2021.103901
    [Google Scholar]
  54. OksE. A possible explanation of the proton radius puzzle based on the second flavor of muonic hydrogen atoms.Foundations20222491291710.3390/foundations2040062
    [Google Scholar]
  55. GaoH. VanderhaeghenM. The proton charge radius.Rev. Mod. Phys.202294101500210.1103/RevModPhys.94.015002
    [Google Scholar]
  56. GreenA.E.S. Nuclear Physics.McGraw Hill Book Co.1955
    [Google Scholar]
  57. GaoZ.P. WangY.J. LüH.L. LiQ-F. ShenC-W. LiuL. Machine learning the nuclear mass.Nucl. Sci. Tech.2021321010910.1007/s41365‑021‑00956‑1
    [Google Scholar]
  58. SeshavatharamU.V.S. LakshminarayanaS. An open review on light speed expanding Hubble-Hawking universe.J. Phys. Astron.2023112322
    [Google Scholar]
  59. SeshavatharamU.V.S. LakshminarayanaS. Understanding nearby cosmic halt with 4g model of final unification – is universe really accelerating? towards atomic and nuclear cosmology!Amer. J. Planet. Space Sci.202323118
    [Google Scholar]
  60. SeshavatharamU.V.S. LakshminarayanaS. Wrong definition and wrong implications of cosmic red shift (correction and possible solutions).J. Phy. & Opt. Sci.202462110
    [Google Scholar]
  61. SeshavatharamU.V.S. LakshminarayanaS. On the role of cosmic mass in understanding the relationships among galactic dark matter, visible matter and flat rotation speeds.NRIAG J. Astron. Geophys.202110146648110.1080/20909977.2021.1992136
    [Google Scholar]
  62. SeshavatharamU. LakshminarayanaS. Weak interaction dependent super gravity of galactic baryon mass.J. Asi. Scienti. Res.202212146155
    [Google Scholar]
  63. MilgromM. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis.Astrophys. J.198327036537010.1086/161130
    [Google Scholar]
  64. BrownsteinJ.R. MoffatJ.W. Galaxy rotation curves without nonbaryonic dark matter.Astrophys. J.2006636272174110.1086/498208
    [Google Scholar]
  65. van DokkumP. DanieliS. AbrahamR. ConroyC. RomanowskyA.J. A second galaxy missing dark matter in the NGC1052 group.Astrophys. J. Lett.20198741L510.3847/2041‑8213/ab0d92
    [Google Scholar]
  66. DanieliS. van DokkumP. ConroyC. AbrahamR. RomanowskyA.J. Still missing dark matter: KCWI high-resolution stellar kinematics of NGC1052-DF2.Astrophys. J. Lett.20198742L1210.3847/2041‑8213/ab0e8c
    [Google Scholar]
  67. ShenZ. DanieliS. van DokkumP. AbrahamR. BrodieJ.P. ConroyC. DolphinA.E. RomanowskyA.J. Diederik KruijssenJ.M. Dutta ChowdhuryD. A tip of the red giant branch distance of 22.1 ± 1.2 mpc to the dark matter deficient galaxy NGC 1052–DF2 from 40 orbits of hubble space telescope imaging.Astrophys. J. Lett.20219141L1210.3847/2041‑8213/ac0335
    [Google Scholar]
  68. GuoQ. HuH. ZhengZ. LiaoS. DuW. MaoS. JiangL. WangJ. PengY. GaoL. WangJ. WuH. Further evidence for a population of dark-matter-deficient DWARF galaxies.Nat. Astron.20194324625110.1038/s41550‑019‑0930‑9
    [Google Scholar]
  69. PanS. MukherjeeA. BanerjeeN. Astronomical bounds on a cosmological model allowing a general interaction in the dark sector.Mon. Not. R. Astron. Soc.201847711189120510.1093/mnras/sty755
    [Google Scholar]
  70. Garcia-CelyC. HeeckJ. Neutrino lines from majoron dark matter.J. High Energy Phys.20171022017
    [Google Scholar]
  71. El-NabulsiR.A. Rami. maxwell brane cosmology with higher-order string curvature corrections, a nonminimally coupled scalar field, dark matter-dark energy interaction and a varying speed of light.Int. J. Mod. Phys. D200918228931810.1142/S0218271809014431
    [Google Scholar]
  72. RamiE-N.A. Accelerated d-dimensional compactified universe in gauss–bonnet–dilatonic scalar gravity from d-brane/m-theory.Chin. Phys. Lett.20082582785278810.1088/0256‑307X/25/8/014
    [Google Scholar]
  73. PerlmutterS. AlderingG. GoldhaberG. KnopR.A. NugentP. CastroP.G. DeustuaS. FabbroS. GoobarA. GroomD.E. HookI.M. KimA.G. KimM.Y. LeeJ.C. NunesN.J. PainR. PennypackerC.R. QuimbyR. LidmanC. EllisR.S. IrwinM. McMahonR.G. Ruiz-LapuenteP. WaltonN. SchaeferB. BoyleB.J. FilippenkoA.V. MathesonT. FruchterA.S. PanagiaN. NewbergH.J.M. CouchW.J. ProjectT.S.C. Measurements of Ω and Λ from 42 High-Redshift Supernovae.Astrophys. J.1999517256558610.1086/307221
    [Google Scholar]
  74. BalakrishnaS. Haridasu LukovićV.V D’AgostinoR. VittorioN. Strong evidence for an accelerating Universe.Astron. Astrophys.2017600L1
    [Google Scholar]
  75. RiessA.G. YuanW. MacriL.M. ScolnicD. BroutD. CasertanoS. JonesD.O. MurakamiY. AnandG.S. BreuvalL. BrinkT.G. FilippenkoA.V. HoffmannS. JhaS.W. D’arcy KenworthyW. MackentyJ. StahlB.E. ZhengW.K. A comprehensive measurement of the local value of the hubble constant with 1 km s −1 mpc −1 uncertainty from the hubble space telescope and the shoes team.Astrophys. J. Lett.20229341L710.3847/2041‑8213/ac5c5b
    [Google Scholar]
  76. DamL.H. HeinesenA. WiltshireD.L. Apparent cosmic acceleration from Type Ia supernovae.Mon. Not. R. Astron. Soc.2017472183585110.1093/mnras/stx1858
    [Google Scholar]
  77. ColinJ. MohayaeeR. RameezM. SarkarS. Evidence for anisotropy of cosmic acceleration.Astron. Astrophys.2019631L1310.1051/0004‑6361/201936373
    [Google Scholar]
  78. TutusausI. LamineB. BlanchardA. Model-independent cosmic acceleration and redshift-dependent intrinsic luminosity in type-Ia supernovae.Astron. Astrophys.2019625A1510.1051/0004‑6361/201833032
    [Google Scholar]
  79. MohayaeeR. RameezM. SarkarS. Do supernovae indicate an accelerating universe?Eur. Phys. J. Spec. Top.202123092067207610.1140/epjs/s11734‑021‑00199‑6
    [Google Scholar]
  80. LiP. Distance duality test: the evolution of radio sources mimics a nonexpanding universe.Astrophys. J. Lett.20239502L1410.3847/2041‑8213/acdb49
    [Google Scholar]
  81. LernerE.J. Observations contradict galaxy size and surface brightness predictions that are based on the expanding universe hypothesis.Mon. Not. R. Astron. Soc.201847733185319610.1093/mnras/sty728
    [Google Scholar]
  82. LovyaginN. RaikovA. YershovV. LovyaginY. Cosmological model tests with JWST.Galaxies20221010810.3390/galaxies10060108
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348291145240427074503
Loading
/content/journals/cphs/10.2174/0127723348291145240427074503
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test