Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Introduction

Laboratory simulations can benefit ground- and space-based observations of icy bodies in outer space. It is well-known that NH and CO can interact, forming ammonium carbamate (CHNO).

Methods

This study examines NH and CO in thermally processed HO-rich ices in the laboratory mid-infrared absorption spectroscopy. In particular, the presence of CO in NH-ice mixtures thermally annealed at 150 K for more than four hours in systematic experiments suggested that ammonium carbamate could potentially trap volatiles within the ice matrix.

Results

Additional studies with acetonitrile (CHN) in ice mixtures containing HO, CO, and NH were also performed. Absorption peak position changes were recorded when the temperature was slowly increased (≤ 5K/min) and also annealed at temperatures up to 150 K.

Conclusion

These studies will hopefully be useful in interpreting pre-biotic chemistry in the Solar System.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348285603231228110017
2024-01-25
2025-01-19
Loading full text...

Full text loading...

References

  1. DaviesJ.K. BarreraL.H. The first decadal review of the Edgeworth-Kuiper Belt.,Available from: https://link.springer.com/book/10.1007/978-94-017-3321-2 200410.1007/978‑94‑017‑3321‑2
  2. HeJ. AcharyyaK. VidaliG. Sticking of molecules on nonporous amorphous water ice.Astrophys. J.201682315610.3847/0004‑637X/823/1/56
    [Google Scholar]
  3. CookJ.C. DeschS.J. RoushT.L. Near infrared spectroscopy of kuiper belt objects: More than just water ice. In: AAS/Division for Planetary Sciences Meeting200749
    [Google Scholar]
  4. BauerJ. RoushT.L. GeballeT.R. MeechK.J. OwenT.C. VaccaW.D. RaynerJ.T. JimK.T.C. The near infrared spectrum of miranda evidence of crystalline water ice.Icarus2002158117819010.1006/icar.2002.6876
    [Google Scholar]
  5. JewittD.C. LuuJ. Crystalline water ice on the Kuiper belt object (50000) Quaoar.Nature2004432701873173310.1038/nature03111 15592406
    [Google Scholar]
  6. JamesR.L. IoppoloS. HoffmannS.V. JonesN.C. MasonN.J. DawesA. Systematic investigation of CO 2: NH 3 ice mixtures using mid-IR and VUV spectroscopy – part 1: thermal processing.RSC Advances20201061375153752810.1039/D0RA05826B 35521284
    [Google Scholar]
  7. WoonD.E. Icy grain mantle surface astrochemistry of MgNC: The emergence of metal ion catalysis studied via model ice cluster calculations.J. Phys. Chem. A2022126315186519410.1021/acs.jpca.2c01739 35895034
    [Google Scholar]
  8. ClarkeD.W. FerrisJ.P. Chemical evolution on titan: Comparisons to the prebiotic earth.Orig. Life Evol. Biosph.1997271/322524810.1023/A:1006582416293 9150575
    [Google Scholar]
  9. de BarrosA.L.F. BergantiniA. DomarackaA. RothardH. BoduchP. da SilveiraE.F. Radiolysis of NH3:CO ice mixtures – implications for Solar system and interstellar ices.Mon. Not. R. Astron. Soc.202049922162217210.1093/mnras/staa2865
    [Google Scholar]
  10. Muñoz CaroG.M. MeierhenrichU.J. SchutteW.A. BarbierB. Arcones SegoviaA. RosenbauerH. ThiemannW.H.P. BrackA. GreenbergJ.M. Amino acids from ultraviolet irradiation of interstellar ice analogues.Nature2002416687940340610.1038/416403a 11919624
    [Google Scholar]
  11. HudsonR.L. MooreM.H. DworkinJ.P. MartinM.P. PozunZ.D. Amino acids from ion-irradiated nitrile-containing ices.Astrobiology20088477177910.1089/ast.2007.0131 18752457
    [Google Scholar]
  12. LeeC-W. KimJ-K. MoonE-S. MinhY.C. KangH. Formation of glycine on ultraviolet- irradiated interstellar ice-analog films and implications for interstellar amino acids.Astrophys. J.2009697142843510.1088/0004‑637X/697/1/428
    [Google Scholar]
  13. DangerG. BorgetF. ChomatM. DuvernayF. TheuléP. GuilleminJ.C. Le Sergeant d’HendecourtL. ChiavassaT. Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: Reactivity of methanimine (CH 2 NH), ammonia (NH 3), and hydrogen cyanide (HCN).Astron. Astrophys.2011535A4710.1051/0004‑6361/201117602
    [Google Scholar]
  14. MartinC.R. BinzelR.P. Ammonia-water freezing as a mechanism for recent cryovolcanism on Pluto.Icarus202135611376310.1016/j.icarus.2020.113763
    [Google Scholar]
  15. HeJ. PerottiG. EmtiazS.M. TorielloF.E. BoogertA. HenningT. VidaliG. Ammonia, carbon dioxide, and the non-detection of the 2152 cm −1 CO band.Astron. Astrophys.2022668A7610.1051/0004‑6361/202244506
    [Google Scholar]
  16. MooreM.H. FerranteR.F. HudsonR.L. StoneJ.N. Ammonia–water ice laboratory studies relevant to outer Solar System surfaces.Icarus2007190126027310.1016/j.icarus.2007.02.020
    [Google Scholar]
  17. BossaJ.B. TheuléP. DuvernayF. BorgetF. ChiavassaT. Carbamic acid and carbamate formation in NH$_3$:CO$_2$ ices – UV irradiation versus thermal processes.Astron. Astrophys.2008492371972410.1051/0004‑6361:200810536
    [Google Scholar]
  18. PotapovA. JägerC. HenningT. Thermal formation of ammonium carbamate on the surface of laboratory analogs of carbonaceous grains in protostellar envelopes and planet-forming disks.Astrophys. J.2020894211010.3847/1538‑4357/ab86b5
    [Google Scholar]
  19. HudsonR.L. MooreM.H. Reactions of nitriles in ices relevant to Titan, comets, and the interstellar medium: formation of cyanate ion, ketenimines, and isonitriles.Icarus2004172246647810.1016/j.icarus.2004.06.011
    [Google Scholar]
  20. SleimanC. El DibG. TalbiD. CanosaA. Experimental and theoretical study between CN radical and acetonitrile CH3CN relevant to astrochemical environments. In: PCMI AstroRennesRennes, France2014
    [Google Scholar]
  21. BulakM. PaardekooperD.M. FedoseevG. LinnartzH. Photolysis of acetonitrile in a water-rich ice as a source of complex organic molecules: CH 3 CN and H 2 O:CH 3 CN ices.Astron. Astrophys.2021647A8210.1051/0004‑6361/202039695
    [Google Scholar]
  22. FagentsS.A. LopesR.M. QuickL.C. GreggT.K. Planetary volcanism across the solar system. of Comparative Planetology., Eds.Elsevier20221161234
    [Google Scholar]
  23. CarotaE. BottaG. RotelliL. Di MauroE. SaladinoR. Current advances in prebiotic chemistry under space conditions.Curr. Org. Chem.201519201963197910.2174/1385272819666150622175143
    [Google Scholar]
  24. RochaW.R.M. RachidM.G. OlsthoornB. van DishoeckE.F. McClureM.K. LinnartzH. LIDA: The leiden ice database for astrochemistry.Astron. Astrophys.2022668A6310.1051/0004‑6361/202244032
    [Google Scholar]
  25. MifsudD.V. KaňuchováZ. HerczkuP. IoppoloS. JuhászZ. KovácsS.T.S. MasonN.J. McCulloughR.W. SulikB. Sulfur ice astrochemistry: A review of laboratory studies.Space Sci. Rev.202121711410.1007/s11214‑021‑00792‑0
    [Google Scholar]
  26. MifsudD.V. HaileyP.A. HerczkuP. Juh’aszZ. Kov’acsS.T.S. SulikB. IoppoloS. Laboratory experiments on the radiation astrochemistry of water ice phases.European Physical Journal20227687
    [Google Scholar]
  27. AhrensC. MeravigliaH. BennettC. Geoscientific review on CO and CO2 ices in the outer solar system.Geosciences20221225110.3390/geosciences12020051
    [Google Scholar]
  28. SandfordS.A. AllamandolaL.J. The physical and infrared spectral properties of CO2 in astrophysical ice analogs.Astrophys. J.1990355135737210.1086/168770 11538691
    [Google Scholar]
  29. EhrenfreundP. DartoisE. DemykK. D’HendecourtL. Ice segregation toward massive protostars.Astron. Astrophys.1998339L17L20
    [Google Scholar]
  30. GerakinesP.A. WhittetD.C.B. EhrenfreundP. BoogertA.C.A. TielensA.G.G.M. SchutteW.A. ChiarJ.E. van DishoeckE.F. PrustiT. HelmichF.P. de GraauwT. Observations of solid carbon dioxide in molecular clouds with the infrared space observatory.Astrophys. J.1999522135737710.1086/307611
    [Google Scholar]
  31. EhrenfreundP. KerkhofO. SchutteW.A. BoogertA.C.A. GerakinesP.A. DartoisE. D’HendecourtL. TielensA.G.G.M. van DishoeckE.F. WhittetD.C.B. Astron. Astrophys.1999350240253
    [Google Scholar]
  32. DartoisE. DemykK. d’HendecourtL. EhrenfreundP. Carbon dioxide-methanol intermolecular complexes in interstellar grain mantles.Astron. Astrophys.199935110661074
    [Google Scholar]
  33. MooreM.H. HudsonR.L. GerakinesP.A. Mid- and far-infrared spectroscopic studies of the influence of temperature, ultraviolet photolysis and ion irradiation on cosmic-type ices.Spectrochim. Acta A Mol. Biomol. Spectrosc.200157484385810.1016/S1386‑1425(00)00448‑0 11345258
    [Google Scholar]
  34. HudsonR. MooreM.H. Note: IR spectra of irradiated cometary ice analogues containing methanol: A new assignment, a reassignment, and a nonassignment.Icarus2000145266166310.1006/icar.2000.6377
    [Google Scholar]
  35. HudsonR.L. MooreM.H. Radiation chemical alterations in solar system ices: An overview.J. Geophys. Res.2001106E12332753328410.1029/2000JE001299
    [Google Scholar]
  36. van BroekhuizenF.A. GrootI.M.N. FraserH.J. van DishoeckE.F. SchlemmerS. Infrared spectroscopy of solid CO–CO 2 mixtures and layers.Astron. Astrophys.2006451272373110.1051/0004‑6361:20052942
    [Google Scholar]
  37. HodyssR. JohnsonP.V. OrzechowskaG.E. GoguenJ.D. KanikI. Carbon dioxide segregation in 1:4 and 1:9 CO2:H2O ices.Icarus2008194283684210.1016/j.icarus.2007.10.005
    [Google Scholar]
  38. WhiteD.W. GerakinesP.A. CookA.M. WhittetD.C.B. Whittet, D.C.B. laboratory spectra of the CO2 bending-mode feature in interstellar ice analogues subject to thermal processing.Astrophys. J. Suppl. Ser.2009180118219110.1088/0067‑0049/180/1/182
    [Google Scholar]
  39. WhiteD.W. Building an astrophysics/astrochemistry laboratory from scratch.Phys. Teach.202260536236410.1119/10.0010394
    [Google Scholar]
  40. ÖbergK.I. FraserH.J. BoogertA.C.A. BisschopS.E. FuchsG.W. van DishoeckE.F. LinnartzH. Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices.Astron. Astrophys.200746231187119810.1051/0004‑6361:20065881
    [Google Scholar]
  41. ÖbergK.I. FayolleE.C. CuppenH.M. van DishoeckE.F. LinnartzH. Quantification of segregation dynamics in ice mixtures.Astron. Astrophys.2009505118319410.1051/0004‑6361/200912464
    [Google Scholar]
  42. WhiteD.W. MastrapaR.M.E. SandfordS.A. Laboratory spectra of CO2 vibrational modes in planetary ice analogs.Icarus201222121032104210.1016/j.icarus.2012.10.024
    [Google Scholar]
  43. GerakinesP.A. HudsonR.L. First infrared band strengths for amorphous CO2, an overlooked component of interstellar ices.Astrophys. J. Lett.20158082L4010.1088/2041‑8205/808/2/L40
    [Google Scholar]
  44. AbplanalpM.J. KaiserR.I. Complex hydrocarbon chemistry in interstellar and solar system ices revealed: A combined infrared spectroscopy and reflectron time-of-flight mass spectrometry analysis of ethane (C2H6) and D6- Ethane (C2D6) Ices Exposed to Ionizing Radiation.Astrophys. J.2016827213210.3847/0004‑637X/827/2/132
    [Google Scholar]
  45. HudginsD.M. SandfordS.A. AllamandolaL.J. TielensA.G.G.M. Mid- and far-infrared spectroscopy of ices - Optical constants and integrated absorbances.Astrophys. J. Suppl. Ser.19938671387010.1086/191796 11539192
    [Google Scholar]
  46. GerakinesP.A. BrayJ.J. DavisA. RicheyC.R. The strengths of near‐infrared absorption features relevant to interstellar and planetary ices.Astrophys. J.200562021140115010.1086/427166
    [Google Scholar]
  47. BernsteinM. CruikshankD. SandfordS. Near-infrared spectra of laboratory H2O–CH4 ice mixtures.Icarus2006181130230810.1016/j.icarus.2005.10.021
    [Google Scholar]
  48. MastrapaR. BernsteinM. SandfordS. RoushT. CruikshankD. OreC. Optical constants of amorphous and crystalline H2O-ice in the near infrared from 1.1 to 2.6 μm.Icarus2008197130732010.1016/j.icarus.2008.04.008
    [Google Scholar]
  49. WestleyM.S. BarattaG.A. BaragiolaR.A. Density and index of refraction of water ice films vapor deposited at low temperatures.J. Chem. Phys.199810883321332610.1063/1.475730
    [Google Scholar]
  50. DohnálekZ. KimmelG.A. AyotteP. SmithR.S. KayB.D. The deposition angle-dependent density of amorphous solid water films.J. Chem. Phys.2003118136437210.1063/1.1525805
    [Google Scholar]
  51. SandfordS.A. AllamandolaL.J. Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry.Astrophys. J.1993417281582510.1086/173362 11540092
    [Google Scholar]
  52. DomingoM. LunaR. SatorreM.Á. SantonjaC. MillánC. Lorentz–lorenz coefficient of ice molecules of astrophysical interest: N 2, CO 2, NH 3, CH 4, CH 3 OH, C 2 H 4, and C 2 H 6.Astrophys. J.202190628110.3847/1538‑4357/abc5c5
    [Google Scholar]
  53. FrascoD.L. Infrared spectra of ammonium carbamate and deuteroammonium carbamate.J. Chem. Phys.19644172134214010.1063/1.1726217
    [Google Scholar]
  54. PotapovA. TheuléP. JägerC. HenningT. Evidence of surface catalytic effect on cosmic dust grain analogs: The ammonia and carbon dioxide surface reaction.Astrophys. J. Lett.20198781L2010.3847/2041‑8213/ab2538
    [Google Scholar]
  55. PotapovA. FulvioD. KrasnokutskiS. JägerC. HenningT. Formation of complex organic and prebiotic molecules in H 2 O:NH 3:CO 2 ices at temperatures relevant to hot cores, protostellar envelopes, and planet-forming disks.J. Phys. Chem. A2022126101627163910.1021/acs.jpca.1c10188 35245052
    [Google Scholar]
  56. MinissaleM. AikawaY. BerginE. BertinM. BrownW.A. CazauxS. CharnleyS.B. CoutensA. CuppenH.M. GuzmanV. LinnartzH. McCoustraM.R.S. RimolaA. SchrauwenJ.G.M. ToubinC. UgliengoP. WatanabeN. WakelamV. DulieuF. Thermal desorption of interstellar ices: a review on the controlling parameters and their implications from snowlines to chemical complexity.ACS Earth Space Chem.20226359763010.1021/acsearthspacechem.1c00357
    [Google Scholar]
  57. WhiteD.W. Laboratory Studies of Solid Carbon Dioxide in Interstellar Ice Analogs Subject to Thermal Processing; Ph.D. thesis.University of Alabama at Birmingham2010
    [Google Scholar]
  58. KlotzA. WardT. DartoisE. Molecular complexes theoretical computations between methanol and carbon dioxide and their implications in the interstellar ice mantles.Astron. Astrophys.2004416280181010.1051/0004‑6361:20034602
    [Google Scholar]
  59. RussoN.D. KhannaR.K. Laboratory infrared spectroscopic studies of crystalline nitriles with relevance to outer planetary systems.Icarus1996123236639510.1006/icar.1996.0165
    [Google Scholar]
  60. AbdulgalilA.G.M. MarchioneD. ThrowerJ.D. CollingsM.P. McCoustraM.R.S. IslamF. PalumboM.E. CongiuE. DulieuF. Laboratory studies of electron and ion irradiation of solid acetonitrile (CH 3 CN).Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.20133711994201105862011058610.1098/rsta.2011.0586 23734051
    [Google Scholar]
  61. DartoisE. SchmittB. Carbon dioxide clathrate hydrate FTIR spectrum.Astron. Astrophys.2009504386987310.1051/0004‑6361/200911812
    [Google Scholar]
  62. BernsteinM.P. SandfordS.A. Variations in the strength of the infrared forbidden 2328.2 cm−1 fundamental of solid N2 in binary mixtures.Spectrochim. Acta A Mol. Biomol. Spectrosc.199955122455246610.1016/S1386‑1425(99)00038‑4 11543545
    [Google Scholar]
  63. RedaelliE. BizzocchiL. CaselliP. PinedaJ.E. Nitrogen fractionation in ammonia and its insights into nitrogen chemistry.Astron. Astrophys.2023674L810.1051/0004‑6361/202346647
    [Google Scholar]
  64. FerreroS. CeccarelliC. UgliengoP. SodupeM. RimolaA. Formation of complex organic molecules on interstellar co ices? insights from computational chemistry simulations.Astrophys. J.2023951215010.3847/1538‑4357/acd192
    [Google Scholar]
  65. MolpeceresG. Enrique-RomeroJ. AikawaY. Cracking the puzzle of CO 2 formation on interstellar ices.Astron. Astrophys.2023677A3910.1051/0004‑6361/202347097
    [Google Scholar]
  66. TakeharaH. ShojiD. IdaS. Monte Carlo simulation of sugar synthesis on icy dust particles intermittently irradiated by UV in a protoplanetary disk.Astron. Astrophys.2022662A7610.1051/0004‑6361/202243212
    [Google Scholar]
  67. MolpeceresG. KästnerJ. HerreroV.J. PeláezR.J. MatéB. Desorption of organic molecules from interstellar ices, combining experiments and computer simulations: Acetaldehyde as a case study.Astron. Astrophys.2022664A16910.1051/0004‑6361/202243489
    [Google Scholar]
  68. SinghK.K. TandonP. KumarR. MisraA. Formation of aminomethanol in ammonia-water interstellar ice.Mon. Not. R. Astron. Soc.202150620592065
    [Google Scholar]
  69. RedondoP. PauzatF. EllingerY. MarkovitsA. Reconstruction of water ice: The neglected process OH + OH → H 2 O + O.Astron. Astrophys.2020638A12510.1051/0004‑6361/202037771
    [Google Scholar]
  70. KrijtS. BosmanA.D. ZhangK. ApaiD. CieslaF.J. The CO content of planetary building blocks: Modeling the physical and chemical evolution of protoplanetary disks.Proceedings of the 235th meeting of the American Astronomical Society, Honolulu, HI2020.
    [Google Scholar]
  71. EnnisC. AuchettlR. AppadooD.R.T. RobertsonE.G. Density functional theory for prediction of far-infrared vibrational frequencies: molecular crystals of astrophysical interest.Mon. Not. R. Astron. Soc.201747144265427410.1093/mnras/stx1736
    [Google Scholar]
  72. PutzM. TudoranM.A. PutzA.M. Structure properties and chemical-bio/ecological of PAH interactions: from synthesis to cosmic spectral lines, nanochemistry, and lipophilicity-driven reactivity.Curr. Org. Chem.201317232845287110.2174/13852728113179990130
    [Google Scholar]
  73. BaianoC. LupiJ. BaroneV. TasinatoN. Gliding on ice in search of accurate and cost-effective computational methods for astrochemistry on grains: The puzzling case of the HCN isomerization.J. Chem. Theory Comput.20221853111312110.1021/acs.jctc.1c01252 35446575
    [Google Scholar]
  74. FerreroS. ZamirriL. CeccarelliC. WitzelA. RimolaA. UgliengoP. Binding energies of interstellar molecules on crystalline and amorphous models of water ice by ab initio calculations.Astrophys. J.202090411110.3847/1538‑4357/abb953
    [Google Scholar]
  75. PerreroJ. Enrique-RomeroJ. Martínez-BachsB. CeccarelliC. BalucaniN. UgliengoP. RimolaA. Non-energetic formation of ethanol via CCH reaction with interstellar H2O Ices.A Computational Chemistry Study20223496511
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348285603231228110017
Loading
/content/journals/cphs/10.2174/0127723348285603231228110017
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test