Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Background

In this paper, we propose solving the specific original problem of control synthesis of spacecraft attitude. Optimization of the control program is made with the use of a new criterion of quality that combines energy costs and duration of reorientation under restrictions on control (the presence of a time factor limits the duration of slew maneuver).

Methods

The construction of optimal control for angular momentum change is based on the quaternion method and L.S. Pontryagin maximum principle. An analytical solution to the problem was obtained on the base of a differential equation relating the orientation quaternion and angular momentum of a spacecraft.

Results

Key properties of the optimal solution are formulated in analytical form; the features of optimal motion are studied in detail. The control law is formulated in the form of explicit dependence between control and phase variables. In a case when the controlling torque is limited by the given restriction (at the beginning and end of a turn), analytical formulas have been written for the duration of braking and acceleration. Main relations which determine optimal values of parameters of the algorithm for control of angular momentum are given. Examples and results of mathematical modeling of spacecraft motion formed by optimal control were given. This data in addition to the theoretical descriptions illustrates the process of reorientation in evident form and demonstrates the practical feasibility of a designed method for control of angular momentum during spatial turn.

Conclusion

The designed optimal algorithm of control of spacecraft motion improves the efficiency of spacecraft attitude system, and originates more economical performance of spacecraft during flight on orbit.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348245209231205063839
2024-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. BranetsV.N. ShmyglevskiiI.P. Use of quaternions in problems of orientation of solid bodies.MoscowNauka1973
    [Google Scholar]
  2. VelishchanskiiM.A. KrishchenkoA.P. TkachevS.B. Synthesis of spacecraft reorientation algorithms using the concept of the inverse dynamic problem.J. Comput. Syst. Sci. Int.200342811818
    [Google Scholar]
  3. ErmoshinaO.V. KrishchenkoA.P. Synthesis of programmed controls of spacecraft orientation by the method of inverse problem of dynamics.J. Comput. Syst. Sci. Int.200039313320
    [Google Scholar]
  4. AlekseevK.B. MalyavinA.A. ShadyanA.V. Extensive control of spacecraft orientation based on fuzzy logic.Polet20094753
    [Google Scholar]
  5. RaushenbakhB.V. Tokar’E.N. Spacecraft orientation control.MoscowNauka1974
    [Google Scholar]
  6. KrasovskiiA.A. Automatic flight control systems and their analytical design.MoscowNauka1973
    [Google Scholar]
  7. LiF. BainumP.M. Numerical approach for solving rigid spacecraft minimum time attitude maneuvers.J. Guid. Control Dyn.1990131384510.2514/3.20515
    [Google Scholar]
  8. ScrivenerS.L. ThompsonR.C. Survey of time-optimal attitude maneuvers.J. Guid. Control Dyn.199417222523310.2514/3.21187
    [Google Scholar]
  9. LiuS.W. SinghT. Fuel/time optimal control of spacecraft maneuvers.J. Guid. Control Dyn.199720239439710.2514/2.4053
    [Google Scholar]
  10. ByersR.M. VadaliS.R. Quasi-closed-form solution to the time-optimal rigid spacecraft reorientation problem.J. Guid. Control Dyn.199316345346110.2514/3.21031
    [Google Scholar]
  11. JunkinsJ.L. TurnerJ.D. Optimal spacecraft rotational maneuvers.AmsterdamElsevier1986
    [Google Scholar]
  12. LevskiiM.V. Pontryagin’s maximum principle in optimal control problems of orientation of a spacecraft.J. Comput. Syst. Sci. Int.200847697498610.1134/S1064230708060117
    [Google Scholar]
  13. ShenH. TsiotrasP. Time-optimal control of axi-symmetric rigid spacecraft with two controls.J. Guid. Control Dyn.199922568269410.2514/2.4436
    [Google Scholar]
  14. MolodenkovA.V. SapunkovY.G. A solution of the optimal turn problem of an axially symmetric spacecraft with bounded and pulse control under arbitrary boundary conditions.J. Comput. Syst. Sci. Int.200746231032310.1134/S1064230707020189
    [Google Scholar]
  15. MolodenkovA.V. SapunkovY.G. Special control regime in the problem of optimal turn of an axially symmetric spacecraft.J. Comput. Syst. Sci. Int.201049689189910.1134/S1064230710060079
    [Google Scholar]
  16. MvL. Special aspects in attitude control of a spacecraft, equipped with inertial actuators.J. Comput. Sci. Appl. Info. Techno.2017241910.15226/2474‑9257/2/4/00121
    [Google Scholar]
  17. PlatonovV.N. KovtunV.S. Method for spacecraft control using reactive actuators during execution of a programmed turn RF Patent for the Invention, No. 2098325.Byull. Izobret199734
    [Google Scholar]
  18. LevskiiM.V. Features of attitude control of a spacecraft, equipped with inertial actuators.Mekhatron Avtomatiz Upravl20151618819510.17587/mau.16.188‑195
    [Google Scholar]
  19. KovtunV.S. MitrikasV.V. PlatonovV.N. RevnivykhS.G. SukhanovN.A. Mathematical support for conducting experiments with attitude control of space astrophysical module gamma, news from academy of sciences USSR.Technical Cybernetics19903144157
    [Google Scholar]
  20. LevskiiM.V. Method of controlling a spacecraft turn, RF Patent for the Invention, No. 2093433, Byull.Izobret199729271
    [Google Scholar]
  21. MolodenkovA.V. SapunkovY.G. Analytical solution of the optimal attitude maneuver problem with a combined objective functional for a rigid body in the class of conical motions.Mech. Solids201651213514710.3103/S0025654416020011
    [Google Scholar]
  22. LevskiiM.V. Analytic controlling reorientation of a spacecraft using a combined criterion of optimality.J. Comput. Syst. Sci. Int.201857228330110.1134/S1064230718010069
    [Google Scholar]
  23. LevskiiM.V. The use of universal variables in problems of optimal control concerning spacecrafts orientation, Mekhatron., Avtomatiz.Upravl.201415359
    [Google Scholar]
  24. LevskiiM.V. On optimal spacecraft damping.J. Comput. Syst. Sci. Int.201150114415710.1134/S1064230711010138
    [Google Scholar]
  25. LevskiiM.V. Optimal spacecraft terminal attitude control synthesis by the quaternion method.Mech. Solids200944216918310.3103/S0025654409020022
    [Google Scholar]
  26. LevskiiM.V. Synthesis of the optimal control of the spacecraft orientation using combined criteria of quality.J. Comput. Syst. Sci. Int.2019586980100310.1134/S1064230719040105
    [Google Scholar]
  27. MvL. Special optimization problem of control mode of spacecraft motion.Intern. Robo. & Auto J.20184642343210.15406/iratj.2018.04.00159
    [Google Scholar]
  28. LevskiiM.V. Optimization problem of attitude control of a spacecraft with bounded rotary energy using quaternions.Intern. Robo. & Auto J.202172637310.15406/iratj.2021.07.00228
    [Google Scholar]
  29. TrukhanovS.V. TrukhanovA.V. KostishynV.G. ZabeivorotaN.S. PaninaL.V. TrukhanovA.V. TurchenkoV.A. TrukhanovaE.L. OleynikV.V. YakovenkoO.S. MatzuiL.Y. ZhivulinV.E. High-frequency absorption properties of gallium weakly doped barium hexaferrites.Philos. Mag.201999558560510.1080/14786435.2018.1547431
    [Google Scholar]
  30. TurchenkoV.A. TrukhanovS.V. KostishinV.G. DamayF. PorcherF. KlygachD.S. VakhitovM.G. LyakhovD. MichelsD. BozzoB. FinaI. AlmessiereM.A. SlimaniY. BaykalA. ZhouD. TrukhanovA.V. Features of structure, magnetic state and electrodynamic performance of SrFe12−xInxO19.Sci. Rep.20211111834210.1038/s41598‑021‑97684‑8 34526572
    [Google Scholar]
  31. AlmessiereM.A. SlimaniY. AlgarouN.A. VakhitovM.G. KlygachD.S. BaykalA. ZubarT.I. TrukhanovS.V. TrukhanovA.V. AttiaH. SertkolM. Auwalİ.A. Tuning the structure, magnetic and high frequency properties of Sc-doped Sr0.5Ba0.5ScxFe12-xO19/NiFe2O4 hard/soft nanocomposites.Adv. Electron. Mater.202282210112410.1002/aelm.202101124
    [Google Scholar]
  32. AlmessiereM.A. AlgarouN.A. SlimaniY. SadaqatA. BaykalA. ManikandanA. TrukhanovS.V. TrukhanovA.V. ErcanI. Investigation of exchange coupling and microwave properties of hard/soft (SrNi0.02Zr0.01Fe11.96O19)/(CoFe2O4)x nanocomposites.Materials Today Nano20221810018610.1016/j.mtnano.2022.100186
    [Google Scholar]
  33. GorshkovO.A. MuravevV.A. ShagaydaA.A. Holl’s and ionic plasma engines for spacecrafts.MoscowMashinostroenie2008
    [Google Scholar]
  34. KulkovV.M. GorshkovV.A. EgorovYu.G. BelikA.A. KrainovA.M. Comparative estimation of efficiency of applying the perspective types of electric-rocket engines on small spacecrafts. Byull.Samara’s State Space University2012
    [Google Scholar]
  35. PontryaginL.S. BoltyanskiiV.G. GamkrelidzeR.V. MishchenkoE.F. The mathematical theory of optimal processes.New YorkGordon and Breach1986
    [Google Scholar]
  36. ChanyalB.C. A relativistic quantum theory of dyons wave propagation.Can. J. Phys.201795121200120710.1139/cjp‑2017‑0080
    [Google Scholar]
  37. ChanyalB.C. PathakM. Quaternionic approach to dual Magnetohydrodynamics of dyonic cold plasma.Adv. High Energy Phys.20182018380511310.1155/2018/7843730
    [Google Scholar]
  38. ChanyalB.C. Quaternionic approach on the dirac–maxwell, bernoulli and navier–stokes equations for dyonic fluid plasma.Int. J. Mod. Phys. A20193431195020210.1142/S0217751X19502026
    [Google Scholar]
  39. ChanyalB.C. KarnatakS. A comparative study of quaternionic rotational Dirac equation and its interpretation.Int. J. Geom. Methods Mod. Phys.2020172205001810.1142/S0219887820500188
    [Google Scholar]
  40. YoungL.C. Lectures on the calculus of variations and optimal control theory.American Mathematical Society19691337
    [Google Scholar]
  41. MarkeevA.P. Theoretical mechanics.MoscowNauka1990
    [Google Scholar]
  42. LevskiiM.V. Device for regular rigid body precession parameters formation. RF Patent for the Invention, No. 2146638. Byull.Izobret20008148
    [Google Scholar]
  43. LastmanG.J. A shooting method for solving two-point boundary-value problems arising from non-singular bang-bang optimal control problems.Int. J. Control197827451352410.1080/00207177808922388
    [Google Scholar]
  44. BertolazziE. BiralF. Da LioM. Symbolic-numeric efficient solution of optimal control problems for multibody systems.J. Comput. Appl. Math.2006185240442110.1016/j.cam.2005.03.019
    [Google Scholar]
  45. KumarS. KanwarV. SinghS. Modified efficient families of two and three-step predictor-corrector iterative methods for solving nonlinear equations.Appl. Math.20101315315810.4236/am.2010.13020
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348245209231205063839
Loading
/content/journals/cphs/10.2174/0127723348245209231205063839
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test