Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Introduction

Two-dimensional (2D) materials, such as MXene (TiCT), have garnered extensive attention in recent years due to their exceptional performance across various domains. The flake size of TiCT notably influences its specific surface area, a pivotal factor in interfacial interactions within electrochemistry.

Methods

Presently, modifying the flake size of bulk TiCT typically involves complex and costly processes, like ultrasonic treatment and isolation. Leveraging the specific preparation principle of MXenes, which involves etching the A layers in precursor MAX phases, a top-down strategy for producing TiCT flakes of desired sizes, has been proposed in this work. In this approach, precursor TiAlC particles undergo ball-milling to adjust their size.

Results

Through this innovative strategy, dispersions of TiCT flakes with varying average lateral sizes are generated, enabling an investigation into the impact of lateral size on the electrochemical properties of TiCT flakes. By controlling the ball milling time for TiAlC powders, the resulting average sizes of TiCT (0, 2, 4) are 6.34 μm, 2.16 μm, and 0.96 μm, respectively. Particularly, the TiCT (2) electrode, composed of 2.16 μm sheets, demonstrates remarkable performance metrics. It exhibits a high areal capacitance of 845.0 mF/cm2 at a scan rate of 5 mV/s, along with a gravimetric capacitance of 244.0 F/g at a current density of 1 A/g.

Conclusion

This study presents a facile method to enable mass production of TiCT with sheets of varying sizes, addressing both small and large dimensions.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348268837231206095532
2024-01-01
2024-11-07
Loading full text...

Full text loading...

References

  1. WanS. LiX. ChenY. LiuN. DuY. DouS. JiangL. ChengQ. High-strength scalable MXene films through bridging-induced densification.Science20213746563969910.1126/science.abg2026 34591632
    [Google Scholar]
  2. NemaniS.K. ZhangB. WyattB.C. HoodZ.D. MannaS. KhaledialidustiR. HongW. SternbergM.G. SankaranarayananS.K.R.S. AnasoriB. High-entropy 2D carbide MXenes: TiVNbMoC 3 and TiVCrMoC 3.ACS Nano2021158128151282510.1021/acsnano.1c02775 34128649
    [Google Scholar]
  3. AnasoriB. LukatskayaM.R. GogotsiY. 2D metal carbides and nitrides (MXenes) for energy storage.Nat. Rev. Mater.2017221609810.1038/natrevmats.2016.98
    [Google Scholar]
  4. NaguibM. KurtogluM. PresserV. LuJ. NiuJ. HeonM. HultmanL. GogotsiY. BarsoumM.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2.Adv. Mater.201123374248425310.1002/adma.201102306 21861270
    [Google Scholar]
  5. VahidMohammadiA. RosenJ. GogotsiY. The world of twodimensional carbides and nitrides (MXenes).Science20213726547eabf158110.1126/science.abf1581
    [Google Scholar]
  6. XiaY. MathisT.S. ZhaoM.Q. AnasoriB. DangA. ZhouZ. ChoH. GogotsiY. YangS. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes.Nature2018557770540941210.1038/s41586‑018‑0109‑z 29769673
    [Google Scholar]
  7. HuangX. WuP. A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors.Adv. Funct. Mater.20203012191004810.1002/adfm.201910048
    [Google Scholar]
  8. FanY. YeL. ZhangR. GuoF. TianQ. ZhangY. LiX. Effects of 2D Ti3C2TX (Mxene) on mechanical properties of ZK61 alloy.J. Alloys Compd.202186215848010.1016/j.jallcom.2020.158480
    [Google Scholar]
  9. ZhouY. MaleskiK. AnasoriB. ThostensonJ.O. PangY. FengY. ZengK. ParkerC.B. ZauscherS. GogotsiY. GlassJ.T. CaoC. Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors.ACS Nano20201433576358610.1021/acsnano.9b10066 32049485
    [Google Scholar]
  10. ChengW. FuJ. HuH. HoD. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density.Adv. Sci.2021816210077510.1002/advs.202100775 34137521
    [Google Scholar]
  11. WangX. WangY. JiangY. LiX. LiuY. XiaoH. MaY. HuangY. YuanG. Tailoring ultrahigh energy density and stable dendrite-free flexible anode with Ti3C2Tx MXene nanosheets and hydrated ammonium vanadate nanobelts for aqueous rocking-chair zinc ion batteries.Adv. Funct. Mater.20213135210321010.1002/adfm.202103210
    [Google Scholar]
  12. TianY. AnY. LiuC. XiongS. FengJ. QianY. Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries.Energy Storage Mater.20214134335310.1016/j.ensm.2021.06.019
    [Google Scholar]
  13. WuX. TuT. DaiY. TangP. ZhangY. DengZ. LiL. ZhangH.B. YuZ.Z. Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism.Nano-Micro Lett.202113114810.1007/s40820‑021‑00665‑9 34156564
    [Google Scholar]
  14. ShahzadF. AlhabebM. HatterC.B. AnasoriB. Man HongS. KooC.M. GogotsiY. Electromagnetic interference shielding with 2D transition metal carbides (MXenes).Science201635363041137114010.1126/science.aag2421 27609888
    [Google Scholar]
  15. DuC.F. DinhK.N. LiangQ. ZhengY. LuoY. ZhangJ. YanQ. Self-assemble and in situ formation of Ni1−xFexPS3 nanomosaic-decorated MXene hybrids for overall water splitting.Adv. Energy Mater.2018826180112710.1002/aenm.201801127
    [Google Scholar]
  16. YuM. ZhouS. WangZ. ZhaoJ. QiuJ. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene.Nano Energy20184418119010.1016/j.nanoen.2017.12.003
    [Google Scholar]
  17. ZhangZ. YanQ. LiuZ. ZhaoX. WangZ. SunJ. WangZ.L. WangR. LiL. Flexible MXene composed triboelectric nanogenerator via facile vacuum-assistant filtration method for self-powered biomechanical sensing.Nano Energy20218810625710.1016/j.nanoen.2021.106257
    [Google Scholar]
  18. WangX. ZhangD. ZhangH. GongL. YangY. ZhaoW. YuS. YinY. SunD. In situ polymerized polyaniline/MXene (V2C) as building blocks of supercapacitor and ammonia sensor self-powered by electromagnetic-triboelectric hybrid generator.Nano Energy20218810624210.1016/j.nanoen.2021.106242
    [Google Scholar]
  19. YeL. FanY. ZhangR. GuoF. TianQ. ZhangY. LiX. Interface design of Ti3C2TX/ZK61 composites by thermal reduction.Mater. Sci. Eng. A202283114214210.1016/j.msea.2021.142142
    [Google Scholar]
  20. ZhongQ. LiY. ZhangG. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives.Chem. Eng. J.202140912809910.1016/j.cej.2020.128099
    [Google Scholar]
  21. LiangK. MatsumotoR.A. ZhaoW. OstiN.C. PopovI. ThapaliyaB.P. FleischmannS. MisraS. PrengerK. TyagiM. MamontovE. AugustynV. UnocicR.R. SokolovA.P. DaiS. CummingsP.T. NaguibM. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid.Adv. Funct. Mater.20213133210400710.1002/adfm.202104007
    [Google Scholar]
  22. MaleskiK. RenC.E. ZhaoM.Q. AnasoriB. GogotsiY. Size-dependent physical and electrochemical properties of two-dimensional MXene flakes.ACS Appl. Mater. Interfaces20181029244912449810.1021/acsami.8b04662 29956920
    [Google Scholar]
  23. YiM. ShenZ.G. A review on mechanical exfoliation for the scalable production of graphene.J. Mater. Chem.20152015117001171510.1039/C5TA00252D
    [Google Scholar]
  24. MalakiM. MalekiA. VarmaR.S. MXenes and ultrasonication.J. Mater. Chem. A Mater. Energy Sustain.2019718108431085710.1039/C9TA01850F
    [Google Scholar]
  25. HuT. WangJ.M. ZhangH. LiZ.J. HuM.M. WangX.H. Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: A comparative study.Phys. Chem. Chem. Phys.2015171599971000310.1039/C4CP05666C
    [Google Scholar]
  26. SarychevaA. MakaryanT. MaleskiK. SatheeshkumarE. MelikyanA. MinassianH. YoshimuraM. GogotsiY. Two-dimensional titanium carbide (MXene) as surface-enhanced raman scattering substrate.J. Phys. Chem. C2017121199831998810.1021/acs.jpcc.7b08180
    [Google Scholar]
  27. GouadecG. ColombanP. Raman spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties.Prog. Cryst. Growth Ch.20075315610.1016/j.pcrysgrow.2007.01.001
    [Google Scholar]
  28. AlhabebM. MaleskiK. AnasoriB. LelyukhP. ClarkL. SinS. GogotsiY. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene).Chem. Mater.2017297633764410.1021/acs.chemmater.7b02847
    [Google Scholar]
  29. LipatovA. AlhabebM. LukatskayaM.R. BosonA. GogotsiY. SinitskiiA. Electronic properties and environmental stability of individual monolayer Ti3C2 MXene Flakes.Adv. Electron. Mater.20162160025510.1002/aelm.201600255
    [Google Scholar]
  30. MathisT.S. KurraN. WangX. PintoD. SimonP. GogotsiY. Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems.Adv. Energy Mater.2019939190200710.1002/aenm.201902007
    [Google Scholar]
  31. HuangY.L. BianS.W. Vacuum-filtration assisted layer-by-layer strategy to design MXene/carbon nanotube@MnO2 all-in-one supercapacitors.J. Mater. Chem. A20219213472135610.1039/D1TA06089A
    [Google Scholar]
  32. HuY. WangL. LinT. ZhaoN. ShiM. PengJ. LiJ. ShiW. ZhaiM. Radiation-induced self-assembly of Ti3C2Tx with improved electrochemical performance for supercapacitor.Adv. Mater. Interfaces202076190183910.1002/admi.201901839
    [Google Scholar]
  33. LiuJ. ZhangH.B. XieX. YangR. LiuZ. LiuY. YuZ.Z. Multifunctional, superelastic, and lightweight MXene/Polyimide aerogels.Small20181445180247910.1002/smll.201802479 30295015
    [Google Scholar]
  34. XuS. WeiG. LiJ. HanW. GogotsiY. Flexible MXene–graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices.J. Mater. Chem. A Mater. Energy Sustain.2017533174421745110.1039/C7TA05721K
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348268837231206095532
Loading
/content/journals/cphs/10.2174/0127723348268837231206095532
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test