Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Background

A procedure for determining the elastic and viscous properties of the sample material on the basis of the forced vibrations of a sample of mass đť‘š loaded with a certain mass đť‘€ is developed. One of advantages of using the top mass instead of a rigid fixation is the appearance of an additional deformation resonance, the frequency of which is times smaller than the resonance frequency of the fixed sample.

Method

The experimental setup implementing the free mass method is described. Notably, the proposed scheme does not require any adjustment and is assembled from standard devices. By changing the design of the sample only, both shear and compression-tension strains can be measured. The combination of these methods allows measuring the complex Poisson’s ratio, in addition to modulus of elasticity and loss factor.

Results

One-dimensional (1D) and two-dimensional (2D) models of specimen deformation are considered. For the 1D deformation model, approximate formulas for calculating the modulus of elasticity and the loss factor are substantiated and the limits of validity these formulas are outlined. Improving the accuracy of measurements is also considered. To do this, it is necessary to fully describe the boundary conditions on the deformable sample. The developed 2D model of sample deformation made it possible to calculate the elastic modulus form factors for various samples with axial symmetry.

Conclusion

The method may become a Standard for measuring viscoelastic properties of materials (complex elastic and shear modulus, as well as complex Poisson's ratio).

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348291026240604055257
2024-01-01
2024-11-07
Loading full text...

Full text loading...

References

  1. FerryJ.D. MyersH.S. Viscoelastic Properties of Polymers.J. Electrochem. Soc.1961108142C10.1149/1.2428174
    [Google Scholar]
  2. KulikV.M. BoikoA.V. Physical principles of methods for measuring viscoelastic properties.J. Appl. Mech. Tech. Phys.201859587488510.1134/S0021894418050152
    [Google Scholar]
  3. CaraccioloR. GasparettoA. GiovagnoniM. An experimental technique for complete dynamic characterization of a viscoelastic material.J. Sound Vibrat.20042723-51013103210.1016/j.jsv.2003.03.008
    [Google Scholar]
  4. LakesR.S. Viscoelastic measurement techniques.Rev. Sci. Instrum.200475479781010.1063/1.1651639
    [Google Scholar]
  5. FitzgeraldE.R. FerryJ.D. Method for determining the dynamic mechanical behavior of gels and solids at audio-frequencies; comparison of mechanical and electrical properties.J. Colloid Sci.19538113410.1016/0095‑8522(53)90002‑6
    [Google Scholar]
  6. ParkJ. LeeJ. ParkJ. Measurement of viscoelastic properties from the vibration of a compliantly supported beam.J. Acoust. Soc. Am.201113063729373510.1121/1.3651867 22225029
    [Google Scholar]
  7. WillisR.L. StoneT.S. BerthelotY.H. MadigoskyW.M. An experimental-numerical technique for evaluating the bulk and shear dynamic moduli of viscoelastic materials.J. Acoust. Soc. Am.199710263549355510.1121/1.420288
    [Google Scholar]
  8. NielsenL.F. WismerN.J. GadeS. Improved method for complex modulus estimation.Sound Vibrat.2000342024
    [Google Scholar]
  9. MenardK. Dynamic mechanical analysis – a practical introduction.FloridaCRC Press LLC200810.1201/9781420053135
    [Google Scholar]
  10. SahraouiS. MariezE. EtchessaharM. Mechanical testing of polymeric foams at low frequency.Polym. Test.2000201939610.1016/S0142‑9418(00)00006‑4
    [Google Scholar]
  11. WeiZ. HouH. GaoN. HuangY. YangJ. Complex Young’s modulus measurement by incident wave extracting in a thin resonant bar.J. Acoust. Soc. Am.201714263436344210.1121/1.5011736 29289112
    [Google Scholar]
  12. GarrettS.L. Resonant acoustic determination of elastic moduli.J. Acoust. Soc. Am.199088121022110.1121/1.400334
    [Google Scholar]
  13. PerepechkoI.I. Acoustic methods of investigating polymersMir, Moscow1975
    [Google Scholar]
  14. LevyM. BassH. SternR. Modern acoustical techniques for the measurement of mechanical properties.Academic Press2001
    [Google Scholar]
  15. ShawM.T. MacKnightW.J. Introduction to polymer viscoelasticity.New YorkWilei200510.1002/0471741833
    [Google Scholar]
  16. HiltonH.H. Elastic and viscoelastic Poisson’s ratios: The theoretical mechanics perspective.Mater. Sci. Appl.20178429133210.4236/msa.2017.84021
    [Google Scholar]
  17. GuillotF.M. TrivettD.H. Complete elastic characterization of viscoelastic materials by dynamic measurements of the complex bulk and Young’s moduli as a function of temperature and hydrostatic pressure.J. Sound Vibrat.2011330143334335110.1016/j.jsv.2011.02.003
    [Google Scholar]
  18. ChenC.P. LakesR.S. Viscoelastic behaviour of composite materials with conventional- or negative-Poisson’s-ratio foam as one phase.J. Mater. Sci.199328164288429810.1007/BF01154934
    [Google Scholar]
  19. SmithG.M. BiermanR.L. ZitekS.J. Determination of dynamic properties of elastomers over broad frequency range.Exp. Mech.198323215816410.1007/BF02320404
    [Google Scholar]
  20. BonfiglioP. PompoliF. Determination of the dynamic complex modulus of viscoelastic materials using a time domain approach.Polym. Test.201548899610.1016/j.polymertesting.2015.09.016
    [Google Scholar]
  21. HouH. YuH. SunL. CaoW. Broadband dynamic parameters measurement by longitudinal vibration testing using pulse wave, Acta.Acoust.201540413421
    [Google Scholar]
  22. JonesD.I.G. Temperature-frequency dependence of dynamic properties of damping materials.J. Sound Vibrat.197433445147010.1016/S0022‑460X(74)80228‑2
    [Google Scholar]
  23. HenriquesI.R. BorgesL.A. CastelloD.A. The mechanical behavior of viscoelastic materials in the frequency domain.Rev. Sci. Instrum.200475797810
    [Google Scholar]
  24. BeckerG.W. Uber das dynamisch-elastische verhalten geschaumter stoffe.Acustica195993135143
    [Google Scholar]
  25. RosinG.S. Measurement of dynamic properties of acoustic materials.Moscow1972
    [Google Scholar]
  26. KulikV.M. BoikoA.V. Form factor for a compressed cylindrical sample.Meas. Tech.201457889890210.1007/s11018‑014‑0556‑3
    [Google Scholar]
  27. KulikV.M. BoikoA.V. Form factor for a hollow cylindrical sample under shear deformation.Meas. Tech.201558660360710.1007/s11018‑015‑0761‑8
    [Google Scholar]
  28. KulikV.M. BoikoA.V. Form factor of flat rings.Meas. Tech.2017601374110.1007/s11018‑017‑1146‑y
    [Google Scholar]
  29. MadigoskyW.M. LeeG.F. Improved resonance technique for materials characterization.J. Acoust. Soc. Am.19837341374137710.1121/1.389242
    [Google Scholar]
  30. KulikV.M. SemenovB.N. A two-parameter method for measuring the viscoelastic properties of polymer materials.Metrologia198643238
    [Google Scholar]
  31. WillisR.L. WuL. BerthelotY.H. Determination of the complex Young and shear dynamic moduli of viscoelastic materials.J. Acoust. Soc. Am.2001109261162110.1121/1.1342003 11248968
    [Google Scholar]
  32. KulikV.M. SemenovB.N. MorozovaS.L. Measurement of dynamic properties of viscoelastic materials.Thermophys. Aeromech.200714221122110.1134/S0869864307020072
    [Google Scholar]
  33. KulikV.M. SemenovB.N. BoikoA.V. SeoudiB.M. ChunH.H. LeeI. Measurement of dynamic properties of viscoelastic materials.Exp. Mech.200949341742510.1007/s11340‑008‑9165‑x
    [Google Scholar]
  34. BoikoA.V. KulikV.M. SeoudiB.M. ChunH.H. LeeI. Measurement method of complex viscoelastic material properties.Int. J. Solids Struct.2010473-437438210.1016/j.ijsolstr.2009.09.037
    [Google Scholar]
  35. LandauL.D. LifshitsE.M. Theory of Elasticity: Vol. 7 of Course of Theoretical Physics.Physics Today19751374446
    [Google Scholar]
  36. TimoshenkoS.P. GroodierJ.N. Theory of elasticity.LondonMcGraw-Hill1982
    [Google Scholar]
  37. ChristensenR.M. Theory of viscoelasticity.2nd edAcademic Press1982
    [Google Scholar]
  38. SaddH.M. Elasticity: Theory, Applications and Numerics.Elsevier Inc.2005
    [Google Scholar]
  39. PritzT. The Poisson’s loss factor of solid viscoelastic materials.J. Sound Vibrat.20073063-579080210.1016/j.jsv.2007.06.016
    [Google Scholar]
  40. PritzT. Measurement methods of complex Poisson’s ratio of viscoelastic materials.Appl. Acoust.200060327929210.1016/S0003‑682X(99)00049‑3
    [Google Scholar]
  41. BoikoA.V. KulikV.M. A method for the experimental determination of the viscoelastic properties of a cylindrical sample.J. Appl. Math. Mech.20137719810110.1016/j.jappmathmech.2013.04.012
    [Google Scholar]
  42. LakesR.S. WinemanA. On Poisson’s ratio in linearly viscoelastic solids.J. Elast.2006851456310.1007/s10659‑006‑9070‑4
    [Google Scholar]
  43. PritchardR.H. LavaP. DebruyneD. TerentjevE.M. Precise determination of the Poisson ratio in soft materials with 2D digital image correlation.Soft Matter20139266037604510.1039/c3sm50901j
    [Google Scholar]
  44. GuillotF.M. TrivettD.H. Complete elastic characterization of viscoelastic materials by dynamic measurements of the complex bulk and Young’s moduli as a function of temperature and hydrostatic pressure.J. Sound Vibration201133033343351
    [Google Scholar]
  45. TschoeglN.W. KnaussW.G. EmriI. Poisson’s ratio in linear viscoelasticity-A critical review.Mech. Time-Depend. Mater.20026135110.1023/A:1014411503170
    [Google Scholar]
  46. GreavesG.N. GreerA.L. LakesR.S. RouxelT. Poisson’s ratio and modern materials.Nat. Mater.2011101182383710.1038/nmat3134 22020006
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348291026240604055257
Loading
/content/journals/cphs/10.2174/0127723348291026240604055257
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test