Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2772-3348
  • E-ISSN: 2772-3356

Abstract

Background

Individually, metal nanoparticles (NPs) and conducting polymers show unique properties due to small size, large surface area, and high order of conductivity. But their combination may result in a synergistic effect in properties.

Methods

The NiO NPs and conducting polymer Polyaniline were prepared by modified Sol-gel and chemical oxidative methods, respectively. Powder XRD, FTIR, TEM, and UV-visible methods were used for the structural evaluation. The computational (DFT) study was performed to support experimental results. The NiO/Polyaniline (PANI) nanocomposites (NCs) were explored as corrosion inhibitors, electrical conductors, and photocatalytic agents.

Results

The NiO/Polyaniline NCs showed 91.52% corrosion inhibition efficiency at 1000 ppm concentration. The photocatalytic activity was investigated against methylene blue dye under ultraviolet light. The NiO/Polyaniline NCs decompose 90% of organic dye. The NCs exhibit good conducting, corrosion inhibition, and photocatalytic activity.

Conclusion

The metal oxide (NiO NPs) and PANI-based NCs can be used as corrosion inhibitors, conducting material, and for the degradation of organic compounds (dyes) in impure water.

Loading

Article metrics loading...

/content/journals/cphs/10.2174/0127723348243794230928113822
2023-10-08
2025-01-19
Loading full text...

Full text loading...

References

  1. ZhangB. ZhaoB. HuangS. ZhangR. XuP. WangH.L. One-pot interfacial synthesis of Au nanoparticles and Au–polyaniline nanocomposites for catalytic applications.CrystEngComm20121451542154410.1039/c2ce06396d
    [Google Scholar]
  2. El RhaziM. MajidS. ElbasriM. SalihF.E. OularbiL. LafdiK. Recent progress in nanocomposites based on conducting polymer: Application as electrochemical sensors.Int. Nano Lett.201882799910.1007/s40089‑018‑0238‑2
    [Google Scholar]
  3. SharmaR. MalikR. LambaS. AnnapoorniS. Metal oxide/polyaniline nanocomposites: Cluster size and composition dependent structural and magnetic properties.Bull. Mater. Sci.200831340941310.1007/s12034‑008‑0064‑7
    [Google Scholar]
  4. SivakumarK. Senthil KumarV. ShimJ.J. HaldoraiY. Conducting copolymer/ZnO nanocomposite: Synthesis, characterization, and its photocatalytic activity for the removal of pollutants, Synth.Synth. React. Inorg. Met.-Org. Nano-Met. Chem.201444101414142010.1080/15533174.2013.809743
    [Google Scholar]
  5. WangY. CaiL. LiY. TangY. XieC. Structural and photo-electro-catalytic characteristic of ZnO/ZnWO4/WO3 nanocomposites with double heterojunctions. Phys. E. Low-dimensional Syst.Nanostruct20104350350910.1016/j.physe.2010.09.005
    [Google Scholar]
  6. JiangX. ZhaoX. DuanL. ShenH. LiuH. HouT. WangF. Enhanced photoluminescence and photocatalytic activity of ZnO-ZnWO4 nanocomposites synthesized by a precipitation method.Ceram. Int.20164214151601516510.1016/j.ceramint.2016.05.098
    [Google Scholar]
  7. YosefiL. HaghighiM. Fabrication of nanostructured flowerlike p-BiOI/p-NiO heterostructure and its efficient photocatalytic performance in water treatment under visible-light irradiation.Appl. Catal. B201822036737810.1016/j.apcatb.2017.08.028
    [Google Scholar]
  8. AnithaS. SuganyaM. PrabhaD. SrivindJ. BalamuruganS. BaluA.R. Synthesis and characterization of NiO-CdO composite materials towards photoconductive and antibacterial applications.Mater. Chem. Phys.2018211889610.1016/j.matchemphys.2018.01.048
    [Google Scholar]
  9. KumarH. RaniR. RahulYadav, A. RahulYadav, A. Rajni, Synthesis, characterization, and influence of reduced Graphene Oxide (rGO) on the performance of mixed metal oxide nanocomposite as optoelectronic material and corrosion inhibitor.Chem. Data Collect2020 Oct;2910052710.1016/j.cdc.2020.100527
    [Google Scholar]
  10. KumarH. BooraA. YadavA. Rajni Rahul Polyaniline-metal oxide-nano-composite as a nano-electronics, opto-electronics, heat resistance and anticorrosive material.Results in Chemistry2020 Jan;210004610.1016/j.rechem.2020.100046
    [Google Scholar]
  11. ZhangM. XuY. FanH. ZhaoN. YanB. WangC. MaJ. YadavA.K. ZhangW. DuZ. ZhengX. LiM. DongG. WangW. In situ synthesis of 3D Co@Co3O4 nanosheet arrays for hybrid supercapacitors with ultra-high rate performance.J. Alloys Compd.2020 Jun 15;82615411510.1016/j.jallcom.2020.154115
    [Google Scholar]
  12. RenX. FanH. MaJ. WangC. ZhangM. ZhaoN. Hierarchical Co3O4/PANI hollow nanocages: Synthesis and application for electrode materials of supercapacitors.Appl. Surf. Sci.2018 May 31;44119420310.1016/j.apsusc.2018.02.013
    [Google Scholar]
  13. MaL. FanH. WeiX. ChenS. HuQ. LiuY. ZhiC. LuW. ZapienJ.A. HuangH. Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co 3 O 4 @polypyrrole core–shell nanorod bundle array electrodes.J. Mater. Chem. A Mater. Energy Sustain.2018639190581906510.1039/C8TA07477A
    [Google Scholar]
  14. Hashemi MonfaredA. JamshidiM. Synthesis of polyaniline/titanium dioxide nanocomposite (PAni/TiO2) and its application as photocatalyst in acrylic pseudo paint for benzene removal under UV/VIS lights.Prog. Org. Coat.2019 Aug;13610525710.1016/j.porgcoat.2019.105257
    [Google Scholar]
  15. AmbalagiS.M. DevendrappaM. NagarajaS. SannakkiB. Dielectric properties of PANI with metal oxide nanocomposites, Emerging Technologies: Micro to Nano (ETMN-2017).AIP Conf. Proc.2018020002-02000202000610.1063/1.5047678
    [Google Scholar]
  16. DooleyK.M. ChenS.Y. RossJ.R.H. Stable nickel-containing catalysts for the oxidative coupling of methane.J. Catal.1994145240240810.1006/jcat.1994.1050
    [Google Scholar]
  17. YangH.X. DongQ.F. HuX.H. AiX.P. LiS.X. Preparation and characterization of LiNiO2 synthesized from Ni(OH)2 and LiOH·H2O.J. Power Sources199979225626110.1016/S0378‑7753(99)00158‑5
    [Google Scholar]
  18. HotovýI. HuranJ. SpiessL. ČapkovicR. HaščíkŠ. Preparation and characterization of NiO thin films for gas sensor applications.Vacuum2000582-330030710.1016/S0042‑207X(00)00182‑2
    [Google Scholar]
  19. MillerE.L. RocheleauR.E. Electrochemical behavior of reactively sputtered iron-doped nickel oxide.J. Electrochem. Soc.199714493072307710.1149/1.1837961
    [Google Scholar]
  20. WangG. LuX. ZhaiT. LingY. WangH. TongY. LiY. Free-standing nickel oxide nanoflake arrays: Synthesis and application for highly sensitive non-enzymatic glucose sensors.Nanoscale20124103123312710.1039/c2nr30302g
    [Google Scholar]
  21. IchiyanagiY. WakabayashiN. YamazakiJ. YamadaS. KimishimaY. KomatsuE. TajimaH. Magnetic properties of NiO nanoparticles.Physica B2003329–333862863
    [Google Scholar]
  22. MakhloufS.A. ParkerF.T. SpadaF.E. BerkowitzA.E. Magnetic anomalies in NiO nanoparticles.J. Appl. Phys.19978185561556310.1063/1.364661
    [Google Scholar]
  23. KlaiklangP. KhongthonS. ChueachotR. NakhowongR. A facile two-step synthesis of Ag/CuCo2O4 supported on nickel foam as a high-performance electrocatalyst for oxygen evolution reaction.Mater. Lett.202027512809410.1016/j.matlet.2020.128094
    [Google Scholar]
  24. YadavA. KumarH. SharmaR. KumariR. SinghD. HamedO.A. Metal oxide decorated polyaniline based multifunctional nanocomposites: An experimental and theoretical approach.Results in Engineering20231810116110.1016/j.rineng.2023.101161
    [Google Scholar]
  25. RossignattiB.C. VieiraA.P. BarbosaM.S. AbegãoL.M.G. MelloH.J.N.P.D. Thin films of polyaniline-based nanocomposites with CeO2 and WO3 metal oxides applied to the impedimetric and capacitive transducer stages in chemical sensors.Polymers202315357810.3390/polym15030578
    [Google Scholar]
  26. ZareE.N. MakvandiP. AshtariB. RossiF. MotahariA. PeraleG. Progress in conductive polyaniline-based nanocomposites for biomedical applications: A review.J. Med. Chem.202063112210.1021/acs.jmedchem.9b00803
    [Google Scholar]
  27. Ćirić-MarjanovićG. Progress in polyaniline composites with transition metal oxides. in fundamentals of conjugated polymer blends, copolymers, and composites. SainiP. 201510.1002/9781119137160.ch2
    [Google Scholar]
  28. LargoF. HaounatiR. OuachtakH. HafidN. JadaA. AddiA.A. Design of organically modified sepiolite and its use as adsorbent for hazardous malachite green dye removal from water.Water Air Soil Pollut.2023234318310.1007/s11270‑023‑06185‑z
    [Google Scholar]
  29. OuachtakH. El GuerdaouiA. El HaoutiR. HaounatiR. IghnihH. ToubiY. AlakhrasF. RehmanR. HafidN. AddiA.A. TahaM.L. Combined molecular dynamics simulations and experimental studies of the removal of cationic dyes on the eco-friendly adsorbent of activated carbon decorated montmorillonite Mt@AC.RSC Adv.20231385027504410.1039/D2RA08059A
    [Google Scholar]
  30. HaounatiR. IghnihH. OuachtakH. MalekshahR.E. HafidN. JadaA. Ait AddiA. Z-Scheme g-C3N4/Fe3O4/Ag3PO4 @Sep magnetic nanocomposites as heterojunction photocatalysts for green malachite degradation and dynamic molecular studies.Colloids Surf. A Physicochem. Eng. Asp.202367113150913150910.1016/j.colsurfa.2023.131509
    [Google Scholar]
  31. RedouaneH. HamzaI. RahimeE.M. SaidA. FadiA. EmanA. AlghamdiH. HaounatiR. IghnihH. MalekshahR.E. AlahianeS. AlakhrasF. AlabbadE. AlghamdiH. OuachtakH. AddiA.A. JadaA. Exploring ZnO/Montmorillonite photocatalysts for the removal of hazardous RhB Dye: A combined study using molecular dynamics simulations and experiments.Mater. Today Commun.20233510591510591510.1016/j.mtcomm.2023.105915
    [Google Scholar]
  32. KumarH. YadavV. KumariA. Adsorption, corrosion inhibition mechanism, and computational studies of Azadirachta indica extract for protecting mild steel: Sustainable and green approach.J. Phys. Chem. Solids202216511069010.1016/j.jpcs.2022.110690
    [Google Scholar]
  33. JiaS. WangQ. WangS. Ni-MOF/PANI-derived CN-doped NiO nanocomposites for high sensitive nonenzymic electrochemical detection.J. Inorg. Organomet. Polym. Mater.202131286587410.1007/s10904‑020‑01767‑4
    [Google Scholar]
  34. AhmadS. Ali khanM.M. MohammadF. Graphene/Nickel the oxide-based nanocomposite of polyaniline with special reference to ammonia sensing.ACS Omega2018389378938710.1021/acsomega.8b00825
    [Google Scholar]
  35. DeyabM.A. MeleG. BloiseE. MohsenQ. Novel nanocomposites of Ni-Pc/polyaniline for the corrosion safety of the aluminum current collector in the Li-ion battery electrolyte.Sci. Rep.20211111237110.1038/s41598‑021‑91688‑0
    [Google Scholar]
  36. SarkarK. DebnathA. DebK. BeraA. SahaB. Effect of NiO incorporation in charge transport of polyaniline: Improved polymer based thermoelectric generator.Energy2019177C20321010.1016/j.energy.2019.04.045
    [Google Scholar]
  37. RedouaneH. FadiA. OuachtakH. SalehT.A. NaimaH. AbdelazizA.A. Arab. J. Sci. Eng.202248116917910.1007/s13369‑022‑06899‑y
    [Google Scholar]
  38. RedouaneH. Anouar ElG. OuachtakH.R. ElH.; A., B.; Naima, H.; Bahcine, B.; Diogo, M.F.S.; M. L., T.; Jada, A.; Abdelaziz A., A.Separ. Purif. Tech.202127711939911939910.1016/j.seppur.2021.119399
    [Google Scholar]
/content/journals/cphs/10.2174/0127723348243794230928113822
Loading
/content/journals/cphs/10.2174/0127723348243794230928113822
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test