- Home
- A-Z Publications
- Current Pharmaceutical Design
- Fast Track Listing
Current Pharmaceutical Design - Online First
Description text for Online First listing goes here...
21 - 28 of 28 results
-
-
Trends in Photodynamic Therapy: Products, Market and Future Perspectives
Authors: Gabriela Lopes Gama e Silva and Eduardo Ricci-JuniorAvailable online: 29 October 2024More Less
-
-
-
Establishment of an Integrated Population Pharmacokinetic/ Pharmacodynamics Model of Apixaban in Chinese Healthy Population Adjusting for Key Genetic Variants
Authors: Guangyan Mu, Yaou Liu, Qiufen Xie, Zhiyan Liu, Hanxu Zhang, Xianmin Meng, Jinfang Song, Zhe Wang, Shuang Zhou, Zining Wang, Kun Hu, Xia Zhao, Maoxing Liao, Jiachun Bao, Qian Xiang and Yimin CuiAvailable online: 24 October 2024More LessAimsTo improve the understanding of pharmacokinetic/pharmacodynamic (PK/PD) profiles of apixaban, supporting personalised drug prescriptions for future patients.
BackgroundGenetic as well as nongenetic factors can affect the predictable PK and PD characteristics of apixaban.
ObjectiveEstablish a integrated popPK/PD model that adjusts for critical genetic variant.
MethodsThe integrated PK/PD models was characterized on the basis of PK (apixaban blood concentration) and PD (prothrombin time (PT), activated partial thromboplastin time (APTT), and anti-FXa activity) data from 181 healthy Chinese volunteers. Other investigated covariate variables included: Meaningful intrinsic and extraneous determinants, correlated markers (ABCG2, F13A1, C3, etc.). A total of 2877 PK concentration observations were included in the modeling dataset.
ResultsThe PK model of apixaban is adopted by single compartment model with first-order oral absorption. The estimated values of total clearance rate (CL/F), apparent distribution volume (V/F), and absorption rate constant (KA) in the final model are 3.37 l/h, 28.2 l, and 0.781 l/h, respectively. The PK model includes significance covariates such as FOOD, RBC, WT, and gene (ABCG2). The PD model of apixaban is adopted by a linear direct effect model with additive error, which was used to describe the relationship between markers such as APTT, PT, anti-FXa, versus plasma concentration. PK simulation within the modelled dose range is similar to clinical real date, while PD simulation results also show that the simulated exposure parameters is within the range of the literature.
ConclusionWe established a comprehensive PK/PD model and used it to simulate markers level such as APTT, PT, and anti-FXa of apixaban. Individual predictive values with a dose of 2.5 mg are basically within the expected recommended range.
-
-
-
Alzheimer's Disease Protein Targets: Comprehensive Review and Future Directions
Available online: 18 October 2024More LessAlzheimer's disease (AD) is a gradual degenerative ailment of the nervous system that is marked by the buildup of amyloid-β plaques and neurofibrillary tangles. This accumulation causes problems with the connections between nerve cells and the loss of these cells. This review paper explores the complex pathophysiology of AD, analyzing the neuronal loss reported in key brain regions like the entorhinal cortex, amygdala, hippocampus, and cortical association areas. The text also examines subcortical nuclei participation, such as the noradrenergic locus coeruleus, serotonergic dorsal raphe, and cholinergic basal nucleus. Also, this review discusses the importance of tau protein hyperphosphorylation, oxidative stress, and metal ion dysregulation in the evolution of AD. Moreover, it explores the cholinergic theory and the influence of the APOE (apolipoprotein E) genotype on the effectiveness of therapy. This article thoroughly summarizes the current knowledge on AD, including its clinical symptoms and possible treatment approaches, by combining several theories and new targets. The study highlights the connection between the degree of tangle development and the severity of dementia, underlining the need for creative methods to tackle the complex difficulties of discovering drugs for AD.
-
-
-
Insights into the Novel Biomarkers Expressed in Diabetic Nephropathy: Potential Clinical Applications
Authors: Shalu Chauhan, Uma Bhandari and Anwar HabibAvailable online: 16 October 2024More LessDiabetic nephropathy (DN) is increasing worldwide in parallel with type 2 diabetes mellitus. Identifying diagnostic biomarkers for DN at an early stage is crucial due to the considerable societal and economic burden associated with diabetes mellitus (DM) and its risk factors. In the past, early indicators of microvascular problems, such as microalbuminuria (MA), have been used to predict the possibility of developing advanced chronic kidney disease (CKD). However, because of the incapacity of MA to appropriately estimate DN, particularly, non-albuminuric DN, additional markers have been suggested for recognizing the early renal abnormalities and structural lesions, even before MA. This study aims to assess the existing and future biomarkers used to diagnose or predict early DN. This review provides comprehensive insight into diagnostic approaches for early detection of CKD, addressing the following areas: (i) markers of glomerular damage, (ii) markers of tubular damage, (iii) oxidative stress biomarkers, (iv) inflammatory biomarkers and (v) futuristic biomarkers such as micro-ribonucleic acids (miRNAs), proteomics, metabolomics and genomics and gut microbiota. Early detection of DN may lead to improvement in clinical management and quality of life, emphasizing the importance of identifying a specific and reliable predictive biomarker. Emerging serum and urinary biomarkers offer promise for early DN diagnosis, potentially reducing prevalence and preventing progression to end-stage renal disease (ESRD). Further advancements in miRNAs, proteomics, metabolomics genomics and gut microbiota offer prospects for even earlier and more precise DN diagnosis.
-
-
-
Uric Acid: A Biomarker and Pathogenic Factor of Affective Disorders and Neurodegenerative Diseases
Authors: Teng Chu, Ge Liu, Jing Liu, Yue Wu and Weirong FangAvailable online: 16 October 2024More LessUric acid (UA), the end-product of purine metabolism, has a complicated physiological role in the body, showing the combination of regulating inflammatory response, promoting oxidation/anti-oxidation, and modifying autophagy activity in vivo. Meanwhile, various research and theories support that inflammation, oxidative stress, and other risk factors promote the onset and progression of affective disorders and neurodegenerative diseases. Existing studies suggest that UA may be involved in the pathophysiological processes of affective disorders in various ways, and there has been a gradual advance in the understanding of the interplay between UA levels and affective disorders and neurodegenerative diseases. This review summarized the role of UA in the process of inflammation, oxidative stress, and autophagy. On this basis, we discussed the correlation between UA and affective disorders and several neurodegenerative diseases, and simultaneously analyzed the possible mechanism of its influence on affective disorders and neurodegenerative diseases, to provide a theoretical basis for UA as a biomarker or therapeutic target for the diagnosis of these diseases.
-
-
-
Exploring Saffron's Therapeutic Potential: Insights on Phytochemistry, Bioactivity, and Clinical Implications
Authors: Debasis Sen, Sunny Rathee, Vishal Pandey and Sanjay K. JainAvailable online: 16 October 2024More LessSaffron, derived from the Crocus sativus plant, has been revered for centuries for its culinary, medicinal, and cultural significance. This review provides a comprehensive overview of saffron's chemical constituents and phytochemistry, elucidating its rich profile of bioactive compounds. Emphasis is placed on exploring the bio-accessibility, bioavailability, and bioactivity of saffron's phytochemicals, laying the foundation for understanding its pharmaceutical significance. The pharmaceutical importance of saffron and its phytochemicals is thoroughly examined, focusing on their diverse therapeutic properties. These include anticancer, antidiabetic, antioxidant, antimicrobial, anti-inflammatory, antinociceptive, anticonvulsant, antidepressant, learning and memory enhancement, cardiovascular, and antihypertensive properties. Such multifaceted pharmacological activities underscore saffron's potential as a valuable medicinal resource. Clinical studies investigating the efficacy and safety of saffron in various health conditions are synthesized, providing insights into its clinical applications. Moreover, toxicity assessments in animal models, encompassing acute, subacute, subchronic, and developmental toxicity, are discussed to delineate the safety profile of saffron and its bioactive constituents. Finally, recent advances and future perspectives in saffron research are highlighted, underscoring emerging trends and potential avenues for further exploration. This review serves as a comprehensive resource for researchers, clinicians, and stakeholders interested in harnessing the therapeutic potential of saffron while ensuring its safe and effective utilization in healthcare settings.
-
-
-
Decoding the Therapeutic Potential of Cannabis and Cannabinoids in Neurological Disorders
Available online: 09 October 2024More LessFor millennia, Cannabis sativa has served diverse roles, from medicinal applications to recreational use. Despite its extensive historical use, only a fraction of its components have been explored until recent times. The therapeutic potential of Cannabis and its constituents has garnered attention, with suggestions for treating various conditions such as Parkinson's disease, epilepsy, Alzheimer's disease, and other Neurological disorders. Recent research, particularly on animal experimental models, has unveiled the neuroprotective properties of cannabis. This neuroprotective effect is orchestrated through numerous G protein-coupled receptors (GPCRs) and the two cannabinoid receptors, CB1 and CB2. While the capacity of cannabinoids to safeguard neurons is evident, a significant challenge lies in determining the optimal cannabinoid receptor agonist and its application in clinical trials. The intricate interplay of cannabinoids with the endocannabinoid system, involving CB1 and CB2 receptors, underscores the need for precise understanding and targeted approaches. Unravelling the molecular intricacies of this interaction is vital to harness the therapeutic potential of cannabinoids effectively. As the exploration of cannabis components accelerates, there is a growing awareness of the need for nuanced strategies in utilizing cannabinoid receptor agonists in clinical settings. The evolving landscape of cannabis research presents exciting possibilities for developing targeted interventions that capitalize on the neuroprotective benefits of cannabinoids while navigating the complexities of receptor specificity and clinical applicability.
-
-
-
Lipid-based Non-viral Vector: Promising Approach for Gene Delivery
Authors: Anupama Panday, Bhupendra Dixena, Nishant Jain and Akhlesh Kumar JainAvailable online: 24 September 2024More LessObjectivesThe present review aims to discuss various strategies to overcome intracellular and extracellular barriers involved in gene delivery as well as the advantages, challenges, and mechanisms of gene delivery using non-viral vectors. Additionally, patents, clinical studies, and various formulation approaches related to lipid-based carrier systems are discussed.
MethodsData were searched and collected from Google Scholar, ScienceDirect, PubMed, and Springer.
ResultsIn this review, we have investigated the advantages of non-viral vectors over viral vectors. The advantage of using non-viral vectors are that they seek more attention in different fields. They play an important role in delivering the genetic materials. However, few non-viral vector-based carrier systems have been found in clinical settings. Challenges are developing more stable, site-specific gene delivery and conducting thorough safety assessments to minimize the undesired effects.
ConclusionIn comparison to viral vectors, non-viral vector-based lipid nanocarriers have more advantages for gene delivery. Gene therapy research shows promise in addressing health concerns. Lipid-based nanocarriers can overcome intracellular and extracellular barriers, allowing efficient delivery of genetic materials. Non-viral vectors are more attractive due to their biocompatibility, ease of synthesis, and cost-effectiveness. They can deliver various nucleic acids and have improved gene delivery efficacy by avoiding degradation steps. Despite limited clinical use, many patents have been filed for mRNA vaccine delivery using non-viral vectors.
-