Skip to content
2000
Volume 31, Issue 7
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Objectives

The present review aims to discuss various strategies to overcome intracellular and extracellular barriers involved in gene delivery as well as the advantages, challenges, and mechanisms of gene delivery using non-viral vectors. Additionally, patents, clinical studies, and various formulation approaches related to lipid-based carrier systems are discussed.

Methods

Data were searched and collected from Google Scholar, ScienceDirect, PubMed, and Springer.

Results

In this review, we have investigated the advantages of non-viral vectors over viral vectors. The advantage of using non-viral vectors are that they seek more attention in different fields. They play an important role in delivering the genetic materials. However, few non-viral vector-based carrier systems have been found in clinical settings. Challenges are developing more stable, site-specific gene delivery and conducting thorough safety assessments to minimize the undesired effects.

Conclusion

In comparison to viral vectors, non-viral vector-based lipid nanocarriers have more advantages for gene delivery. Gene therapy research shows promise in addressing health concerns. Lipid-based nanocarriers can overcome intracellular and extracellular barriers, allowing efficient delivery of genetic materials. Non-viral vectors are more attractive due to their biocompatibility, ease of synthesis, and cost-effectiveness. They can deliver various nucleic acids and have improved gene delivery efficacy by avoiding degradation steps. Despite limited clinical use, many patents have been filed for mRNA vaccine delivery using non-viral vectors.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128324084240828084904
2024-09-24
2025-04-06
Loading full text...

Full text loading...

References

  1. RamamoorthM. NarvekarA. Non viral vectors in gene therapy- An overview.J. Clin. Diagn. Res.201591GE01GE0610.7860/JCDR/2015/10443.539425738007
    [Google Scholar]
  2. BondìM.L. CraparoE.F. Solid lipid nanoparticles for applications in gene therapy: A review of the state of the art.Expert Opin. Drug Deliv.20107171810.1517/1742524090336241020017658
    [Google Scholar]
  3. KatragaddaC.S. ChoudhuryP.K. MurthyP.N. Nanoparticles as non-viral gene delivery vectors.Indian J Pharm Educ Res.2010442109111
    [Google Scholar]
  4. ErtlH.C.J. Immunogenicity and toxicity of AAV gene therapy.Front. Immunol.20221397580310.3389/fimmu.2022.97580336032092
    [Google Scholar]
  5. WangJ.H. GesslerD.J. ZhanW. GallagherT.L. GaoG. Adeno-associated virus as a delivery vector for gene therapy of human diseases.Signal Transduct. Target. Ther.2024917810.1038/s41392‑024‑01780‑w38565561
    [Google Scholar]
  6. Nyamay’AntuA. DumontM. KedingerV. ErbacherP. Non-viral vector mediated gene delivery: The outsider to watch out for in gene therapy.Cell Gene Ther. Insights20195S1515710.18609/cgti.2019.007
    [Google Scholar]
  7. RenS. WangM. WangC. WangY. SunC. ZengZ. CuiH. ZhaoX. Application of non-viral vectors in drug delivery and gene therapy.Polymers20211319330710.3390/polym1319330734641123
    [Google Scholar]
  8. TylerB. GullottiD. MangravitiA. UtsukiT. BremH. Polylactic acid (PLA) controlled delivery carriers for biomedical applications.Adv. Drug Deliv. Rev.201610716317510.1016/j.addr.2016.06.01827426411
    [Google Scholar]
  9. HumphreysI.R. SebastianS. Novel viral vectors in infectious diseases.Immunology201815311910.1111/imm.1282928869761
    [Google Scholar]
  10. WangK. KievitF.M. ZhangM. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.Pharmacol. Res.2016114566610.1016/j.phrs.2016.10.01627771464
    [Google Scholar]
  11. AmoabedinyG. HaghiralsadatF. NaderinezhadS. HelderM.N. Akhoundi KharanaghiE. Mohammadnejad AroughJ. Zandieh-DoulabiB. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review.Int. J. Polym. Mater.201867638340010.1080/00914037.2017.1332623
    [Google Scholar]
  12. HaghiralsadatF AmoabedinyG NaderinezhadS ForouzanfarT HelderMN Zandieh-DoulabiB Preparation of PEGylated cationic nanoliposome-siRNA complexes for cancer therapy.Artif. Cells Nanomed. Biotechnol.201846sup168469210.1080/21691401.2018.1434533
    [Google Scholar]
  13. HaghiralsadatF. AmoabedinyG. SheikhhaM.H. Zandieh-doulabiB. NaderinezhadS. HelderM.N. ForouzanfarT. New liposomal doxorubicin nanoformulation for osteosarcoma: Drug release kinetic study based on thermo and pH sensitivity.Chem. Biol. Drug Des.201790336837910.1111/cbdd.1295328120466
    [Google Scholar]
  14. ButtM. ZamanM. AhmadA. KhanR. MallhiT. HasanM. KhanY. HafeezS. MassoudE. RahmanM. CavaluS. Appraisal for the potential of viral and non-viral vectors in gene therapy: A review.Genes2022138137010.3390/genes1308137036011281
    [Google Scholar]
  15. WeklakD. PembaurD. KoukouG. JönssonF. HagedornC. KreppelF. Genetic and chemical capsid modifications of adenovirus vectors to modulate vector–host interactions.Viruses2021137130010.3390/v1307130034372506
    [Google Scholar]
  16. ThiT.T.H. SuysE.J.A. LeeJ.S. NguyenD.H. ParkK.D. TruongN.P. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines.Vaccines20219435910.3390/vaccines904035933918072
    [Google Scholar]
  17. KumarS. RandhawaJ.K. High melting lipid based approach for drug delivery: Solid lipid nanoparticles.Mater. Sci. Eng. C20133341842185210.1016/j.msec.2013.01.03723498204
    [Google Scholar]
  18. GloverD.J. LippsH.J. JansD.A. Towards safe, non-viral therapeutic gene expression in humans.Nat. Rev. Genet.20056429931010.1038/nrg157715761468
    [Google Scholar]
  19. Torres-VanegasJ.D. CruzJ.C. ReyesL.H. Delivery systems for nucleic acids and proteins: Barriers, cell capture pathways and nanocarriers.Pharmaceutics202113342810.3390/pharmaceutics1303042833809969
    [Google Scholar]
  20. WiethoffC.M. MiddaughC.R. Barriers to non-viral gene delivery.J. Pharm. Sci.200392220321710.1002/jps.1028612532370
    [Google Scholar]
  21. MorilleM PassiraniC VonarbourgA ClavreulA BenoitJP Progress in developing cationic vectors for non-viral systemic gene therapy against cancer.Biomaterials20082924-253477349610.1016/j.biomaterials.2008.04.036
    [Google Scholar]
  22. LayekB. HaldarM.K. SharmaG. LippL. MallikS. SinghJ. Hexanoic acid and polyethylene glycol double grafted amphiphilic chitosan for enhanced gene delivery: Influence of hydrophobic and hydrophilic substitution degree.Mol. Pharm.201411398299410.1021/mp400633r24499512
    [Google Scholar]
  23. SukJ.S. XuQ. KimN. HanesJ. EnsignL.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv. Drug Deliv. Rev.201699Pt A285110.1016/j.addr.2015.09.01226456916
    [Google Scholar]
  24. ChanC.L. EwertK.K. MajzoubR.N. HwuY.K. LiangK.S. LealC. SafinyaC.R. Optimizing cationic and neutral lipids for efficient gene delivery at high serum content.J. Gene Med.2014163-4849610.1002/jgm.276224753287
    [Google Scholar]
  25. ZylberbergC. GaskillK. PasleyS. MatosevicS. Engineering liposomal nanoparticles for targeted gene therapy.Gene Ther.201724844145210.1038/gt.2017.4128504657
    [Google Scholar]
  26. Del PradoA. CivantosA. Martínez-CamposE. LevkinP.A. ReineckeH. GallardoA. ElviraC. Efficient and low cytotoxicity gene carriers based on amine-functionalized polyvinylpyrrolidone.Polymers20201211272410.3390/polym1211272433212976
    [Google Scholar]
  27. NguyenJ. ReulR. RoeslerS. DayyoubE. SchmehlT. GesslerT. SeegerW. KisselT.H. Amine-modified poly(vinyl alcohol)s as non-viral vectors for siRNA delivery: Effects of the degree of amine substitution on physicochemical properties and knockdown efficiency.Pharm. Res.201027122670268210.1007/s11095‑010‑0266‑820848302
    [Google Scholar]
  28. SomvanshiP. KhistyS. Peptide-based DNA delivery system.Med Novel Technol Devices20211110009110.1016/j.medntd.2021.100091
    [Google Scholar]
  29. SendraL. HerreroM. AliñoS. Translational advances of hydrofection by hydrodynamic injection.Genes20189313610.3390/genes903013629494564
    [Google Scholar]
  30. UkidveA. CuK. KumbhojkarN. LahannJ. MitragotriS. Overcoming biological barriers to improve solid tumor immunotherapy.Drug Deliv. Transl. Res.20211162276230110.1007/s13346‑021‑00923‑833611770
    [Google Scholar]
  31. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  32. DegorsI.M.S. WangC. RehmanZ.U. ZuhornI.S. Carriers break barriers in drug delivery: Endocytosis and endosomal escape of gene delivery vectors.Acc. Chem. Res.20195271750176010.1021/acs.accounts.9b0017731243966
    [Google Scholar]
  33. LinW.J. LeeW.C. ShiehM.J. Hyaluronic acid conjugated micelles possessing CD44 targeting potential for gene delivery.Carbohydr. Polym.201715510110810.1016/j.carbpol.2016.08.02127702492
    [Google Scholar]
  34. LayekB. LippL. SinghJ. APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine.J. Control. Release201520714315310.1016/j.jconrel.2015.04.01425886704
    [Google Scholar]
  35. WangY. XuZ. ZhangR. LiW. YangL. HuQ. A facile approach to construct hyaluronic acid shielding polyplexes with improved stability and reduced cytotoxicity.Colloids Surf. B Biointerfaces201184125926610.1016/j.colsurfb.2011.01.00721300529
    [Google Scholar]
  36. SinghB. MaharjanS. KimY.K. JiangT. IslamM.A. KangS.K. ChoM.H. ChoiY.J. ChoC.S. Targeted gene delivery via N-acetylglucosamine receptor mediated endocytosis.J. Nanosci. Nanotechnol.201414118356836410.1166/jnn.2014.991925958528
    [Google Scholar]
  37. LayekB. LippL. SinghJ. Cell penetrating peptide conjugated chitosan for enhanced delivery of nucleic acid.Int. J. Mol. Sci.20151612289122893010.3390/ijms16122614226690119
    [Google Scholar]
  38. LayekB. SinghJ. Caproic acid grafted chitosan cationic nanocomplexes for enhanced gene delivery: Effect of degree of substitution.Int. J. Pharm.20134471-218219110.1016/j.ijpharm.2013.02.05223467080
    [Google Scholar]
  39. El-SayedA. HarashimaH. Endocytosis of gene delivery vectors: From clathrin-dependent to lipid raft-mediated endocytosis.Mol. Ther.20132161118113010.1038/mt.2013.5423587924
    [Google Scholar]
  40. ZhaoY. HuangL. Lipid nanoparticles for gene delivery.Adv. Genet.201488133610.1016/B978‑0‑12‑800148‑6.00002‑X25409602
    [Google Scholar]
  41. MastrobattistaE. van der AaM.A.E.M. HenninkW.E. CrommelinD.J.A. Artificial viruses: A nanotechnological approach to gene delivery.Nat. Rev. Drug Discov.20065211512110.1038/nrd196016521330
    [Google Scholar]
  42. SalatinS. Yari KhosroushahiA. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles.J. Cell. Mol. Med.20172191668168610.1111/jcmm.1311028244656
    [Google Scholar]
  43. LayekB SinghJ. Chitosan for DNA and gene therapy.Chitosan for DNA and gene therapy.Woodhead Publishing201720924410.1016/B978‑0‑08‑100228‑5.00008‑0
    [Google Scholar]
  44. KamiyaH. TsuchiyaH. YamazakiJ. HarashimaH. Intracellular trafficking and transgene expression of viral and non-viral gene vectors.Adv. Drug Deliv. Rev.200152315316410.1016/S0169‑409X(01)00216‑211718940
    [Google Scholar]
  45. ZhouZ. LiuX. ZhuD. WangY. ZhangZ. ZhouX. QiuN. ChenX. ShenY. non-viral cancer gene therapy: Delivery cascade and vector nanoproperty integration.Adv. Drug Deliv. Rev.201711511515410.1016/j.addr.2017.07.02128778715
    [Google Scholar]
  46. SharmaD. AroraS. SinghJ. LayekB. A review of the tortuous path of non-viral gene delivery and recent progress.Int. J. Biol. Macromol.20211832055207310.1016/j.ijbiomac.2021.05.19234087309
    [Google Scholar]
  47. AroraS. LayekB. SinghJ. Design and validation of liposomal ApoE2 gene delivery system to evade blood–brain barrier for effective treatment of Alzheimer’s disease.Mol. Pharm.202118271472510.1021/acs.molpharmaceut.0c0046132787268
    [Google Scholar]
  48. ShirleyJ.L. de JongY.P. TerhorstC. HerzogR.W. Immune responses to viral gene therapy vectors.Mol. Ther.202028370972210.1016/j.ymthe.2020.01.00131968213
    [Google Scholar]
  49. LukacsG.L. HaggieP. SeksekO. LechardeurD. FreedmanN. VerkmanA.S. Size-dependent DNA mobility in cytoplasm and nucleus.J. Biol. Chem.200027531625162910.1074/jbc.275.3.162510636854
    [Google Scholar]
  50. BaiH. LesterG.M.S. PetishnokL.C. DeanD.A. Cytoplasmic transport and nuclear import of plasmid DNA.Biosci. Rep.2017376BSR2016061610.1042/BSR2016061629054961
    [Google Scholar]
  51. VaughanE.E. DeanD.A. Intracellular trafficking of plasmids during transfection is mediated by microtubules.Mol. Ther.200613242242810.1016/j.ymthe.2005.10.00416301002
    [Google Scholar]
  52. CapecchiM.R. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells.Cell198022247948810.1016/0092‑8674(80)90358‑X6256082
    [Google Scholar]
  53. DeanD.A. Import of plasmid DNA into the nucleus is sequence specific.Exp. Cell Res.1997230229330210.1006/excr.1996.34279024788
    [Google Scholar]
  54. BastosR. PantéN. BurkeB. Nuclear pore complex proteins.Int. Rev. Cytol.199616225730210.1016/S0074‑7696(08)62619‑48557489
    [Google Scholar]
  55. ZuhornI.S. BakowskyU. PolushkinE. VisserW.H. StuartM.C.A. EngbertsJ.B.F.N. HoekstraD. Nonbilayer phase of lipoplex–membrane mixture determines endosomal escape of genetic cargo and transfection efficiency.Mol. Ther.200511580181010.1016/j.ymthe.2004.12.01815851018
    [Google Scholar]
  56. GiganteA. LiM. JunghänelS. HirschhäuserC. KnauerS. SchmuckC. Non-viral transfection vectors: Are hybrid materials the way forward?MedChemComm201910101692171810.1039/C9MD00275H32180915
    [Google Scholar]
  57. WangS. YanC. ZhangX. ShiD. ChiL. LuoG. DengJ. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing.Biomater. Sci.20186102757277210.1039/C8BM00807H30187036
    [Google Scholar]
  58. ZhangH. VinogradovS.V. Short biodegradable polyamines for gene delivery and transfection of brain capillary endothelial cells.J. Control. Release2010143335936610.1016/j.jconrel.2010.01.02020093156
    [Google Scholar]
  59. SunW. DavisP.B. Reducible DNA nanoparticles enhance in vitro gene transfer via an extracellular mechanism.J. Control. Release2010146111812710.1016/j.jconrel.2010.04.03120438780
    [Google Scholar]
  60. LiuX. XiangJ. ZhuD. JiangL. ZhouZ. TangJ. LiuX. HuangY. ShenY. Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery.Adv. Mater.20162891743175210.1002/adma.20150428826663349
    [Google Scholar]
  61. WangC. PanC. YongH. WangF. BoT. ZhaoY. MaB. HeW. LiM. Emerging non-viral vectors for gene delivery.J. Nanobiotechnology202321127210.1186/s12951‑023‑02044‑537592351
    [Google Scholar]
  62. XiaoY. TangZ. HuangX. ChenW. ZhouJ. LiuH. LiuC. KongN. TaoW. Emerging mRNA technologies: Delivery strategies and biomedical applications.Chem. Soc. Rev.202251103828384510.1039/D1CS00617G35437544
    [Google Scholar]
  63. LiuS. SunZ. ZhouD. GuoT. Alkylated branched poly(β-amino esters) demonstrate strong DNA encapsulation, high nanoparticle stability and robust gene transfection efficacy.J. Mater. Chem. B Mater. Biol. Med.20175275307531010.1039/C7TB00996H32264068
    [Google Scholar]
  64. ZhangY.Q. GuoR.R. ChenY.H. LiT.C. DuW.Z. XiangR.W. GuanJ.B. LiY.P. HuangY.Y. YuZ.Q. CaiY. ZhangP. LingG.X. Ionizable drug delivery systems for efficient and selective gene therapy.Mil. Med. Res.2023101910.1186/s40779‑023‑00445‑z36843103
    [Google Scholar]
  65. TsengW.C. HaseltonF.R. GiorgioT.D. Mitosis enhances transgene expression of plasmid delivered by cationic liposomes.Biochim. Biophys. Acta Gene Struct. Expr.199914451536410.1016/S0167‑4781(99)00039‑110209258
    [Google Scholar]
  66. KarmaliP.P. ChaudhuriA. Cationic liposomes as non-viral carriers of gene medicines: Resolved issues, open questions, and future promises.Med. Res. Rev.200727569672210.1002/med.2009017022036
    [Google Scholar]
  67. ZantaM.A. Belguise-ValladierP. BehrJ.P. Gene delivery: A single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus.Proc. Natl. Acad. Sci. USA1999961919610.1073/pnas.96.1.919874777
    [Google Scholar]
  68. LudtkeJ.J. ZhangG. SebestyénM.G. WolffJ.A. A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA.J. Cell Sci.1999112122033204110.1242/jcs.112.12.203310341220
    [Google Scholar]
  69. RadaicA. de JesusM.B. Solid lipid nanoparticles release DNA upon endosomal acidification in human embryonic kidney cells.Nanotechnology2018293131510210.1088/1361‑6528/aac44729756603
    [Google Scholar]
  70. KaksonenM. RouxA. Mechanisms of clathrin-mediated endocytosis.Nat. Rev. Mol. Cell Biol.201819531332610.1038/nrm.2017.13229410531
    [Google Scholar]
  71. SchmidE.M. McMahonH.T. Integrating molecular and network biology to decode endocytosis.Nature2007448715688388810.1038/nature0603117713526
    [Google Scholar]
  72. TraubL.M. Tickets to ride: Selecting cargo for clathrin-regulated internalization.Nat. Rev. Mol. Cell Biol.200910958359610.1038/nrm275119696796
    [Google Scholar]
  73. VarkouhiA.K. ScholteM. StormG. HaismaH.J. Endosomal escape pathways for delivery of biologicals.J. Control. Release2011151322022810.1016/j.jconrel.2010.11.00421078351
    [Google Scholar]
  74. PanX VeroniainaH SuN ShaK JiangF WuZ QiX Applications and developments of gene therapy drug delivery systems for genetic diseases.Asian J. Pharm. Sci.202116668770310.1016/j.ajps.2021.05.003
    [Google Scholar]
  75. KulkarniJ.A. DarjuanM.M. MercerJ.E. ChenS. van der MeelR. ThewaltJ.L. TamY.Y.C. CullisP.R. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA.ACS Nano20181254787479510.1021/acsnano.8b0151629614232
    [Google Scholar]
  76. RahmanM.M. ZhouN. HuangJ. An overview on the development of mRNA-based vaccines and their formulation strategies for improved antigen expression in vivo.Vaccines20219324410.3390/vaccines903024433799516
    [Google Scholar]
  77. VerbekeR. LentackerI. De SmedtS.C. DewitteH. Three decades of messenger RNA vaccine development.Nano Today20192810076610.1016/j.nantod.2019.100766
    [Google Scholar]
  78. TangT.Y. HuangX. ZhangG. LuM.H. LiangT.B. mRNA vaccine development for cholangiocarcinoma: A precise pipeline.Mil. Med. Res.2022914010.1186/s40779‑022‑00399‑835821067
    [Google Scholar]
  79. VitielloA. FerraraF. Commentary of the mRNA vaccines COVID-19.Asian J. Pharm. Sci.202116553153210.1016/j.ajps.2021.05.00434849160
    [Google Scholar]
  80. WengY. HuangY. Advances of mRNA vaccines for COVID-19: A new prophylactic revolution begins.Asian J. Pharm. Sci.202116326326410.1016/j.ajps.2021.02.00534276817
    [Google Scholar]
  81. WangJ. LuZ. WientjesM.G. AuJ.L.S. Delivery of siRNA therapeutics: Barriers and carriers.AAPS J.201012449250310.1208/s12248‑010‑9210‑420544328
    [Google Scholar]
  82. JeandupeuxE. AlamehM.G. GhattasM. De CrescenzoG. LavertuM. Poly (2-propylacrylic acid) increases in vitro bioactivity of chitosan/mRNA nanoparticles.J. Pharm. Sci.2021110103439344910.1016/j.xphs.2021.06.00334090900
    [Google Scholar]
  83. RosenblumD. GutkinA. KedmiR. RamishettiS. VeigaN. JacobiA.M. SchubertM.S. Friedmann-MorvinskiD. CohenZ.R. BehlkeM.A. LiebermanJ. PeerD. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy.Sci. Adv.2020647eabc945010.1126/sciadv.abc945033208369
    [Google Scholar]
  84. LiC. YangT. WengY. ZhangM. ZhaoD. GuoS. HuB. ShaoW. WangX. HussainA. LiangX.J. HuangY. Ionizable lipid-assisted efficient hepatic delivery of gene editing elements for oncotherapy.Bioact. Mater.2022959060110.1016/j.bioactmat.2021.05.05134853819
    [Google Scholar]
  85. WangH.X. SongZ. LaoY.H. XuX. GongJ. ChengD. ChakrabortyS. ParkJ.S. LiM. HuangD. YinL. ChengJ. LeongK.W. Non-viral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide.Proc. Natl. Acad. Sci. USA2018115194903490810.1073/pnas.171296311529686087
    [Google Scholar]
  86. BlakneyA.K. McKayP.F. YusB.I. AldonY. ShattockR.J. Inside out: Optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA.Gene Ther.201926936337210.1038/s41434‑019‑0095‑231300730
    [Google Scholar]
  87. HajjK.A. BallR.L. DelutyS.B. SinghS.R. StrelkovaD. KnappC.M. WhiteheadK.A. Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH.Small2019156180509710.1002/smll.20180509730637934
    [Google Scholar]
  88. SousaÂ. AlmeidaA.M. FariaR. KonateK. BoisguerinP. QueirozJ.A. CostaD. Optimization of peptide- plasmid DNA vectors formulation for gene delivery in cancer therapy exploring design of experiments.Colloids Surf. B Biointerfaces201918311041710.1016/j.colsurfb.2019.11041731408780
    [Google Scholar]
  89. PanT. ZhouQ. MiaoK. ZhangL. WuG. YuJ. XuY. XiongW. LiY. WangY. Suppressing Sart1 to modulate macrophage polarization by siRNA-loaded liposomes: A promising therapeutic strategy for pulmonary fibrosis.Theranostics20211131192120610.7150/thno.4815233391530
    [Google Scholar]
  90. ChengX. LiuQ. LiH. KangC. LiuY. GuoT. ShangK. YanC. ChengG. LeeR.J. Lipid nanoparticles loaded with an antisense oligonucleotide gapmer against Bcl-2 for treatment of lung cancer.Pharm. Res.201734231032010.1007/s11095‑016‑2063‑527896589
    [Google Scholar]
  91. YangL. MaF. LiuF. ChenJ. ZhaoX. XuQ. Efficient delivery of antisense oligonucleotides using bioreducible lipid nanoparticles in vitro and in vivo.Mol. Ther. Nucleic Acids2020191357136710.1016/j.omtn.2020.01.01832160706
    [Google Scholar]
  92. RichnerJ.M. HimansuS. DowdK.A. ButlerS.L. SalazarV. FoxJ.M. JulanderJ.G. TangW.W. ShrestaS. PiersonT.C. CiaramellaG. DiamondM.S. Modified mRNA vaccines protect against Zika virus infection.Cell2017168611141125.e1010.1016/j.cell.2017.02.01728222903
    [Google Scholar]
  93. SuzukiY. HyodoK. SuzukiT. TanakaY. KikuchiH. IshiharaH. Biodegradable lipid nanoparticles induce a prolonged RNA interference-mediated protein knockdown and show rapid hepatic clearance in mice and nonhuman primates.Int. J. Pharm.20175191-2344310.1016/j.ijpharm.2017.01.01628089936
    [Google Scholar]
  94. NabhanJ.F. WoodK.M. RaoV.P. MorinJ. BhamidipatyS. LaBrancheT.P. GoochR.L. BozalF. BulawaC.E. GuildB.C. Intrathecal delivery of frataxin mRNA encapsulated in lipid nanoparticles to dorsal root ganglia as a potential therapeutic for Friedreich’s ataxia.Sci. Rep.2016612001910.1038/srep2001926883577
    [Google Scholar]
  95. PardiN. TuyishimeS. MuramatsuH. KarikoK. MuiB.L. TamY.K. MaddenT.D. HopeM.J. WeissmanD. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes.J. Control. Release201521734535110.1016/j.jconrel.2015.08.00726264835
    [Google Scholar]
  96. KauffmanK.J. DorkinJ.R. YangJ.H. HeartleinM.W. DeRosaF. MirF.F. FentonO.S. AndersonD.G. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs.Nano Lett.201515117300730610.1021/acs.nanolett.5b0249726469188
    [Google Scholar]
  97. ConwayA. MendelM. KimK. McGovernK. BoykoA. ZhangL. MillerJ.C. DeKelverR.C. PaschonD.E. MuiB.L. LinP.J.C. TamY.K. BarbosaC. RedelmeierT. HolmesM.C. LeeG. Non-viral delivery of zinc finger nuclease mRNA enables highly efficient in vivo genome editing of multiple therapeutic gene targets.Mol. Ther.201927486687710.1016/j.ymthe.2019.03.00330902585
    [Google Scholar]
  98. ChoiS. JinS.E. LeeM.K. LimS.J. ParkJ.S. KimB.G. AhnW.S. KimC.K. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells.Eur. J. Pharm. Biopharm.200868354555410.1016/j.ejpb.2007.07.01117881199
    [Google Scholar]
  99. ApaolazaP.S. DelgadoD. Pozo-RodríguezA. GascónA.R. SolinísM.Á. A novel gene therapy vector based on hyaluronic acid and solid lipid nanoparticles for ocular diseases.Int. J. Pharm.20144651-241342610.1016/j.ijpharm.2014.02.03824576595
    [Google Scholar]
  100. Vicente-PascualM. AlbanoA. SolinísM.Á. SerpeL. Rodríguez-GascónA. FogliettaF. MuntoniE. TorrecillaJ. Pozo-RodríguezA. BattagliaL. Gene delivery in the cornea: In vitro & ex vivo evaluation of solid lipid nanoparticle-based vectors.Nanomedicine201813151847185410.2217/nnm‑2018‑011229792369
    [Google Scholar]
  101. de GaribayA.P.R. SolinísM.A. del Pozo-RodríguezA. ApaolazaP.S. ShenJ.S. Rodríguez-GascónA. Solid lipid nanoparticles as non-viral vectors for gene transfection in a cell model of Fabry disease.J. Biomed. Nanotechnol.201511350051110.1166/jbn.2015.196826307832
    [Google Scholar]
  102. DelgadoD. del Pozo-RodríguezA. SolinísM.Á. Rodríguez-GascónA. Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: The importance of the entry pathway.Eur. J. Pharm. Biopharm.201179349550210.1016/j.ejpb.2011.06.00521726641
    [Google Scholar]
  103. LimeresM.J. Suñé-PouM. Prieto-SánchezS. Moreno-CastroC. NusblatA.D. Hernández-MunainC. CastroG.R. SuñéC. Suñé-NegreJ.M. CuestasM.L. Development and characterization of an improved formulation of cholesteryl oleate-loaded cationic solid-lipid nanoparticles as an efficient non-viral gene delivery system.Colloids Surf. B Biointerfaces201918411053310.1016/j.colsurfb.2019.11053331593829
    [Google Scholar]
  104. FàbregasA. Sánchez-HernándezN. TicóJ.R. García-MontoyaE. Pérez-LozanoP. Suñé-NegreJ.M. Hernández-MunainC. SuñéC. MiñarroM. A new optimized formulation of cationic solid lipid nanoparticles intended for gene delivery: Development, characterization and DNA binding efficiency of TCERG1 expression plasmid.Int. J. Pharm.20144731-227027910.1016/j.ijpharm.2014.06.02224999055
    [Google Scholar]
  105. Erel-AkbabaG. İsarS. AkbabaH. Development and evaluation of solid witepsol nanoparticles for gene delivery.Turk J Pharm Sci202118334435110.4274/tjps.galenos.2020.6887834157825
    [Google Scholar]
  106. BottoC. AugelloG. AmoreE. EmmaM.R. AzzolinaA. CavallaroG. CervelloM. BondìM.L. Cationic solid lipid nanoparticles as non viral vectors for the inhibition of hepatocellular carcinoma growth by RNA interference.J. Biomed. Nanotechnol.20181451009101610.1166/jbn.2018.255729883570
    [Google Scholar]
  107. DoroudD. VatanaraA. ZahedifardF. GholamiE. VahabpourR. Rouholamini NajafabadiA. RafatiS. Cationic solid lipid nanoparticles loaded by cysteine proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system: Characterization and in vitro evaluations.J. Pharm. Pharm. Sci.201013332033510.18433/J3R30T21092706
    [Google Scholar]
  108. The study of an investigational drug, Patisiran (ALN-TTR02), for the treatment of transthyretin (TTR)-mediated amyloidosis in patients who have already been treated with ALN-TTR02 (Patisiran).Available from: https://www.mayo.edu/research/clinical-trials/cls-20199625
  109. PolackF.P. ThomasS.J. KitchinN. AbsalonJ. GurtmanA. LockhartS. PerezJ.L. Pérez MarcG. MoreiraE.D. ZerbiniC. BaileyR. SwansonK.A. RoychoudhuryS. KouryK. LiP. KalinaW.V. CooperD. FrenckR.W.Jr HammittL.L. TüreciÖ. NellH. SchaeferA. ÜnalS. TresnanD.B. MatherS. DormitzerP.R. ŞahinU. JansenK.U. GruberW.C. C4591001 Clinical Trial Group Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine.N. Engl. J. Med.2020383272603261510.1056/NEJMoa203457733301246
    [Google Scholar]
  110. GillmoreJ.D. GaneE. TaubelJ. KaoJ. FontanaM. MaitlandM.L. SeitzerJ. O’ConnellD. WalshK.R. WoodK. PhillipsJ. XuY. AmaralA. BoydA.P. CehelskyJ.E. McKeeM.D. SchiermeierA. HarariO. MurphyA. KyratsousC.A. ZambrowiczB. SoltysR. GutsteinD.E. LeonardJ. Sepp-LorenzinoL. LebwohlD. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis.N. Engl. J. Med.2021385649350210.1056/NEJMoa210745434215024
    [Google Scholar]
  111. KesslerJ.A. ShaibaniA. SangC.N. ChristiansenM. KudrowD. VinikA. ShinN. VM202 study group Gene therapy for diabetic peripheral neuropathy: A randomized, placebo-controlled phase III study of VM202, a plasmid DNA encoding human hepatocyte growth factor.Clin. Transl. Sci.20211431176118410.1111/cts.1297733465273
    [Google Scholar]
  112. Phase I trial of intra-tumoral EGFR antisense DNA and DC-Chol liposomes in advanced oral squamous cell carcinoma.2020Available from: https://adisinsight.springer.com/trials/700002150
  113. Apollo: The study of an investigational drug, Patisiran (ALN-TTR02), for the treatment of transthyretin (TTR)-mediated amyloidosis .2020Available from: https://www.mayo.edu/research/clinical-trials/cls-20115984
  114. dos Santos RodriguesB. OueH. BanerjeeA. KanekiyoT. SinghJ. Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection.J. Control. Release201828626427810.1016/j.jconrel.2018.07.04330071253
    [Google Scholar]
  115. dos Santos RodriguesB. LakkadwalaS. KanekiyoT. SinghJ. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties.Int. J. Nanomedicine2019146497651710.2147/IJN.S21594131616141
    [Google Scholar]
  116. OgawaK. KatoN. YoshidaM. HiuT. MatsuoT. MizukamiS. OmataD. SuzukiR. MaruyamaK. MukaiH. KawakamiS. Focused ultrasound/microbubbles-assisted BBB opening enhances LNP-mediated mRNA delivery to brain.J. Control. Release2022348344110.1016/j.jconrel.2022.05.04235640764
    [Google Scholar]
  117. Alvarez-ErvitiL. SeowY. YinH. BettsC. LakhalS. WoodM.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.Nat. Biotechnol.201129434134510.1038/nbt.180721423189
    [Google Scholar]
  118. XieR. WangY. BurgerJ.C. LiD. ZhuM. GongS. Non-viral approaches for gene therapy and therapeutic genome editing across the blood–brain barrier.Med-X202311610.1007/s44258‑023‑00004‑037485250
    [Google Scholar]
  119. Mel’nikovP.A. BaklaushevV.P. GabashviliA.N. NukolovaN.V. KuznetsovI.I. CherepanovS.A. KoshkinF.A. Leopol’dA.V. ChekhoninV.P. Internalization of vectorized liposomes loaded with plasmid DNA in C6 glioma cells.Bull. Exp. Biol. Med.2017163111412210.1007/s10517‑017‑3750‑x28580488
    [Google Scholar]
  120. Grafals-RuizN. Rios-VicilC.I. Lozada-DelgadoE.L. Quiñones-DíazB.I. Noriega-RiveraR.A. Martínez-ZayasG. Santana-RiveraY. Santiago-SánchezG.S. ValiyevaF. Vivas-MejíaP.E. Brain targeted gold liposomes improve RNAi delivery for glioblastoma.Int. J. Nanomedicine2020152809282810.2147/IJN.S24105532368056
    [Google Scholar]
  121. ShriranFrank K An improved process for preparing mRNA-loaded lipid nanoparticles.JP Patent 2023508881A2020
  122. WangF QinZ JiT LouX PanL GaoX. Spleen-targeted nano-drug.CN Patent 114887070A2020
  123. de KokerS. BeversS. TommeP. Lipid nanoparticles.US Patent 11684577B22020
  124. LimCY YiGR ParkSH HwangDS LeeHM KimYH Method for manufacturing lipid nanoparticles for mRNA delivery to increase mRNA delivery efficiency.KR Patent 20230130538A2020
  125. HogeS. GiaramellaG. Efficacious mRNA vaccines.US Patent 20230285538A12020
  126. LeeH JeongY KimM Lipid nanoparticles comprising mannose or uses thereof.KR Patent 102537540B12020
  127. ShattockR. RNA vaccine. WO Patent 2022129918A12020
  128. CasimiroD ChivukulaS DerosaF Lipid nanoparticles for delivering mRNA vaccines. WO Patent 2022099003A12020
  129. CaliasP. DerosaF. HeartleinM. mRNA therapy for the treatment of ocular diseases.US Patent 20220354968A12020
  130. CarfiA BennettH EdwardsD Stewart-JonesG WuK Variant strain-based coronavirus vaccines.WO Patent 2022155530A12020
  131. PanznerS ReinschC ThankiK Compositions and methods for stabilization of lipid nanoparticle mRNA vaccines.WO Patent 2022101469A12020
  132. TrainH de RosamM SmithF RNA treatment of argininosuccinate synthase deficiency.JP Patent 6608815B22020
/content/journals/cpd/10.2174/0113816128324084240828084904
Loading
/content/journals/cpd/10.2174/0113816128324084240828084904
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test