Skip to content
2000
image of Lipid-based Non-viral Vector: Promising Approach for Gene Delivery

Abstract

Objectives

The present review aims to discuss various strategies to overcome intracellular and extracellular barriers involved in gene delivery as well as the advantages, challenges, and mechanisms of gene delivery using non-viral vectors. Additionally, patents, clinical studies, and various formulation approaches related to lipid-based carrier systems are discussed.

Methods

Data were searched and collected from Google Scholar, ScienceDirect, PubMed, and Springer.

Results

In this review, we have investigated the advantages of non-viral vectors over viral vectors. The advantage of using non-viral vectors are that they seek more attention in different fields. They play an important role in delivering the genetic materials. However, few non-viral vector-based carrier systems have been found in clinical settings. Challenges are developing more stable, site-specific gene delivery and conducting thorough safety assessments to minimize the undesired effects.

Conclusion

In comparison to viral vectors, non-viral vector-based lipid nanocarriers have more advantages for gene delivery. Gene therapy research shows promise in addressing health concerns. Lipid-based nanocarriers can overcome intracellular and extracellular barriers, allowing efficient delivery of genetic materials. Non-viral vectors are more attractive due to their biocompatibility, ease of synthesis, and cost-effectiveness. They can deliver various nucleic acids and have improved gene delivery efficacy by avoiding degradation steps. Despite limited clinical use, many patents have been filed for mRNA vaccine delivery using non-viral vectors.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128324084240828084904
2024-09-24
2024-12-03
Loading full text...

Full text loading...

References

  1. Ramamoorth M. Narvekar A. Non viral vectors in gene therapy- An overview. J. Clin. Diagn. Res. 2015 9 1 GE01 GE06 10.7860/JCDR/2015/10443.5394 25738007
    [Google Scholar]
  2. Bondì M.L. Craparo E.F. Solid lipid nanoparticles for applications in gene therapy: A review of the state of the art. Expert Opin. Drug Deliv. 2010 7 1 7 18 10.1517/17425240903362410 20017658
    [Google Scholar]
  3. Katragadda C.S. Choudhury P.K. Murthy P.N. Nanoparticles as non-viral gene delivery vectors. Indian J Pharm Educ Res. 2010 44 2 109 111
    [Google Scholar]
  4. Ertl H.C.J. Immunogenicity and toxicity of AAV gene therapy. Front. Immunol. 2022 13 975803 10.3389/fimmu.2022.975803 36032092
    [Google Scholar]
  5. Wang J.H. Gessler D.J. Zhan W. Gallagher T.L. Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct. Target. Ther. 2024 9 1 78 10.1038/s41392‑024‑01780‑w 38565561
    [Google Scholar]
  6. Nyamay’Antu A. Dumont M. Kedinger V. Erbacher P. Non-viral vector mediated gene delivery: The outsider to watch out for in gene therapy. Cell Gene Ther. Insights 2019 5 S1 51 57 10.18609/cgti.2019.007
    [Google Scholar]
  7. Ren S. Wang M. Wang C. Wang Y. Sun C. Zeng Z. Cui H. Zhao X. Application of non-viral vectors in drug delivery and gene therapy. Polymers 2021 13 19 3307 10.3390/polym13193307 34641123
    [Google Scholar]
  8. Tyler B. Gullotti D. Mangraviti A. Utsuki T. Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 2016 107 163 175 10.1016/j.addr.2016.06.018 27426411
    [Google Scholar]
  9. Humphreys I.R. Sebastian S. Novel viral vectors in infectious diseases. Immunology 2018 153 1 1 9 10.1111/imm.12829 28869761
    [Google Scholar]
  10. Wang K. Kievit F.M. Zhang M. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacol. Res. 2016 114 56 66 10.1016/j.phrs.2016.10.016 27771464
    [Google Scholar]
  11. Amoabediny G. Haghiralsadat F. Naderinezhad S. Helder M.N. Akhoundi Kharanaghi E. Mohammadnejad Arough J. Zandieh-Doulabi B. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. Int. J. Polym. Mater. 2018 67 6 383 400 10.1080/00914037.2017.1332623
    [Google Scholar]
  12. Haghiralsadat F Amoabediny G Naderinezhad S Forouzanfar T Helder MN Zandieh-Doulabi B Preparation of PEGylated cationic nanoliposome-siRNA complexes for cancer therapy. Artif. Cells Nanomed. Biotechnol. 2018 46 sup1 684 692 10.1080/21691401.2018.1434533
    [Google Scholar]
  13. Haghiralsadat F. Amoabediny G. Sheikhha M.H. Zandieh-doulabi B. Naderinezhad S. Helder M.N. Forouzanfar T. New liposomal doxorubicin nanoformulation for osteosarcoma: Drug release kinetic study based on thermo and pH sensitivity. Chem. Biol. Drug Des. 2017 90 3 368 379 10.1111/cbdd.12953 28120466
    [Google Scholar]
  14. Butt M. Zaman M. Ahmad A. Khan R. Mallhi T. Hasan M. Khan Y. Hafeez S. Massoud E. Rahman M. Cavalu S. Appraisal for the potential of viral and non-viral vectors in gene therapy: A review. Genes 2022 13 8 1370 10.3390/genes13081370 36011281
    [Google Scholar]
  15. Weklak D. Pembaur D. Koukou G. Jönsson F. Hagedorn C. Kreppel F. Genetic and chemical capsid modifications of adenovirus vectors to modulate vector–host interactions. Viruses 2021 13 7 1300 10.3390/v13071300 34372506
    [Google Scholar]
  16. Thi T.T.H. Suys E.J.A. Lee J.S. Nguyen D.H. Park K.D. Truong N.P. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines. Vaccines 2021 9 4 359 10.3390/vaccines9040359 33918072
    [Google Scholar]
  17. Kumar S. Randhawa J.K. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Mater. Sci. Eng. C 2013 33 4 1842 1852 10.1016/j.msec.2013.01.037 23498204
    [Google Scholar]
  18. Glover D.J. Lipps H.J. Jans D.A. Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet. 2005 6 4 299 310 10.1038/nrg1577 15761468
    [Google Scholar]
  19. Torres-Vanegas J.D. Cruz J.C. Reyes L.H. Delivery systems for nucleic acids and proteins: Barriers, cell capture pathways and nanocarriers. Pharmaceutics 2021 13 3 428 10.3390/pharmaceutics13030428 33809969
    [Google Scholar]
  20. Wiethoff C.M. Middaugh C.R. Barriers to non-viral gene delivery. J. Pharm. Sci. 2003 92 2 203 217 10.1002/jps.10286 12532370
    [Google Scholar]
  21. Morille M Passirani C Vonarbourg A Clavreul A Benoit JP Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 2008 29 24-25 3477 3496 10.1016/j.biomaterials.2008.04.036
    [Google Scholar]
  22. Layek B. Haldar M.K. Sharma G. Lipp L. Mallik S. Singh J. Hexanoic acid and polyethylene glycol double grafted amphiphilic chitosan for enhanced gene delivery: Influence of hydrophobic and hydrophilic substitution degree. Mol. Pharm. 2014 11 3 982 994 10.1021/mp400633r 24499512
    [Google Scholar]
  23. Suk J.S. Xu Q. Kim N. Hanes J. Ensign L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016 99 Pt A 28 51 10.1016/j.addr.2015.09.012 26456916
    [Google Scholar]
  24. Chan C.L. Ewert K.K. Majzoub R.N. Hwu Y.K. Liang K.S. Leal C. Safinya C.R. Optimizing cationic and neutral lipids for efficient gene delivery at high serum content. J. Gene Med. 2014 16 3-4 84 96 10.1002/jgm.2762 24753287
    [Google Scholar]
  25. Zylberberg C. Gaskill K. Pasley S. Matosevic S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther. 2017 24 8 441 452 10.1038/gt.2017.41 28504657
    [Google Scholar]
  26. Del Prado A. Civantos A. Martínez-Campos E. Levkin P.A. Reinecke H. Gallardo A. Elvira C. Efficient and low cytotoxicity gene carriers based on amine-functionalized polyvinylpyrrolidone. Polymers 2020 12 11 2724 10.3390/polym12112724 33212976
    [Google Scholar]
  27. Nguyen J. Reul R. Roesler S. Dayyoub E. Schmehl T. Gessler T. Seeger W. Kissel T.H. Amine-modified poly(vinyl alcohol)s as non-viral vectors for siRNA delivery: Effects of the degree of amine substitution on physicochemical properties and knockdown efficiency. Pharm. Res. 2010 27 12 2670 2682 10.1007/s11095‑010‑0266‑8 20848302
    [Google Scholar]
  28. Somvanshi P. Khisty S. Peptide-based DNA delivery system. Medicine in Novel Technology and Devices 2021 11 100091 10.1016/j.medntd.2021.100091
    [Google Scholar]
  29. Sendra L. Herrero M. Aliño S. Translational advances of hydrofection by hydrodynamic injection. Genes 2018 9 3 136 10.3390/genes9030136 29494564
    [Google Scholar]
  30. Ukidve A. Cu K. Kumbhojkar N. Lahann J. Mitragotri S. Overcoming biological barriers to improve solid tumor immunotherapy. Drug Deliv. Transl. Res. 2021 11 6 2276 2301 10.1007/s13346‑021‑00923‑8 33611770
    [Google Scholar]
  31. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  32. Degors I.M.S. Wang C. Rehman Z.U. Zuhorn I.S. Carriers break barriers in drug delivery: Endocytosis and endosomal escape of gene delivery vectors. Acc. Chem. Res. 2019 52 7 1750 1760 10.1021/acs.accounts.9b00177 31243966
    [Google Scholar]
  33. Lin W.J. Lee W.C. Shieh M.J. Hyaluronic acid conjugated micelles possessing CD44 targeting potential for gene delivery. Carbohydr. Polym. 2017 155 101 108 10.1016/j.carbpol.2016.08.021 27702492
    [Google Scholar]
  34. Layek B. Lipp L. Singh J. APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine. J. Control. Release 2015 207 143 153 10.1016/j.jconrel.2015.04.014 25886704
    [Google Scholar]
  35. Wang Y. Xu Z. Zhang R. Li W. Yang L. Hu Q. A facile approach to construct hyaluronic acid shielding polyplexes with improved stability and reduced cytotoxicity. Colloids Surf. B Biointerfaces 2011 84 1 259 266 10.1016/j.colsurfb.2011.01.007 21300529
    [Google Scholar]
  36. Singh B. Maharjan S. Kim Y.K. Jiang T. Islam M.A. Kang S.K. Cho M.H. Choi Y.J. Cho C.S. Targeted gene delivery via N-acetylglucosamine receptor mediated endocytosis. J. Nanosci. Nanotechnol. 2014 14 11 8356 8364 10.1166/jnn.2014.9919 25958528
    [Google Scholar]
  37. Layek B. Lipp L. Singh J. Cell penetrating peptide conjugated chitosan for enhanced delivery of nucleic acid. Int. J. Mol. Sci. 2015 16 12 28912 28930 10.3390/ijms161226142 26690119
    [Google Scholar]
  38. Layek B. Singh J. Caproic acid grafted chitosan cationic nanocomplexes for enhanced gene delivery: Effect of degree of substitution. Int. J. Pharm. 2013 447 1-2 182 191 10.1016/j.ijpharm.2013.02.052 23467080
    [Google Scholar]
  39. El-Sayed A. Harashima H. Endocytosis of gene delivery vectors: From clathrin-dependent to lipid raft-mediated endocytosis. Mol. Ther. 2013 21 6 1118 1130 10.1038/mt.2013.54 23587924
    [Google Scholar]
  40. Zhao Y. Huang L. Lipid nanoparticles for gene delivery. Adv. Genet. 2014 88 13 36 10.1016/B978‑0‑12‑800148‑6.00002‑X 25409602
    [Google Scholar]
  41. Mastrobattista E. van der Aa M.A.E.M. Hennink W.E. Crommelin D.J.A. Artificial viruses: A nanotechnological approach to gene delivery. Nat. Rev. Drug Discov. 2006 5 2 115 121 10.1038/nrd1960 16521330
    [Google Scholar]
  42. Salatin S. Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J. Cell. Mol. Med. 2017 21 9 1668 1686 10.1111/jcmm.13110 28244656
    [Google Scholar]
  43. Layek B Singh J. Chitosan for DNA and gene therapy. Chitosan for DNA and gene therapy. Woodhead Publishing 2017 209 244 10.1016/B978‑0‑08‑100228‑5.00008‑0
    [Google Scholar]
  44. Kamiya H. Tsuchiya H. Yamazaki J. Harashima H. Intracellular trafficking and transgene expression of viral and non-viral gene vectors. Adv. Drug Deliv. Rev. 2001 52 3 153 164 10.1016/S0169‑409X(01)00216‑2 11718940
    [Google Scholar]
  45. Zhou Z. Liu X. Zhu D. Wang Y. Zhang Z. Zhou X. Qiu N. Chen X. Shen Y. non-viral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv. Drug Deliv. Rev. 2017 115 115 154 10.1016/j.addr.2017.07.021 28778715
    [Google Scholar]
  46. Sharma D. Arora S. Singh J. Layek B. A review of the tortuous path of non-viral gene delivery and recent progress. Int. J. Biol. Macromol. 2021 183 2055 2073 10.1016/j.ijbiomac.2021.05.192 34087309
    [Google Scholar]
  47. Arora S. Layek B. Singh J. Design and validation of liposomal ApoE2 gene delivery system to evade blood–brain barrier for effective treatment of Alzheimer’s disease. Mol. Pharm. 2021 18 2 714 725 10.1021/acs.molpharmaceut.0c00461 32787268
    [Google Scholar]
  48. Shirley J.L. de Jong Y.P. Terhorst C. Herzog R.W. Immune responses to viral gene therapy vectors. Mol. Ther. 2020 28 3 709 722 10.1016/j.ymthe.2020.01.001 31968213
    [Google Scholar]
  49. Lukacs G.L. Haggie P. Seksek O. Lechardeur D. Freedman N. Verkman A.S. Size-dependent DNA mobility in cytoplasm and nucleus. J. Biol. Chem. 2000 275 3 1625 1629 10.1074/jbc.275.3.1625 10636854
    [Google Scholar]
  50. Bai H. Lester G.M.S. Petishnok L.C. Dean D.A. Cytoplasmic transport and nuclear import of plasmid DNA. Biosci. Rep. 2017 37 6 BSR20160616 10.1042/BSR20160616 29054961
    [Google Scholar]
  51. Vaughan E.E. Dean D.A. Intracellular trafficking of plasmids during transfection is mediated by microtubules. Mol. Ther. 2006 13 2 422 428 10.1016/j.ymthe.2005.10.004 16301002
    [Google Scholar]
  52. Capecchi M.R. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 1980 22 2 479 488 10.1016/0092‑8674(80)90358‑X 6256082
    [Google Scholar]
  53. Dean D.A. Import of plasmid DNA into the nucleus is sequence specific. Exp. Cell Res. 1997 230 2 293 302 10.1006/excr.1996.3427 9024788
    [Google Scholar]
  54. Bastos R. Panté N. Burke B. Nuclear pore complex proteins. Int. Rev. Cytol. 1996 162 257 302 10.1016/S0074‑7696(08)62619‑4 8557489
    [Google Scholar]
  55. Zuhorn I.S. Bakowsky U. Polushkin E. Visser W.H. Stuart M.C.A. Engberts J.B.F.N. Hoekstra D. Nonbilayer phase of lipoplex–membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol. Ther. 2005 11 5 801 810 10.1016/j.ymthe.2004.12.018 15851018
    [Google Scholar]
  56. Gigante A. Li M. Junghänel S. Hirschhäuser C. Knauer S. Schmuck C. Non-viral transfection vectors: Are hybrid materials the way forward? MedChemComm 2019 10 10 1692 1718 10.1039/C9MD00275H 32180915
    [Google Scholar]
  57. Wang S. Yan C. Zhang X. Shi D. Chi L. Luo G. Deng J. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing. Biomater. Sci. 2018 6 10 2757 2772 10.1039/C8BM00807H 30187036
    [Google Scholar]
  58. Zhang H. Vinogradov S.V. Short biodegradable polyamines for gene delivery and transfection of brain capillary endothelial cells. J. Control. Release 2010 143 3 359 366 10.1016/j.jconrel.2010.01.020 20093156
    [Google Scholar]
  59. Sun W. Davis P.B. Reducible DNA nanoparticles enhance in vitro gene transfer via an extracellular mechanism. J. Control. Release 2010 146 1 118 127 10.1016/j.jconrel.2010.04.031 20438780
    [Google Scholar]
  60. Liu X. Xiang J. Zhu D. Jiang L. Zhou Z. Tang J. Liu X. Huang Y. Shen Y. Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery. Adv. Mater. 2016 28 9 1743 1752 10.1002/adma.201504288 26663349
    [Google Scholar]
  61. Wang C. Pan C. Yong H. Wang F. Bo T. Zhao Y. Ma B. He W. Li M. Emerging non-viral vectors for gene delivery. J. Nanobiotechnology 2023 21 1 272 10.1186/s12951‑023‑02044‑5 37592351
    [Google Scholar]
  62. Xiao Y. Tang Z. Huang X. Chen W. Zhou J. Liu H. Liu C. Kong N. Tao W. Emerging mRNA technologies: Delivery strategies and biomedical applications. Chem. Soc. Rev. 2022 51 10 3828 3845 10.1039/D1CS00617G 35437544
    [Google Scholar]
  63. Liu S. Sun Z. Zhou D. Guo T. Alkylated branched poly(β-amino esters) demonstrate strong DNA encapsulation, high nanoparticle stability and robust gene transfection efficacy. J. Mater. Chem. B Mater. Biol. Med. 2017 5 27 5307 5310 10.1039/C7TB00996H 32264068
    [Google Scholar]
  64. Zhang Y.Q. Guo R.R. Chen Y.H. Li T.C. Du W.Z. Xiang R.W. Guan J.B. Li Y.P. Huang Y.Y. Yu Z.Q. Cai Y. Zhang P. Ling G.X. Ionizable drug delivery systems for efficient and selective gene therapy. Mil. Med. Res. 2023 10 1 9 10.1186/s40779‑023‑00445‑z 36843103
    [Google Scholar]
  65. Tseng W.C. Haselton F.R. Giorgio T.D. Mitosis enhances transgene expression of plasmid delivered by cationic liposomes. Biochim. Biophys. Acta Gene Struct. Expr. 1999 1445 1 53 64 10.1016/S0167‑4781(99)00039‑1 10209258
    [Google Scholar]
  66. Karmali P.P. Chaudhuri A. Cationic liposomes as non-viral carriers of gene medicines: Resolved issues, open questions, and future promises. Med. Res. Rev. 2007 27 5 696 722 10.1002/med.20090 17022036
    [Google Scholar]
  67. Zanta M.A. Belguise-Valladier P. Behr J.P. Gene delivery: A single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci. USA 1999 96 1 91 96 10.1073/pnas.96.1.91 9874777
    [Google Scholar]
  68. Ludtke J.J. Zhang G. Sebestyén M.G. Wolff J.A. A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA. J. Cell Sci. 1999 112 12 2033 2041 10.1242/jcs.112.12.2033 10341220
    [Google Scholar]
  69. Radaic A. de Jesus M.B. Solid lipid nanoparticles release DNA upon endosomal acidification in human embryonic kidney cells. Nanotechnology 2018 29 31 315102 10.1088/1361‑6528/aac447 29756603
    [Google Scholar]
  70. Kaksonen M. Roux A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2018 19 5 313 326 10.1038/nrm.2017.132 29410531
    [Google Scholar]
  71. Schmid E.M. McMahon H.T. Integrating molecular and network biology to decode endocytosis. Nature 2007 448 7156 883 888 10.1038/nature06031 17713526
    [Google Scholar]
  72. Traub L.M. Tickets to ride: Selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 2009 10 9 583 596 10.1038/nrm2751 19696796
    [Google Scholar]
  73. Varkouhi A.K. Scholte M. Storm G. Haisma H.J. Endosomal escape pathways for delivery of biologicals. J. Control. Release 2011 151 3 220 228 10.1016/j.jconrel.2010.11.004 21078351
    [Google Scholar]
  74. Pan X Veroniaina H Su N Sha K Jiang F Wu Z Qi X Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J. Pharm. Sci. 2021 16 6 687 703 10.1016/j.ajps.2021.05.003
    [Google Scholar]
  75. Kulkarni J.A. Darjuan M.M. Mercer J.E. Chen S. van der Meel R. Thewalt J.L. Tam Y.Y.C. Cullis P.R. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 2018 12 5 4787 4795 10.1021/acsnano.8b01516 29614232
    [Google Scholar]
  76. Rahman M.M. Zhou N. Huang J. An overview on the development of mRNA-based vaccines and their formulation strategies for improved antigen expression in vivo. Vaccines 2021 9 3 244 10.3390/vaccines9030244 33799516
    [Google Scholar]
  77. Verbeke R. Lentacker I. De Smedt S.C. Dewitte H. Three decades of messenger RNA vaccine development. Nano Today 2019 28 100766 10.1016/j.nantod.2019.100766
    [Google Scholar]
  78. Tang T.Y. Huang X. Zhang G. Lu M.H. Liang T.B. mRNA vaccine development for cholangiocarcinoma: A precise pipeline. Mil. Med. Res. 2022 9 1 40 10.1186/s40779‑022‑00399‑8 35821067
    [Google Scholar]
  79. Vitiello A. Ferrara F. Commentary of the mRNA vaccines COVID-19. Asian J. Pharm. Sci. 2021 16 5 531 532 10.1016/j.ajps.2021.05.004 34849160
    [Google Scholar]
  80. Weng Y. Huang Y. Advances of mRNA vaccines for COVID-19: A new prophylactic revolution begins. Asian J. Pharm. Sci. 2021 16 3 263 264 10.1016/j.ajps.2021.02.005 34276817
    [Google Scholar]
  81. Wang J. Lu Z. Wientjes M.G. Au J.L.S. Delivery of siRNA therapeutics: Barriers and carriers. AAPS J. 2010 12 4 492 503 10.1208/s12248‑010‑9210‑4 20544328
    [Google Scholar]
  82. Jeandupeux E. Alameh M.G. Ghattas M. De Crescenzo G. Lavertu M. Poly (2-propylacrylic acid) increases in vitro bioactivity of chitosan/mRNA nanoparticles. J. Pharm. Sci. 2021 110 10 3439 3449 10.1016/j.xphs.2021.06.003 34090900
    [Google Scholar]
  83. Rosenblum D. Gutkin A. Kedmi R. Ramishetti S. Veiga N. Jacobi A.M. Schubert M.S. Friedmann-Morvinski D. Cohen Z.R. Behlke M.A. Lieberman J. Peer D. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv. 2020 6 47 eabc9450 10.1126/sciadv.abc9450 33208369
    [Google Scholar]
  84. Li C. Yang T. Weng Y. Zhang M. Zhao D. Guo S. Hu B. Shao W. Wang X. Hussain A. Liang X.J. Huang Y. Ionizable lipid-assisted efficient hepatic delivery of gene editing elements for oncotherapy. Bioact. Mater. 2022 9 590 601 10.1016/j.bioactmat.2021.05.051 34853819
    [Google Scholar]
  85. Wang H.X. Song Z. Lao Y.H. Xu X. Gong J. Cheng D. Chakraborty S. Park J.S. Li M. Huang D. Yin L. Cheng J. Leong K.W. Non-viral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc. Natl. Acad. Sci. USA 2018 115 19 4903 4908 10.1073/pnas.1712963115 29686087
    [Google Scholar]
  86. Blakney A.K. McKay P.F. Yus B.I. Aldon Y. Shattock R.J. Inside out: Optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene Ther. 2019 26 9 363 372 10.1038/s41434‑019‑0095‑2 31300730
    [Google Scholar]
  87. Hajj K.A. Ball R.L. Deluty S.B. Singh S.R. Strelkova D. Knapp C.M. Whitehead K.A. Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH. Small 2019 15 6 1805097 10.1002/smll.201805097 30637934
    [Google Scholar]
  88. Sousa Â. Almeida A.M. Faria R. Konate K. Boisguerin P. Queiroz J.A. Costa D. Optimization of peptide- plasmid DNA vectors formulation for gene delivery in cancer therapy exploring design of experiments. Colloids Surf. B Biointerfaces 2019 183 110417 10.1016/j.colsurfb.2019.110417 31408780
    [Google Scholar]
  89. Pan T. Zhou Q. Miao K. Zhang L. Wu G. Yu J. Xu Y. Xiong W. Li Y. Wang Y. Suppressing Sart1 to modulate macrophage polarization by siRNA-loaded liposomes: A promising therapeutic strategy for pulmonary fibrosis. Theranostics 2021 11 3 1192 1206 10.7150/thno.48152 33391530
    [Google Scholar]
  90. Cheng X. Liu Q. Li H. Kang C. Liu Y. Guo T. Shang K. Yan C. Cheng G. Lee R.J. Lipid nanoparticles loaded with an antisense oligonucleotide gapmer against Bcl-2 for treatment of lung cancer. Pharm. Res. 2017 34 2 310 320 10.1007/s11095‑016‑2063‑5 27896589
    [Google Scholar]
  91. Yang L. Ma F. Liu F. Chen J. Zhao X. Xu Q. Efficient delivery of antisense oligonucleotides using bioreducible lipid nanoparticles in vitro and in vivo. Mol. Ther. Nucleic Acids 2020 19 1357 1367 10.1016/j.omtn.2020.01.018 32160706
    [Google Scholar]
  92. Richner J.M. Himansu S. Dowd K.A. Butler S.L. Salazar V. Fox J.M. Julander J.G. Tang W.W. Shresta S. Pierson T.C. Ciaramella G. Diamond M.S. Modified mRNA vaccines protect against Zika virus infection. Cell 2017 168 6 1114 1125.e10 10.1016/j.cell.2017.02.017 28222903
    [Google Scholar]
  93. Suzuki Y. Hyodo K. Suzuki T. Tanaka Y. Kikuchi H. Ishihara H. Biodegradable lipid nanoparticles induce a prolonged RNA interference-mediated protein knockdown and show rapid hepatic clearance in mice and nonhuman primates. Int. J. Pharm. 2017 519 1-2 34 43 10.1016/j.ijpharm.2017.01.016 28089936
    [Google Scholar]
  94. Nabhan J.F. Wood K.M. Rao V.P. Morin J. Bhamidipaty S. LaBranche T.P. Gooch R.L. Bozal F. Bulawa C.E. Guild B.C. Intrathecal delivery of frataxin mRNA encapsulated in lipid nanoparticles to dorsal root ganglia as a potential therapeutic for Friedreich’s ataxia. Sci. Rep. 2016 6 1 20019 10.1038/srep20019 26883577
    [Google Scholar]
  95. Pardi N. Tuyishime S. Muramatsu H. Kariko K. Mui B.L. Tam Y.K. Madden T.D. Hope M.J. Weissman D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control. Release 2015 217 345 351 10.1016/j.jconrel.2015.08.007 26264835
    [Google Scholar]
  96. Kauffman K.J. Dorkin J.R. Yang J.H. Heartlein M.W. DeRosa F. Mir F.F. Fenton O.S. Anderson D.G. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015 15 11 7300 7306 10.1021/acs.nanolett.5b02497 26469188
    [Google Scholar]
  97. Conway A. Mendel M. Kim K. McGovern K. Boyko A. Zhang L. Miller J.C. DeKelver R.C. Paschon D.E. Mui B.L. Lin P.J.C. Tam Y.K. Barbosa C. Redelmeier T. Holmes M.C. Lee G. Non-viral delivery of zinc finger nuclease mRNA enables highly efficient in vivo genome editing of multiple therapeutic gene targets. Mol. Ther. 2019 27 4 866 877 10.1016/j.ymthe.2019.03.003 30902585
    [Google Scholar]
  98. Choi S. Jin S.E. Lee M.K. Lim S.J. Park J.S. Kim B.G. Ahn W.S. Kim C.K. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur. J. Pharm. Biopharm. 2008 68 3 545 554 10.1016/j.ejpb.2007.07.011 17881199
    [Google Scholar]
  99. Apaolaza P.S. Delgado D. Pozo-Rodríguez A. Gascón A.R. Solinís M.Á. A novel gene therapy vector based on hyaluronic acid and solid lipid nanoparticles for ocular diseases. Int. J. Pharm. 2014 465 1-2 413 426 10.1016/j.ijpharm.2014.02.038 24576595
    [Google Scholar]
  100. Vicente-Pascual M. Albano A. Solinís M.Á. Serpe L. Rodríguez-Gascón A. Foglietta F. Muntoni E. Torrecilla J. Pozo-Rodríguez A. Battaglia L. Gene delivery in the cornea: In vitro & ex vivo evaluation of solid lipid nanoparticle-based vectors. Nanomedicine 2018 13 15 1847 1854 10.2217/nnm‑2018‑0112 29792369
    [Google Scholar]
  101. de Garibay A.P.R. Solinís M.A. del Pozo-Rodríguez A. Apaolaza P.S. Shen J.S. Rodríguez-Gascón A. Solid lipid nanoparticles as non-viral vectors for gene transfection in a cell model of Fabry disease. J. Biomed. Nanotechnol. 2015 11 3 500 511 10.1166/jbn.2015.1968 26307832
    [Google Scholar]
  102. Delgado D. del Pozo-Rodríguez A. Solinís M.Á. Rodríguez- Gascón A. Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: The importance of the entry pathway. Eur. J. Pharm. Biopharm. 2011 79 3 495 502 10.1016/j.ejpb.2011.06.005 21726641
    [Google Scholar]
  103. Limeres M.J. Suñé-Pou M. Prieto-Sánchez S. Moreno-Castro C. Nusblat A.D. Hernández-Munain C. Castro G.R. Suñé C. Suñé-Negre J.M. Cuestas M.L. Development and characterization of an improved formulation of cholesteryl oleate-loaded cationic solid-lipid nanoparticles as an efficient non-viral gene delivery system. Colloids Surf. B Biointerfaces 2019 184 110533 10.1016/j.colsurfb.2019.110533 31593829
    [Google Scholar]
  104. Fàbregas A. Sánchez-Hernández N. Ticó J.R. García-Montoya E. Pérez-Lozano P. Suñé-Negre J.M. Hernández-Munain C. Suñé C. Miñarro M. A new optimized formulation of cationic solid lipid nanoparticles intended for gene delivery: Development, characterization and DNA binding efficiency of TCERG1 expression plasmid. Int. J. Pharm. 2014 473 1-2 270 279 10.1016/j.ijpharm.2014.06.022 24999055
    [Google Scholar]
  105. Erel-Akbaba G. İsar S. Akbaba H. Development and evaluation of solid witepsol nanoparticles for gene delivery. Turk J Pharm Sci 2021 18 3 344 351 10.4274/tjps.galenos.2020.68878 34157825
    [Google Scholar]
  106. Botto C. Augello G. Amore E. Emma M.R. Azzolina A. Cavallaro G. Cervello M. Bondì M.L. Cationic solid lipid nanoparticles as non viral vectors for the inhibition of hepatocellular carcinoma growth by RNA interference. J. Biomed. Nanotechnol. 2018 14 5 1009 1016 10.1166/jbn.2018.2557 29883570
    [Google Scholar]
  107. Doroud D. Vatanara A. Zahedifard F. Gholami E. Vahabpour R. Rouholamini Najafabadi A. Rafati S. Cationic solid lipid nanoparticles loaded by cysteine proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system: Characterization and in vitro evaluations. J. Pharm. Pharm. Sci. 2010 13 3 320 335 10.18433/J3R30T 21092706
    [Google Scholar]
  108. The study of an investigational drug, Patisiran (ALN-TTR02), for the treatment of transthyretin (TTR)-mediated amyloidosis in patients who have already been treated with ALN-TTR02 (Patisiran). Available from: https://www.mayo.edu/research/clinical-trials/cls-20199625
  109. Polack F.P. Thomas S.J. Kitchin N. Absalon J. Gurtman A. Lockhart S. Perez J.L. Pérez Marc G. Moreira E.D. Zerbini C. Bailey R. Swanson K.A. Roychoudhury S. Koury K. Li P. Kalina W.V. Cooper D. Frenck R.W. Jr Hammitt L.L. Türeci Ö. Nell H. Schaefer A. Ünal S. Tresnan D.B. Mather S. Dormitzer P.R. Şahin U. Jansen K.U. Gruber W.C. C4591001 Clinical Trial Group Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020 383 27 2603 2615 10.1056/NEJMoa2034577 33301246
    [Google Scholar]
  110. Gillmore J.D. Gane E. Taubel J. Kao J. Fontana M. Maitland M.L. Seitzer J. O’Connell D. Walsh K.R. Wood K. Phillips J. Xu Y. Amaral A. Boyd A.P. Cehelsky J.E. McKee M.D. Schiermeier A. Harari O. Murphy A. Kyratsous C.A. Zambrowicz B. Soltys R. Gutstein D.E. Leonard J. Sepp-Lorenzino L. Lebwohl D. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 2021 385 6 493 502 10.1056/NEJMoa2107454 34215024
    [Google Scholar]
  111. Kessler J.A. Shaibani A. Sang C.N. Christiansen M. Kudrow D. Vinik A. Shin N. VM202 study group Gene therapy for diabetic peripheral neuropathy: A randomized, placebo-controlled phase III study of VM202, a plasmid DNA encoding human hepatocyte growth factor. Clin. Transl. Sci. 2021 14 3 1176 1184 10.1111/cts.12977 33465273
    [Google Scholar]
  112. Phase I trial of intra-tumoral EGFR antisense DNA and DC-Chol liposomes in advanced oral squamous cell carcinoma. 2020 Available from: https://adisinsight.springer.com/trials/700002150
  113. Apollo: The study of an investigational drug, Patisiran (ALN-TTR02), for the treatment of transthyretin (TTR)-mediated amyloidosis . 2020 Available from: https://www.mayo.edu/research/clinical-trials/cls-20115984
  114. dos Santos Rodrigues B. Oue H. Banerjee A. Kanekiyo T. Singh J. Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J. Control. Release 2018 286 264 278 10.1016/j.jconrel.2018.07.043 30071253
    [Google Scholar]
  115. dos Santos Rodrigues B. Lakkadwala S. Kanekiyo T. Singh J. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties. Int. J. Nanomedicine 2019 14 6497 6517 10.2147/IJN.S215941 31616141
    [Google Scholar]
  116. Ogawa K. Kato N. Yoshida M. Hiu T. Matsuo T. Mizukami S. Omata D. Suzuki R. Maruyama K. Mukai H. Kawakami S. Focused ultrasound/microbubbles-assisted BBB opening enhances LNP-mediated mRNA delivery to brain. J. Control. Release 2022 348 34 41 10.1016/j.jconrel.2022.05.042 35640764
    [Google Scholar]
  117. Alvarez-Erviti L. Seow Y. Yin H. Betts C. Lakhal S. Wood M.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011 29 4 341 345 10.1038/nbt.1807 21423189
    [Google Scholar]
  118. Xie R. Wang Y. Burger J.C. Li D. Zhu M. Gong S. Non-viral approaches for gene therapy and therapeutic genome editing across the blood–brain barrier. Med-X 2023 1 1 6 10.1007/s44258‑023‑00004‑0 37485250
    [Google Scholar]
  119. Mel’nikov P.A. Baklaushev V.P. Gabashvili A.N. Nukolova N.V. Kuznetsov I.I. Cherepanov S.A. Koshkin F.A. Leopol’d A.V. Chekhonin V.P. Internalization of vectorized liposomes loaded with plasmid DNA in C6 glioma cells. Bull. Exp. Biol. Med. 2017 163 1 114 122 10.1007/s10517‑017‑3750‑x 28580488
    [Google Scholar]
  120. Grafals-Ruiz N. Rios-Vicil C.I. Lozada-Delgado E.L. Quiñones-Díaz B.I. Noriega-Rivera R.A. Martínez-Zayas G. Santana-Rivera Y. Santiago-Sánchez G.S. Valiyeva F. Vivas-Mejía P.E. Brain targeted gold liposomes improve RNAi delivery for glioblastoma. Int. J. Nanomedicine 2020 15 2809 2828 10.2147/IJN.S241055 32368056
    [Google Scholar]
  121. An improved process for preparing mRNA-loaded lipid nanoparticles Patent JP2023508881A, 2020
  122. Spleen-targeted nano-drug Patent CN114887070A, 2020
  123. Lipid nanoparticles Patent US11684577B2, 2020
  124. Method for manufacturing lipid nanoparticles for mRNA delivery to increase mRNA delivery efficiency. Patent KR20230130538A, 2020
  125. Efficacious mrna vaccines. Patent US20230285538A1, 2020
  126. Lipid nanoparticles comprising mannose or uses thereof Patent KR102537540B1, 2020
  127. Rna vaccine Patent WO2022129918A1, 2020
  128. Lipid nanoparticles for delivering mrna vaccines. Patent WO2022099003A1, 2020
  129. Mrna therapy for the treatment of ocular diseases. Patent US20220354968A1, 2020
  130. Variant strain-based coronavirus vaccines. Patent WO2022155530A1, 2020
  131. Compositions and methods for stabilization of lipid nanoparticle mrna vaccines. Patent WO2022101469A1, 2020
  132. MRNA treatment of argininosuccinate synthase deficiency. Patent JP6608815B2, 2020
/content/journals/cpd/10.2174/0113816128324084240828084904
Loading
/content/journals/cpd/10.2174/0113816128324084240828084904
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test