Skip to content
2000
Volume 31, Issue 8
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Uric acid (UA), the end-product of purine metabolism, has a complicated physiological role in the body, showing the combination of regulating inflammatory response, promoting oxidation/anti-oxidation, and modifying autophagy activity . Meanwhile, various research and theories support that inflammation, oxidative stress, and other risk factors promote the onset and progression of affective disorders and neurodegenerative diseases. Existing studies suggest that UA may be involved in the pathophysiological processes of affective disorders in various ways, and there has been a gradual advance in the understanding of the interplay between UA levels and affective disorders and neurodegenerative diseases. This review summarized the role of UA in the process of inflammation, oxidative stress, and autophagy. On this basis, we discussed the correlation between UA and affective disorders and several neurodegenerative diseases, and simultaneously analyzed the possible mechanism of its influence on affective disorders and neurodegenerative diseases, to provide a theoretical basis for UA as a biomarker or therapeutic target for the diagnosis of these diseases.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128333916241003180018
2024-10-16
2025-05-07
Loading full text...

Full text loading...

References

  1. MaiuoloJ. OppedisanoF. GratteriS. MuscoliC. MollaceV. Regulation of uric acid metabolism and excretion.Int. J. Cardiol.201621381410.1016/j.ijcard.2015.08.10926316329
    [Google Scholar]
  2. El RidiR. TallimaH. Physiological functions and pathogenic potential of uric acid: A review.J. Adv. Res.20178548749310.1016/j.jare.2017.03.00328748115
    [Google Scholar]
  3. WuX.W. LeeC.C. MuznyD.M. CaskeyC.T. Urate oxidase: Primary structure and evolutionary implications.Proc. Natl. Acad. Sci. USA198986239412941610.1073/pnas.86.23.94122594778
    [Google Scholar]
  4. AmoriniA.M. PetzoldA. TavazziB. EikelenboomJ. KeirG. BelliA. GiovannoniG. Di PietroV. PolmanC. D’UrsoS. VagnozziR. UitdehaagB. LazzarinoG. Increase of uric acid and purine compounds in biological fluids of multiple sclerosis patients.Clin. Biochem.20094210-111001100610.1016/j.clinbiochem.2009.03.02019341721
    [Google Scholar]
  5. ChenY. LuoL. HuS. GanR. ZengL. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: A comprehensive review.Crit. Rev. Food Sci. Nutr.202363247065709010.1080/10408398.2022.204041735236179
    [Google Scholar]
  6. Rivera-ParedezB. Macías-KaufferL. Fernandez-LopezJ.C. Villalobos-ComparánM. Martinez-AguilarM.M. de la Cruz-MontoyaA. Ramírez-SalazarE.G. Villamil-RamírezH. QuiterioM. Ramírez-PalaciosP. Romero-HidalgoS. Villarreal-MolinaM.T. Denova-GutiérrezE. FloresY.N. Canizales-QuinterosS. SalmerónJ. Velázquez-CruzR. Influence of genetic and non-genetic risk factors for serum uric acid levels and hyperuricemia in Mexicans.Nutrients2019116133610.3390/nu1106133631207883
    [Google Scholar]
  7. ZhangP. WangR. QuY. Serum uric acid levels and outcome of acute ischemic stroke: A dose-response meta-analysis.Mol. Neurobiol.20236131704171337759105
    [Google Scholar]
  8. LeeS.B. LeeH.J. RyuH.E. ParkB. JungD.H. Elevated uric acid levels with early chronic kidney disease as an indicator of new-onset ischemic heart disease: A cohort of koreans without diabetes.Biomedicines2023118221210.3390/biomedicines1108221237626709
    [Google Scholar]
  9. XieC.H. ChenL.W. LinC.L. HuC.C. ChienC.H. Serum uric acid but not ferritin level is associated with hepatic fibrosis in lean subjects with metabolic dysfunction-associated fatty liver disease: A community-based study.J. Pers. Med.20221212200910.3390/jpm1212200936556230
    [Google Scholar]
  10. LinY XieY HaoZ Protective effect of uric acid on ox-LDL-induced HUVECs injury via Keap1-Nrf2-ARE pathway.J. Immunol. Res.202120215151168
    [Google Scholar]
  11. MijailovicN.R. VesicK. BorovcaninM.M. The influence of serum uric acid on the brain and cognitive dysfunction.Front. Psychiatry20221382847610.3389/fpsyt.2022.82847635530021
    [Google Scholar]
  12. KatzJ.L. WeinerH. Psychosomatic considerations in hyperuricemia and gout.Psychosom. Med.197234216518210.1097/00006842‑197203000‑000084552779
    [Google Scholar]
  13. Jiménez-FernándezS. GurpeguiM. Garrote-RojasD. Gutiérrez-RojasL. CarreteroM.D. CorrellC.U. Oxidative stress parameters and antioxidants in adults with unipolar or bipolar depression versus healthy controls: Systematic review and meta-analysis.J. Affect. Disord.202231421122110.1016/j.jad.2022.07.01535868596
    [Google Scholar]
  14. ChenH. SunF. JinW. Study on association of serum uric acid levels with bipolar disorder: Systematic review and meta-analysis in Chinese patients.Ann. Gen. Psychiatry20232212010.1186/s12991‑023‑00450‑537202745
    [Google Scholar]
  15. JiangL. HuX. JinJ. WangW. YuB. ChenG. DongH. ZhouY. Inflammatory risk status shapes the association between uric acid and cognitive function in non-hyperuricemia middle aged and elderly.J. Alzheimers Dis.202497124925710.3233/JAD‑23084138043014
    [Google Scholar]
  16. ZhaX. YangB. XiaG. WangS. Combination of uric acid and pro-inflammatory cytokines in discriminating patients with gout from healthy controls.J. Inflamm. Res.2022151413142010.2147/JIR.S35715935250292
    [Google Scholar]
  17. TschoppJ. SchroderK. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production?Nat. Rev. Immunol.201010321021510.1038/nri272520168318
    [Google Scholar]
  18. TianJ. ZhouD. XiangL. XieB. WangB. LiY. LiuX. Calycosin represses AIM2 inflammasome-mediated inflammation and pyroptosis to attenuate monosodium urate-induced gouty arthritis through NF-κB and p62-Keap1 pathways.Drug Dev. Res.20228371654167210.1002/ddr.2198536069386
    [Google Scholar]
  19. BragaT.T. ForniM.F. Correa-CostaM. RamosR.N. BarbutoJ.A. BrancoP. CastoldiA. HiyaneM.I. DavansoM.R. LatzE. FranklinB.S. KowaltowskiA.J. CamaraN.O.S. Soluble uric acid activates the NLRP3 inflammasome.Sci. Rep.2017713988410.1038/srep3988428084303
    [Google Scholar]
  20. NotsuT. KurataY. NinomiyaH. TaufiqF. KomatsuK. MiakeJ. SawanoT. TsunetoM. ShirayoshiY. HisatomeI. Inhibition of the uric acid efflux transporter ABCG2 enhances stimulating effect of soluble uric acid on IL-1β production in murine macrophage-like J774.1 cells.Hypertens. Res.202346102368237710.1038/s41440‑023‑01391‑y37592041
    [Google Scholar]
  21. HeB. NieQ. WangF. WangX. ZhouY. WangC. GuoJ. FanX. YeZ. LiuP. WenJ. Hyperuricemia promotes the progression of atherosclerosis by activating endothelial cell pyroptosis via the ROS/NLRP3 pathway.J. Cell. Physiol.202323881808182210.1002/jcp.3103837475193
    [Google Scholar]
  22. DinarelloC.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases.Blood2011117143720373210.1182/blood‑2010‑07‑27341721304099
    [Google Scholar]
  23. CrişanT.O. CleophasM.C.P. NovakovicB. ErlerK. van de VeerdonkF.L. StunnenbergH.G. NeteaM.G. DinarelloC.A. JoostenL.A.B. Uric acid priming in human monocytes is driven by the AKT–PRAS40 autophagy pathway.Proc. Natl. Acad. Sci. USA2017114215485549010.1073/pnas.162091011428484006
    [Google Scholar]
  24. SpigaR. MariniM.A. MancusoE. Di FattaC. FuocoA. PerticoneF. AndreozziF. ManninoG.C. SestiG. Uric acid is associated with inflammatory biomarkers and induces inflammation via activating the NF-κB signaling pathway in HepG2 cells.Arterioscler. Thromb. Vasc. Biol.20173761241124910.1161/ATVBAHA.117.30912828408375
    [Google Scholar]
  25. ZhangH. MaY. CaoR. WangG. LiS. CaoY. ZhangH. LiuM. LiuG. ZhangJ. LiS. WangY. MaY. Soluble uric acid induces myocardial damage through activating the NLRP3 inflammasome.J. Cell. Mol. Med.202024158849886110.1111/jcmm.1552332558367
    [Google Scholar]
  26. ZhangJ. DiaoB. LinX. XuJ. TangF. TLR2 and TLR4 mediate an activation of adipose tissue renin-angiotensin system induced by uric acid.Biochimie201916212513310.1016/j.biochi.2019.04.01331002842
    [Google Scholar]
  27. Martínez-ReyesC.P. Manjarrez-ReynaA.N. Méndez-GarcíaL.A. Aguayo-GuerreroJ.A. Aguirre-SierraB. Villalobos-MolinaR. López-VidalY. BobadillaK. EscobedoG. Uric acid has direct proinflammatory effects on human macrophages by increasing proinflammatory mediators and bacterial phagocytosis probably via URAT1.Biomolecules202010457610.3390/biom1004057632283759
    [Google Scholar]
  28. KawaiT. AkiraS. Signaling to NF-κB by toll-like receptors.Trends Mol. Med.2007131146046910.1016/j.molmed.2007.09.00218029230
    [Google Scholar]
  29. McCartyM.F. Barroso-ArandaJ. ContrerasF. High-dose folate and dietary purines promote scavenging of peroxynitrite-derived radicals – Clinical potential in inflammatory disorders.Med. Hypotheses200973582483410.1016/j.mehy.2008.09.05819409716
    [Google Scholar]
  30. HooperD.C. KeanR.B. ScottG.S. SpitsinS.V. MikheevaT. MorimotoK. BetteM. RöhrenbeckA.M. DietzscholdB. WeiheE. The central nervous system inflammatory response to neurotropic virus infection is peroxynitrite dependent.J. Immunol.200116763470347710.4049/jimmunol.167.6.347011544340
    [Google Scholar]
  31. Aliena-ValeroA. Rius-PérezS. Baixauli-MartínJ. TorregrosaG. ChamorroÁ. PérezS. SalomJ.B. Uric acid neuroprotection associated to IL-6/STAT3 signaling pathway activation in rat ischemic stroke.Mol. Neurobiol.202158140842310.1007/s12035‑020‑02115‑w32959172
    [Google Scholar]
  32. HooperD.C. ScottG.S. ZborekA. MikheevaT. KeanR.B. KoprowskiH. SpitsinS.V. Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood–CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis.FASEB J.200014569169810.1096/fasebj.14.5.69110744626
    [Google Scholar]
  33. GherghinaM.E. PerideI. TiglisM. NeaguT.P. NiculaeA. ChecheritaI.A. Uric acid and oxidative stress-relationship with cardiovascular, metabolic, and renal impairment.Int. J. Mol. Sci.2022236318810.3390/ijms2306318835328614
    [Google Scholar]
  34. ZhangJ. LinX. XuJ. TangF. TanL. CTRP3 protects against uric acid-induced endothelial injury by inhibiting inflammation and oxidase stress in rats.Exp. Biol. Med. (Maywood)2022247217418310.1177/1535370221104718334601891
    [Google Scholar]
  35. RyuE.S. KimM.J. ShinH.S. JangY.H. ChoiH.S. JoI. JohnsonR.J. KangD.H. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease.Am. J. Physiol. Renal Physiol.20133045F471F48010.1152/ajprenal.00560.201223283992
    [Google Scholar]
  36. ZhangM. CuiR. ZhouY. MaY. JinY. GouX. YangJ. WuX. Uric acid accumulation in the kidney triggers mast cell degranulation and aggravates renal oxidative stress.Toxicology202348315338710.1016/j.tox.2022.15338736464070
    [Google Scholar]
  37. SautinY.Y. NakagawaT. ZharikovS. JohnsonR.J. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress.Am. J. Physiol. Cell Physiol.20072932C584C59610.1152/ajpcell.00600.200617428837
    [Google Scholar]
  38. KimN.H. LeeA.Y. Growth factors upregulated by uric acid affect guanine deaminase-induced melanogenesis.Biomol. Ther. (Seoul)2023311899610.4062/biomolther.2022.13736549672
    [Google Scholar]
  39. GagliardiA.C.M. MinameM.H. SantosR.D. Uric acid: A marker of increased cardiovascular risk.Atherosclerosis20092021111710.1016/j.atherosclerosis.2008.05.02218585721
    [Google Scholar]
  40. CorryD.B. EslamiP. YamamotoK. NybyM.D. MakinoH. TuckM.L. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin–angiotensin system.J. Hypertens.200826226927510.1097/HJH.0b013e3282f240bf18192841
    [Google Scholar]
  41. DempseyB. CruzL.C. MineiroM.F. da SilvaR.P. MeottiF.C. Uric acid reacts with peroxidasin, decreases collagen IV crosslink, impairs human endothelial cell migration and adhesion.Antioxidants2022116111710.3390/antiox1106111735740014
    [Google Scholar]
  42. SilvaR.P. CarvalhoL.A.C. PatricioE.S. BonifacioJ.P.P. Chaves-FilhoA.B. MiyamotoS. MeottiF.C. Identification of urate hydroperoxide in neutrophils: A novel pro-oxidant generated in inflammatory conditions.Free Radic. Biol. Med.201812617718610.1016/j.freeradbiomed.2018.08.01130118829
    [Google Scholar]
  43. BowmanG.L. ShannonJ. FreiB. KayeJ.A. QuinnJ.F. Uric acid as a CNS antioxidant.J. Alzheimers Dis.20101941331133610.3233/JAD‑2010‑133020061611
    [Google Scholar]
  44. OtaniN. HoshiyamaE. OuchiM. TakekawaH. SuzukiK. Uric acid and neurological disease: A narrative review.Front. Neurol.202314116475610.3389/fneur.2023.116475637333005
    [Google Scholar]
  45. YuZ.F. Bruce-KellerA.J. GoodmanY. MattsonM.P. Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo.J. Neurosci. Res.199853561362510.1002/(SICI)1097‑4547(19980901)53:5<613::AID‑JNR11>3.0.CO;2‑19726432
    [Google Scholar]
  46. HuangT.T. HaoD.L. WuB.N. MaoL.L. ZhangJ. Uric acid demonstrates neuroprotective effect on Parkinson’s disease mice through Nrf2-ARE signaling pathway.Biochem. Biophys. Res. Commun.201749341443144910.1016/j.bbrc.2017.10.00428986252
    [Google Scholar]
  47. ZhangC. YangY. LiangW. WangT. WangS. WangX. WangY. JiangH. FengH. Neuroprotection by urate on the mutant hSOD1-related cellular and Drosophila models of amyotrophic lateral sclerosis: Implication for GSH synthesis via activating Akt/GSK3β/Nrf2/GCLC pathways.Brain Res. Bull.201914628730110.1016/j.brainresbull.2019.01.01930690059
    [Google Scholar]
  48. XiaoQ. WangJ. TianQ. Uric acid mitigates cognitive deficits via TFEB-mediated microglial autophagy in mice models of Alzheimer’s disease.Mol. Neurobiol.20236163678369638008888
    [Google Scholar]
  49. WuM. MaY. ChenX. LiangN. QuS. ChenH. Hyperuricemia causes kidney damage by promoting autophagy and NLRP3-mediated inflammation in rats with urate oxidase deficiency.Dis. Model. Mech.2021143dmm04804110.1242/dmm.04804133648977
    [Google Scholar]
  50. ShiY. TaoM. MaX. HuY. HuangG. QiuA. ZhuangS. LiuN. Delayed treatment with an autophagy inhibitor 3-MA alleviates the progression of hyperuricemic nephropathy.Cell Death Dis.202011646710.1038/s41419‑020‑2673‑z32555189
    [Google Scholar]
  51. HeF. WangM. ZhaoH. XieD. LvJ. LiuW. YuW. WangQ. ChenB. XuC. YamamotoT. KoyamaH. ChengJ. Autophagy protects against high uric acid-induced hepatic insulin resistance.Mol. Cell. Endocrinol.202254711159910.1016/j.mce.2022.11159935181437
    [Google Scholar]
  52. ShengY.L. ChenX. HouX.O. YuanX. YuanB.S. YuanY.Q. ZhangQ.L. CaoX. LiuC.F. LuoW.F. HuL.F. Urate promotes SNCA/α-synuclein clearance via regulating mTOR-dependent macroautophagy.Exp. Neurol.201729713814710.1016/j.expneurol.2017.08.00728821398
    [Google Scholar]
  53. YuanH. HuY. ZhuY. ZhangY. LuoC. LiZ. WenT. ZhuangW. ZouJ. HongL. ZhangX. HisatomeI. YamamotoT. ChengJ. Metformin ameliorates high uric acid-induced insulin resistance in skeletal muscle cells.Mol. Cell. Endocrinol.2017443C13814510.1016/j.mce.2016.12.02528042024
    [Google Scholar]
  54. Al-AwadD. Al-EmadiN. Abu-MadiM. Al-ThaniA.A. ZughaierS.M. The role of soluble uric acid in modulating autophagy flux and inflammasome activation during bacterial infection in macrophages.Biomedicines202081259810.3390/biomedicines812059833322651
    [Google Scholar]
  55. GoodmanA.M. WheelockM.D. HarnettN.G. MrugS. GrangerD.A. KnightD.C. The hippocampal response to psychosocial stress varies with salivary uric acid level.Neuroscience201633939640110.1016/j.neuroscience.2016.10.00227725214
    [Google Scholar]
  56. Khalili-MahaniN. DedovicK. EngertV. PruessnerM. PruessnerJ.C. Hippocampal activation during a cognitive task is associated with subsequent neuroendocrine and cognitive responses to psychological stress.Hippocampus201020232333410.1002/hipo.2062319437418
    [Google Scholar]
  57. LorenziT.M. BorbaD.L. DutraG. LaraD.R. Association of serum uric acid levels with emotional and affective temperaments.J. Affect. Disord.20101211-216116410.1016/j.jad.2009.05.02319524303
    [Google Scholar]
  58. SutinA.R. CutlerR.G. CamandolaS. UdaM. FeldmanN.H. CuccaF. ZondermanA.B. MattsonM.P. FerrucciL. SchlessingerD. TerraccianoA. Impulsivity is associated with uric acid: Evidence from humans and mice.Biol. Psychiatry2014751313710.1016/j.biopsych.2013.02.02423582268
    [Google Scholar]
  59. TangX. SongZ.H. CardosoM.A. ZhouJ.B. SimóR. The relationship between uric acid and brain health from observational studies.Metab. Brain Dis.20223761989200310.1007/s11011‑022‑01016‑235670991
    [Google Scholar]
  60. IazzolinoB. GrassanoM. MogliaC. High serum uric acid levels are protective against cognitive impairment in amyotrophic lateral sclerosis.J. Neurol.2023271295596137880536
    [Google Scholar]
  61. WangJ. JinR. WuZ. LiuY. JinX. HanZ. LiuY. XuZ. GuoX. TaoL. Moderate increase of serum uric acid within a normal range is associated with improved cognitive function in a non-normotensive population: A nationally representative cohort study.Front. Aging Neurosci.20221494434110.3389/fnagi.2022.94434136118682
    [Google Scholar]
  62. Andres-HernandoA. CicerchiC. KuwabaraM. OrlickyD.J. Sanchez-LozadaL.G. NakagawaT. JohnsonR.J. LanaspaM.A. Umami-induced obesity and metabolic syndrome is mediated by nucleotide degradation and uric acid generation.Nat. Metab.2021391189120110.1038/s42255‑021‑00454‑z34552272
    [Google Scholar]
  63. O’NeillR.D. LowryJ.P. On the significance of brain extracellular uric acid detected with in vivo monitoring techniques: A review.Behav. Brain Res.1995711-2334910.1016/0166‑4328(95)00035‑68747173
    [Google Scholar]
  64. JohnsonR.J. TolanD.R. BredesenD. NagelM. Sánchez-LozadaL.G. FiniM. BurtisS. LanaspaM.A. PerlmutterD. Could Alzheimer’s disease be a maladaptation of an evolutionary survival pathway mediated by intracerebral fructose and uric acid metabolism?Am. J. Clin. Nutr.2023117345546610.1016/j.ajcnut.2023.01.00236774227
    [Google Scholar]
  65. ShevlinM. HylandP. ButterS. McBrideO. HartmanT.K. KaratziasT. BentallR.P. The development and initial validation of self-report measures of ICD-11 depressive episode and generalized anxiety disorder: The International Depression Questionnaire (IDQ) and the International Anxiety Questionnaire (IAQ).J. Clin. Psychol.202379385487010.1002/jclp.2344636215152
    [Google Scholar]
  66. TanR.X.R. GohY.S. Community mental health interventions for people with major depressive disorder: A scoping review.Int. J. Ment. Health Nurs.20223161315135910.1111/inm.1302935695678
    [Google Scholar]
  67. Jiménez-FernándezS. GurpeguiM. Díaz-AtienzaF. Pérez-CostillasL. GerstenbergM. CorrellC.U. Oxidative stress and antioxidant parameters in patients with major depressive disorder compared to healthy controls before and after antidepressant treatment: Results from a meta-analysis.J. Clin. Psychiatry201576121658166710.4088/JCP.14r0917926579881
    [Google Scholar]
  68. LiuT. ZhongS. LiaoX. ChenJ. HeT. LaiS. JiaY. A meta-analysis of oxidative stress markers in depression.PLoS One20151010e013890410.1371/journal.pone.013890426445247
    [Google Scholar]
  69. LyngdohT. BochudM. GlausJ. CastelaoE. WaeberG. VollenweiderP. PreisigM. Associations of serum uric acid and SLC2A9 variant with depressive and anxiety disorders: A population-based study.PLoS One2013810e7633610.1371/journal.pone.007633624204615
    [Google Scholar]
  70. BlackC.N. BotM. SchefferP.G. SniederH. PenninxB.W.J.H. Uric acid in major depressive and anxiety disorders.J. Affect. Disord.201822568469010.1016/j.jad.2017.09.00328917195
    [Google Scholar]
  71. ChaudhariK. KhanzodeS. KhanzodeS. DakhaleG. SaojiA. SarodeS. Clinical correlation of alteration of endogenous antioxidant-uric acid level in major depressive disorder.Indian J. Clin. Biochem.2010251778110.1007/s12291‑010‑0016‑z23105889
    [Google Scholar]
  72. CaiH.L. JiangP. TanQ.Y. DangR.L. TangM.M. XueY. DengY. ZhangB.K. FangP.F. XuP. XiangD.X. LiH.D. YaoJ.K. Therapeutic efficacy of atypical antipsychotic drugs by targeting multiple stress-related metabolic pathways.Transl. Psychiatry201775e113010.1038/tp.2017.9428509906
    [Google Scholar]
  73. ZafirA. BanuN. Antioxidant potential of fluoxetine in comparison to Curcuma longa in restraint-stressed rats.Eur. J. Pharmacol.20075721233110.1016/j.ejphar.2007.05.06217610875
    [Google Scholar]
  74. McIntyreR.S. BerkM. BrietzkeE. GoldsteinB.I. López-JaramilloC. KessingL.V. MalhiG.S. NierenbergA.A. RosenblatJ.D. MajeedA. VietaE. VinbergM. YoungA.H. MansurR.B. Bipolar disorders.Lancet2020396102651841185610.1016/S0140‑6736(20)31544‑033278937
    [Google Scholar]
  75. RiceF. RiglinL. ThaparA.K. HeronJ. AnneyR. O’DonovanM.C. ThaparA. Characterizing developmental trajectories and the role of neuropsychiatric genetic risk variants in early-onset depression.JAMA Psychiatry201976330631310.1001/jamapsychiatry.2018.333830326013
    [Google Scholar]
  76. BhardwajS. SinhaD. PawarA. ManeA. Predominant polarity in bipolar affective disorder and its impact on cognition and quality of life.Indian J. Psychiatry202365664164610.4103/indianjpsychiatry.indianjpsychiatry_163_2337485407
    [Google Scholar]
  77. SalvadoreG. VialeC.I. LuckenbaughD.A. ZanattoV.C. PortelaL.V. SouzaD.O. ZarateC.A.Jr Machado-VieiraR. Increased uric acid levels in drug-naïve subjects with bipolar disorder during a first manic episode.Prog. Neuropsychopharmacol. Biol. Psychiatry201034681982110.1016/j.pnpbp.2010.02.02720206224
    [Google Scholar]
  78. AlbertU. De CoriD. AgugliaA. BarbaroF. BogettoF. MainaG. Increased uric acid levels in bipolar disorder subjects during different phases of illness.J. Affect. Disord.201517317017510.1016/j.jad.2014.11.00525462413
    [Google Scholar]
  79. ChatterjeeS.S. GhosalS. MitraS. MallikN. GhosalM.K. Serum uric acid levels in first episode mania, effect on clinical presentation and treatment response: Data from a case control study.Asian J. Psychiat.201835151710.1016/j.ajp.2018.04.03029723720
    [Google Scholar]
  80. AnumonyeA. ReadingH.W. KnightF. AshcroftG.W. Uric-acid metabolism in manic-depressive illness and during lithium therapy.Lancet196829175551290129310.1016/S0140‑6736(68)92300‑34172145
    [Google Scholar]
  81. NiR.J. GaoT.H. WangY.Y. TianY. WeiJ.X. ZhaoL.S. NiP.Y. MaX.H. LiT. Chronic lithium treatment ameliorates ketamine-induced mania-like behavior via the PI3K-Akt signaling pathway.Zool. Res.2022436989100410.24272/j.issn.2095‑8137.2022.27836257830
    [Google Scholar]
  82. OrtizR. UlrichH. ZarateC.A.Jr Machado-VieiraR. Purinergic system dysfunction in mood disorders: A key target for developing improved therapeutics.Prog. Neuropsychopharmacol. Biol. Psychiatry20155711713110.1016/j.pnpbp.2014.10.01625445063
    [Google Scholar]
  83. ChenA.T. MalmstromT. NasrallahH.A. Allopurinol augmentation in acute mania: A meta-analysis of placebo-controlled trials.J. Affect. Disord.201822624525010.1016/j.jad.2017.09.03429017068
    [Google Scholar]
  84. Machado-VieiraR. SoaresJ.C. LaraD.R. LuckenbaughD.A. BusnelloJ.V. MarcaG. CunhaA. SouzaD.O. ZarateC.A.Jr KapczinskiF. A double-blind, randomized, placebo-controlled 4-week study on the efficacy and safety of the purinergic agents allopurinol and dipyridamole adjunctive to lithium in acute bipolar mania.J. Clin. Psychiatry20086981237124510.4088/JCP.v69n080618681754
    [Google Scholar]
  85. LiuB. ZhangY. FangH. LiuJ. LiuT. LiL. Efficacy and safety of long-term antidepressant treatment for bipolar disorders - A meta-analysis of randomized controlled trials.J. Affect. Disord.2017223414810.1016/j.jad.2017.07.02328715727
    [Google Scholar]
  86. LuZ. WangY. XunG. Individuals with bipolar disorder have a higher level of uric acid than major depressive disorder: A case- control study.Sci. Rep.20211111830710.1038/s41598‑021‑97955‑434526613
    [Google Scholar]
  87. BartoliF. CrocamoC. DakanalisA. BrosioE. MiottoA. CapuzziE. ClericiM. CarràG. Purinergic system dysfunctions in subjects with bipolar disorder: A comparative cross-sectional study.Compr. Psychiatry2017731610.1016/j.comppsych.2016.09.01127837679
    [Google Scholar]
  88. LiuY. SiZ-Z. ZouC-J. MeiX. LiX-F. LuoH. ShenY. HuJ. LiX-X. WuL. Targeting neuroinflammation in Alzheimer’s disease: From mechanisms to clinical applications.Neural Regen. Res.202318470871510.4103/1673‑5374.35348436204826
    [Google Scholar]
  89. AsamuM.O. OladipoO.O. AbayomiO.A. AdebayoA.A. Alzheimer’s disease: The role of T lymphocytes in neuroinflammation and neurodegeneration.Brain Res.2023182114858910.1016/j.brainres.2023.14858937734576
    [Google Scholar]
  90. ZhouZ. ZhongS. LiangY. ZhangX. ZhangR. KangK. QuH. XuY. ZhaoC. ZhaoM. Serum uric acid and the risk of dementia: A systematic review and meta-analysis.Front. Aging Neurosci.20211362569010.3389/fnagi.2021.62569033716713
    [Google Scholar]
  91. GengR. ZhangY. LiuM. DengS. DingJ. ZhongH. TuQ. Elevated serum uric acid is associated with cognitive improvement in older American adults: A large, population-based-analysis of the NHANES database.Front. Aging Neurosci.202214102441510.3389/fnagi.2022.102441536570535
    [Google Scholar]
  92. CrambK.M.L. Beccano-KellyD. CraggS.J. Wade-MartinsR. Impaired dopamine release in Parkinson’s disease.Brain202314683117313210.1093/brain/awad06436864664
    [Google Scholar]
  93. ZhangH. LiuX. LiuY. LiuJ. GongX. LiG. TangM. Crosstalk between regulatory non-coding RNAs and oxidative stress in Parkinson’s disease.Front. Aging Neurosci.20221497524810.3389/fnagi.2022.97524836016854
    [Google Scholar]
  94. SunC.C. LuoF.F. WeiL. LeiM. LiG.F. LiuZ.L. LeW.D. XuP.Y. Association of serum uric acid levels with the progression of Parkinson’s disease in Chinese patients.Chin. Med. J. (Engl.)2012125458358722490478
    [Google Scholar]
  95. ChangB. NiC. MeiJ. XiongC. ChenP. JiangM. NiuC. Relationship between serum uric acid levels and the outcome of STN-DBS in Parkinson’s disease.Neurol. Sci.202344113913391710.1007/s10072‑023‑06911‑937340228
    [Google Scholar]
  96. GongL. ZhangQ.L. ZhangN. HuaW.Y. HuangY.X. DiP.W. HuangT. XuX.S. LiuC.F. HuL.F. LuoW.F. Neuroprotection by urate on 6-OHDA-lesioned rat model of Parkinson’s disease: Linking to Akt/GSK3β signaling pathway.J. Neurochem.2012123587688510.1111/jnc.1203823094836
    [Google Scholar]
  97. FeldmanE.L. GoutmanS.A. PetriS. MazziniL. SavelieffM.G. ShawP.J. SobueG. Amyotrophic lateral sclerosis.Lancet2022400103601363138010.1016/S0140‑6736(22)01272‑736116464
    [Google Scholar]
  98. ŞanlıB.A. WhittakerK.J. MotsiG.K. ShenE. JulianT.H. Cooper-KnockJ. Unbiased metabolome screen links serum urate to risk of Alzheimer’s disease.Neurobiol. Aging202212016717610.1016/j.neurobiolaging.2022.09.00436206691
    [Google Scholar]
  99. HajiS. SakoW. MurakamiN. OsakiY. FurukawaT. IzumiY. KajiR. The value of serum uric acid as a prognostic biomarker in amyotrophic lateral sclerosis: Evidence from a meta-analysis.Clin. Neurol. Neurosurg.202120310656610.1016/j.clineuro.2021.10656633706058
    [Google Scholar]
  100. BakshiR. XuY. MuellerK.A. ChenX. GranucciE. PaganoniS. Sadri-VakiliG. SchwarzschildM.A. Urate mitigates oxidative stress and motor neuron toxicity of astrocytes derived from ALS-linked SOD1 mutant mice.Mol. Cell. Neurosci.201892121610.1016/j.mcn.2018.06.00229928993
    [Google Scholar]
  101. BartoliF. TrottaG. CrocamoC. MalerbaM.R. ClericiM. CarràG. Antioxidant uric acid in treated and untreated subjects with major depressive disorder: A meta-analysis and meta-regression.Eur. Arch. Psychiatry Clin. Neurosci.2018268211912710.1007/s00406‑017‑0817‑728620773
    [Google Scholar]
  102. BalabandianM. SalahiS. MahmoudvandB. EsmaeilzadehM. HashemiS.M. NabizadehF. Serum uric acid and Parkinson’s disease: A systematic review and meta-analysis.Neurol. Clin. Neurosci.202311629930910.1111/ncn3.12761
    [Google Scholar]
  103. LevchukL.A. BokhanN.A. IvanovaS.A. Neurospecific proteins as transdiagnostic markers of affective disorders.Neurochem. J.2023171252910.1134/S1819712423010117
    [Google Scholar]
  104. PintoJ.V. PassosI.C. Librenza-GarciaD. MarconG. SchneiderM.A. ConteJ.H. da SilvaJ.P.A. LimaL.P. Quincozes-SantosA. Kauer-Sant`AnnaM. KapczinskiF. Neuron-glia interaction as a possible pathophysiological mechanism of bipolar disorder.Curr. Neuropharmacol.201816551953210.2174/1570159X1566617082817092128847296
    [Google Scholar]
  105. DunnA.J. SwiergielA.H. BeaurepaireR. Cytokines as mediators of depression: What can we learn from animal studies?Neurosci. Biobehav. Rev.2005294-589190910.1016/j.neubiorev.2005.03.02315885777
    [Google Scholar]
  106. WrightC.E. StrikeP.C. BrydonL. SteptoeA. Acute inflammation and negative mood: Mediation by cytokine activation.Brain Behav. Immun.200519434535010.1016/j.bbi.2004.10.00315944074
    [Google Scholar]
  107. GrigoleitJ.S. KullmannJ.S. WolfO.T. HammesF. WegnerA. JablonowskiS. EnglerH. GizewskiE. OberbeckR. SchedlowskiM. Dose-dependent effects of endotoxin on neurobehavioral functions in humans.PLoS One2011612e2833010.1371/journal.pone.002833022164271
    [Google Scholar]
  108. ZhangJ. YaoW. DongC. YangC. RenQ. MaM. HashimotoK. Blockade of interleukin-6 receptor in the periphery promotes rapid and sustained antidepressant actions: A possible role of gut–microbiota–brain axis.Transl. Psychiatry201775e113810.1038/tp.2017.11228556833
    [Google Scholar]
  109. Alcocer-GómezE. Casas-BarqueroN. WilliamsM.R. Romero-GuillenaS.L. Cañadas-LozanoD. BullónP. Sánchez-AlcazarJ.A. Navarro-PandoJ.M. CorderoM.D. Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in major depressive disorder.Pharmacol. Res.201712111412110.1016/j.phrs.2017.04.02828465217
    [Google Scholar]
  110. ScainiG. BarichelloT. FriesG.R. KennonE.A. AndrewsT. NixB.R. Zunta-SoaresG. ValvassoriS.S. SoaresJ.C. QuevedoJ. TSPO upregulation in bipolar disorder and concomitant downregulation of mitophagic proteins and NLRP3 inflammasome activation.Neuropsychopharmacology20194471291129910.1038/s41386‑018‑0293‑430575805
    [Google Scholar]
  111. LiY. SongW. TongY. ZhangX. ZhaoJ. GaoX. YongJ. WangH. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis.J. Neuroinflammation2021181110.1186/s12974‑020‑02040‑8
    [Google Scholar]
  112. PandeyG.N. RizaviH.S. RenX. BhaumikR. DwivediY. Toll-like receptors in the depressed and suicide brain.J. Psychiatr. Res.201453626810.1016/j.jpsychires.2014.01.02124565447
    [Google Scholar]
  113. HungY.Y. HuangK.W. KangH.Y. HuangG.Y.L. HuangT.L. Antidepressants normalize elevated Toll-like receptor profile in major depressive disorder.Psychopharmacology (Berl.)201623391707171410.1007/s00213‑015‑4087‑726415953
    [Google Scholar]
  114. MomeniM. GhorbanK. DadmaneshM. KhodadadiH. BidakiR. Kazemi ArababadiM. KennedyD. ASC provides a potential link between depression and inflammatory disorders: A clinical study of depressed Iranian medical students.Nord. J. Psychiatry201670428028410.3109/08039488.2015.110032826750863
    [Google Scholar]
  115. ClayH.B. DawsS. KonradiC. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia.Int. J. Dev. Neurosci.201129331132410.1016/j.ijdevneu.2010.08.00720833242
    [Google Scholar]
  116. HalarisA. CantosA. JohnsonK. HakimiM. SinacoreJ. Modulation of the inflammatory response benefits treatment-resistant bipolar depression: A randomized clinical trial.J. Affect. Disord.202026114515210.1016/j.jad.2019.10.02131630035
    [Google Scholar]
  117. TangS.W. TangW.H. LeonardB.E. Treatment-induced mood switching in affective disorders.Acta Neuropsychiatr.2022342556810.1017/neu.2021.4734955101
    [Google Scholar]
  118. Serna-RodríguezM.F. Bernal-VegaS. de la BarqueraJ.A.O.S. Camacho-MoralesA. Pérez-MayaA.A. The role of damage associated molecular pattern molecules (DAMPs) and permeability of the blood-brain barrier in depression and neuroinflammation.J. Neuroimmunol.202237157795110.1016/j.jneuroim.2022.57795135994946
    [Google Scholar]
  119. Torres-PlatasS.G. CruceanuC. ChenG.G. TureckiG. MechawarN. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides.Brain Behav. Immun.201442505910.1016/j.bbi.2014.05.00724858659
    [Google Scholar]
  120. BurdaJ.E. SofroniewM.V. Reactive gliosis and the multicellular response to CNS damage and disease.Neuron201481222924810.1016/j.neuron.2013.12.03424462092
    [Google Scholar]
  121. SanacoraG. BanasrM. From pathophysiology to novel antidepressant drugs: Glial contributions to the pathology and treatment of mood disorders.Biol. Psychiatry201373121172117910.1016/j.biopsych.2013.03.03223726152
    [Google Scholar]
  122. ShaoX. LuW. GaoF. LiD. HuJ. LiY. ZuoZ. JieH. ZhaoY. CenX. Uric acid induces cognitive dysfunction through hippocampal inflammation in rodents and humans.J. Neurosci.20163643109901100510.1523/JNEUROSCI.1480‑16.201627798180
    [Google Scholar]
  123. ChenY. CaoP. XiaoZ. m(6)A methyltransferase METTL3 relieves cognitive impairment of hyperuricemia mice via inactivating MyD88/NF-Kappa B pathway mediated NLRP3-ASC-Caspase1 inflammasome.Int. Immunopharmacol.20222022113
    [Google Scholar]
  124. Torres-PlatasS.G. NagyC. WakidM. TureckiG. MechawarN. Glial fibrillary acidic protein is differentially expressed across cortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides.Mol. Psychiatry201621450951510.1038/mp.2015.6526033239
    [Google Scholar]
  125. BrischR. SteinerJ. MawrinC. KrzyżanowskaM. JankowskiZ. GosT. Microglia in the dorsal raphe nucleus plays a potential role in both suicide facilitation and prevention in affective disorders.Eur. Arch. Psychiatry Clin. Neurosci.2017267540341510.1007/s00406‑017‑0774‑128229240
    [Google Scholar]
  126. MaesM. MoraesJ.B. CongioA. BonifacioK.L. BarbosaD.S. VargasH.O. MichelinA.P. CarvalhoA.F. NunesS.O.V. Development of a novel staging model for affective disorders using partial least squares bootstrapping: Effects of lipid-associated antioxidant defenses and neuro-oxidative stress.Mol. Neurobiol.20195696626664410.1007/s12035‑019‑1552‑z30911933
    [Google Scholar]
  127. HagenJ.M. SutterlandA.L. da Fonseca Pereira de SousaP.A.L. SchirmbeckF. CohnD.M. LokA. TanH.L. ZwindermanA.H. de HaanL. Association between skin autofluorescence of advanced glycation end products and affective disorders in the lifelines cohort study.J. Affect. Disord.202027523023710.1016/j.jad.2020.06.04032734913
    [Google Scholar]
  128. WangQ. DwivediY. Transcriptional profiling of mitochondria associated genes in prefrontal cortex of subjects with major depressive disorder.World J. Biol. Psychiatry201718859260310.1080/15622975.2016.119742327269743
    [Google Scholar]
  129. ScolaG. KimH.K. YoungL.T. AndreazzaA.C. A fresh look at complex I in microarray data: Clues to understanding disease-specific mitochondrial alterations in bipolar disorder.Biol. Psychiatry2013732e4e510.1016/j.biopsych.2012.06.02822846438
    [Google Scholar]
  130. KotanV.O. SarandolE. KirhanE. OzkayaG. KirliS. Effects of long-term antidepressant treatment on oxidative status in major depressive disorder: A 24-week follow-up study.Prog. Neuropsychopharmacol. Biol. Psychiatry20113551284129010.1016/j.pnpbp.2011.03.02121515329
    [Google Scholar]
  131. RaffaM. BarhoumiS. AtigF. FendriC. KerkeniA. MechriA. Reduced antioxidant defense systems in schizophrenia and bipolar I disorder.Prog. Neuropsychopharmacol. Biol. Psychiatry201239237137510.1016/j.pnpbp.2012.07.01322841966
    [Google Scholar]
  132. LuccaG. ComimC.M. ValvassoriS.S. RéusG.Z. VuoloF. PetronilhoF. GavioliE.C. Dal-PizzolF. QuevedoJ. Increased oxidative stress in submitochondrial particles into the brain of rats submitted to the chronic mild stress paradigm.J. Psychiatr. Res.200943986486910.1016/j.jpsychires.2008.11.00219100996
    [Google Scholar]
  133. SalimS. Oxidative stress and the central nervous system.J. Pharmacol. Exp. Ther.2017360120120510.1124/jpet.116.23750327754930
    [Google Scholar]
  134. HulbertA.J. PamplonaR. BuffensteinR. ButtemerW.A. Life and death: metabolic rate, membrane composition, and life span of animals.Physiol. Rev.20078741175121310.1152/physrev.00047.200617928583
    [Google Scholar]
  135. MarkesberyW.R. LovellM.A. Damage to lipids, proteins, DNA, and RNA in mild cognitive impairment.Arch. Neurol.200764795495610.1001/archneur.64.7.95417620484
    [Google Scholar]
  136. GreenD.R. KroemerG. The pathophysiology of mitochondrial cell death.Science2004305568462662910.1126/science.109932015286356
    [Google Scholar]
  137. HalliwellB. Reactive oxygen species and the central nervous system.J. Neurochem.19925951609162310.1111/j.1471‑4159.1992.tb10990.x1402908
    [Google Scholar]
  138. López-ArmadaM.J. Riveiro-NaveiraR.R. Vaamonde-GarcíaC. Valcárcel-AresM.N. Mitochondrial dysfunction and the inflammatory response.Mitochondrion201313210611810.1016/j.mito.2013.01.00323333405
    [Google Scholar]
  139. NgF. BerkM. DeanO. BushA.I. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications.Int. J. Neuropsychopharmacol.200811685187610.1017/S146114570700840118205981
    [Google Scholar]
  140. ZafirA. AraA. BanuN. In vivo antioxidant status: A putative target of antidepressant action.Prog. Neuropsychopharmacol. Biol. Psychiatry200933222022810.1016/j.pnpbp.2008.11.01019059298
    [Google Scholar]
  141. FreyB.N. AndreazzaA.C. KunzM. GomesF.A. QuevedoJ. SalvadorM. GonçalvesC.A. KapczinskiF. Increased oxidative stress and DNA damage in bipolar disorder: A twin-case report.Prog. Neuropsychopharmacol. Biol. Psychiatry200731128328510.1016/j.pnpbp.2006.06.01116859818
    [Google Scholar]
  142. ZhangL. AnL.T. QiuY. ShanX.X. ZhaoW.L. ZhaoJ.P. LiL.H. LangB. WuR.R. Effects of aspirin in rats with ouabain intracerebral treatment-possible involvement of inflammatory modulation?Front. Psychiatry20191049710.3389/fpsyt.2019.0049731379619
    [Google Scholar]
  143. RheeS.J. LeeH. AhnY.M. Association between serum uric acid and depressive symptoms stratified by low-grade inflammation status.Sci. Rep.20211112040510.1038/s41598‑021‑99312‑x34650110
    [Google Scholar]
  144. WaringW.S. WebbD.J. MaxwellS.R.J. Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers.J. Cardiovasc. Pharmacol.200138336537110.1097/00005344‑200109000‑0000511486241
    [Google Scholar]
  145. GardnerA. BolesR.G. Beyond the serotonin hypothesis: Mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders.Prog. Neuropsychopharmacol. Biol. Psychiatry201135373074310.1016/j.pnpbp.2010.07.03020691744
    [Google Scholar]
  146. MoylanS. MaesM. WrayN.R. BerkM. The neuroprogressive nature of major depressive disorder: Pathways to disease evolution and resistance, and therapeutic implications.Mol. Psychiatry201318559560610.1038/mp.2012.3322525486
    [Google Scholar]
  147. Ali-SistoT. TolmunenT. ToffolE. ViinamäkiH. MäntyselkäP. Valkonen-KorhonenM. HonkalampiK. RuusunenA. VelagapudiV. LehtoS.M. Purine metabolism is dysregulated in patients with major depressive disorder.Psychoneuroendocrinology201670253210.1016/j.psyneuen.2016.04.01727153521
    [Google Scholar]
  148. MurphyM.P. Antioxidants as therapies: Can we improve on nature?Free Radic. Biol. Med.201466202310.1016/j.freeradbiomed.2013.04.01023603661
    [Google Scholar]
  149. XuY. YanJ. ZhouP. LiJ. GaoH. XiaY. WangQ. Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease.Prog. Neurobiol.201297111310.1016/j.pneurobio.2012.02.00222387368
    [Google Scholar]
  150. RebasE. RzajewJ. RadzikT. ZylinskaL. Neuroprotective polyphenols: A modulatory action on neurotransmitter pathways.Curr. Neuropharmacol.202018543144510.2174/1570159X1866620010615512731903883
    [Google Scholar]
  151. LeeH. NamJ. HwangJ.W. ParkJ.H. JeongY.J. JangJ.Y. KimS.J. JoA.R. HoeH.S. L-DOPA regulates neuroinflammation and Aβ pathology through NEP and ADAM17 in a mouse model of AD.Mol. Brain20241712110.1186/s13041‑024‑01092‑838685105
    [Google Scholar]
  152. MiskowiakK.W. ObelZ.K. GuglielmoR. BonninC.M. BowieC.R. Balanzá-MartínezV. BurdickK.E. CarvalhoA.F. DolsA. DouglasK. GallagherP. KessingL.V. LaferB. LewandowskiK.E. López-JaramilloC. Martinez-AranA. McIntyreR.S. PorterR.J. PurdonS.E. SchafferA. StokesP.R.A. SumiyoshiT. TorresI.J. Van RheenenT.E. YathamL.N. YoungA.H. VietaE. HaslerG. Efficacy and safety of established and off-label ADHD drug therapies for cognitive impairment or attention-deficit hyperactivity disorder symptoms in bipolar disorder: A systematic review by the ISBD Targeting Cognition Task Force.Bipolar Disord.202426321623910.1111/bdi.1341438433530
    [Google Scholar]
  153. NikolenkoV.N. BorminskayaI.D. NikitinaA.T. GolyshkinaM.S. RizaevaN.A. OganesyanM.V. Locus coeruleus-norepinephrine system: Spheres of influence and contribution to the development of neurodegenerative diseases.Front Biosci.-Landmark202429311810.31083/j.fbl290311838538284
    [Google Scholar]
  154. BekdashR.A. The Cholinergic system, the adrenergic system and the neuropathology of Alzheimer’s disease.Int. J. Mol. Sci.2021223127310.3390/ijms2203127333525357
    [Google Scholar]
  155. GuerreiroS. PonceauA. ToulorgeD. MartinE. Alvarez-FischerD. HirschE.C. MichelP.P. Protection of midbrain dopaminergic neurons by the end-product of purine metabolism uric acid: Potentiation by low-level depolarization.J. Neurochem.200910941118112810.1111/j.1471‑4159.2009.06040.x19302482
    [Google Scholar]
  156. ShinY.J. KimY.J. LeeJ.E. KimY.S. LeeJ.W. KimH. ShinJ.Y. LeeP.H. Uric acid regulates α-synuclein transmission in Parkinsonian models.Front. Aging Neurosci.202315111749110.3389/fnagi.2023.111749137711993
    [Google Scholar]
  157. YingX. ChenY. ZhengZ. DuanS. Gout in males: A possible role for COMT hypomethylation.Clin. Rheumatol.201938102865287110.1007/s10067‑019‑04607‑031165340
    [Google Scholar]
  158. TuH.P. KoA.M.S. WangS.J. LeeC.H. LeaR.A. ChiangS.L. ChiangH.C. WangT.N. HuangM.C. OuT.T. LinG.T. KoY.C. Monoamine oxidase A gene polymorphisms and enzyme activity associated with risk of gout in Taiwan aborigines.Hum. Genet.2010127222322910.1007/s00439‑009‑0765‑z19915868
    [Google Scholar]
  159. RehumanN.A. OhJ.M. NathL.R. KhamesA. AbdelgawadM.A. GambacortaN. NicolottiO. JatR.K. KimH. MathewB. Halogenated coumarin–chalcones as multifunctional monoamine oxidase-b and butyrylcholinesterase inhibitors.ACS Omega2021642281822819310.1021/acsomega.1c0425234723016
    [Google Scholar]
  160. de DonatoA. BuonincontriV. BorrielloG. MartinelliG. MoneP. The dopamine system: Insights between kidney and brain.Kidney Blood Press. Res.202247849350510.1159/00052213235378538
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128333916241003180018
Loading
/content/journals/cpd/10.2174/0113816128333916241003180018
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test