Skip to content
2000
Volume 31, Issue 8
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

For millennia, has served diverse roles, from medicinal applications to recreational use. Despite its extensive historical use, only a fraction of its components have been explored until recent times. The therapeutic potential of Cannabis and its constituents has garnered attention, with suggestions for treating various conditions such as Parkinson's disease, epilepsy, Alzheimer's disease, and other neurological disorders. Recent research, particularly on animal experimental models, has unveiled the neuroprotective properties of cannabis. This neuroprotective effect is orchestrated through numerous G protein-coupled receptors (GPCRs) and the two cannabinoid receptors, CB1 and CB2. While the capacity of cannabinoids to safeguard neurons is evident, a significant challenge lies in determining the optimal cannabinoid receptor agonist and its application in clinical trials. The intricate interplay of cannabinoids with the endocannabinoid system, involving CB1 and CB2 receptors, underscores the need for precise understanding and targeted approaches. Unravelling the molecular intricacies of this interaction is vital to harness the therapeutic potential of cannabinoids effectively. As the exploration of cannabis components accelerates, there is a growing awareness of the need for nuanced strategies in utilizing cannabinoid receptor agonists in clinical settings. The evolving landscape of cannabis research presents exciting possibilities for developing targeted interventions that capitalize on the neuroprotective benefits of cannabinoids while navigating the complexities of receptor specificity and clinical applicability.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128318194240918113954
2024-10-09
2025-03-07
Loading full text...

Full text loading...

References

  1. GrotenhermenF. Müller-VahlK. The therapeutic potential of cannabis and cannabinoids.Dtsch. Arztebl. Int.201210929-3049550110.3238/arztebl.2012.049523008748
    [Google Scholar]
  2. Fernández-RuizJ. Galve-RoperhI. SagredoO. GuzmánM. Possible therapeutic applications of cannabis in the neuropsychopharmacology field.Eur. Neuropsychopharmacol.20203621723410.1016/j.euroneuro.2020.01.01332057592
    [Google Scholar]
  3. ChayasirisobhonS. The role of cannabidiol in neurological disorders.Perm. J.2021252110.7812/TPP/20.15633970090
    [Google Scholar]
  4. ChyeY. ChristensenE. SolowijN. YücelM. The endocannabinoid system and cannabidiol’s promise for the treatment of substance use disorder.Front. Psychiatry2019106310.3389/fpsyt.2019.0006330837904
    [Google Scholar]
  5. FaragS. KayserO. The Cannabis Plant: Botanical Aspects. Handbook of Cannabis and Related Pathologies: Biology Pharmacology, Diagnosis, and Treatment.AmsterdamElsevier201731210.1016/B978‑0‑12‑800756‑3.00001‑6
    [Google Scholar]
  6. BorgesR. BatistaJ.Jr VianaR. Understanding the molecular aspects of tetrahydrocannabinol and cannabidiol as antioxidants.Molecules20131810126631267410.3390/molecules18101266324129275
    [Google Scholar]
  7. BowEW RimoldiJM The structure-function relationships of classical cannabinoids: CB1/CB2 modulation.Perspect Med. Chem.20168PMC.S32171.10.4137/PMC.S3217127398024
    [Google Scholar]
  8. LuH.C. MackieK. Review of the endocannabinoid system.Biol. Psychiatry Cogn. Neurosci. Neuroimaging20216660761510.1016/j.bpsc.2020.07.01632980261
    [Google Scholar]
  9. LuH.C. MackieK. An introduction to the endogenous cannabinoid system.Biol. Psychiatry201679751652510.1016/j.biopsych.2015.07.02826698193
    [Google Scholar]
  10. PaleseF. PontisS. RealiniN. PiomelliD. A protective role for N-acylphosphatidylethanolamine phospholipase D in 6-OHDA-induced neurodegeneration.Sci. Rep.2019911592710.1038/s41598‑019‑51799‑131685899
    [Google Scholar]
  11. CastilloP.E. YountsT.J. ChávezA.E. HashimotodaniY. Endocannabinoid signaling and synaptic function.Neuron2012761708110.1016/j.neuron.2012.09.02023040807
    [Google Scholar]
  12. SchermaM. MasiaP. SattaV. FrattaW. FaddaP. TandaG. Brain activity of anandamide: A rewarding bliss?Acta Pharmacol. Sin.201940330932310.1038/s41401‑018‑0075‑x30050084
    [Google Scholar]
  13. ThomasE.A. CravattB.F. DanielsonP.E. GilulaN.B. SutcliffeJ.G. Fatty acid amide hydrolase, the degradative enzyme for anandamide and oleamide, has selective distribution in neurons within the rat central nervous system.J. Neurosci. Res.19975061047105210.1002/(SICI)1097‑4547(19971215)50:6<1047:AID‑JNR16>3.0.CO;2‑19452020
    [Google Scholar]
  14. BasavarajappaB. Critical enzymes involved in endocannabinoid metabolism.Protein Pept. Lett.200714323724610.2174/09298660778009082917346227
    [Google Scholar]
  15. BieB. WuJ. FossJ.F. NaguibM. An overview of the cannabinoid type 2 receptor system and its therapeutic potential.Curr. Opin. Anaesthesiol.201831440741410.1097/ACO.000000000000061629794855
    [Google Scholar]
  16. BenitoC. TolónR.M. PazosM.R. NúñezE. CastilloA.I. RomeroJ. Cannabinoid CB2 receptors in human brain inflammation.Br. J. Pharmacol.2008153227728510.1038/sj.bjp.070750517934510
    [Google Scholar]
  17. DasramM.H. WalkerR.B. KhamangaS.M. Recent advances in endocannabinoid system targeting for improved specificity: Strategic approaches to targeted drug delivery.Int. J. Mol. Sci.202223211322310.3390/ijms23211322336362014
    [Google Scholar]
  18. MackieK. Distribution of cannabinoid receptors in the central and peripheral nervous system.Handb. Exp. Pharmacol.200516816829932510.1007/3‑540‑26573‑2_1016596779
    [Google Scholar]
  19. TurcotteC. BlanchetM.R. LavioletteM. FlamandN. The CB2 receptor and its role as a regulator of inflammation.Cell. Mol. Life Sci.201673234449447010.1007/s00018‑016‑2300‑427402121
    [Google Scholar]
  20. SantoroA. MeleE. MarinoM. ViggianoA. NoriS.L. MeccarielloR. The complex interplay between endocannabinoid system and the estrogen system in central nervous system and periphery.Int. J. Mol. Sci.202122297210.3390/ijms2202097233478092
    [Google Scholar]
  21. CareyM.R. MyogaM.H. McDanielsK.R. Presynaptic CB1 receptors regulate synaptic plasticity at cerebellar parallel fiber synapses.J. Neurophysiol.2011105295896310.1152/jn.00980.201021084685
    [Google Scholar]
  22. PertweeR.G. The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids.AAPS J.200573E625E65410.1208/aapsj07036416353941
    [Google Scholar]
  23. CassanoT. CalcagniniS. PaceL. De MarcoF. RomanoA. GaetaniS. Cannabinoid receptor 2 signaling in neurodegenerative disorders: from pathogenesis to a promising therapeutic target.Front. Neurosci.2017113010.3389/fnins.2017.0003028210207
    [Google Scholar]
  24. AhnK. JohnsonD.S. CravattB.F. Fatty acid amide hydrolase as a potential therapeutic target for the treatment of pain and CNS disorders.Expert Opin. Drug Discov.20094776378410.1517/1746044090301885720544003
    [Google Scholar]
  25. YararE. Role and function of endocannabinoid system in major depressive disease.Med. Cannabis Cannabinoids20204111210.1159/00051197934676346
    [Google Scholar]
  26. MurataevaN. StraikerA. MackieK. Parsing the players: 2-arachidonoylglycerol synthesis and degradation in the CNS.Br. J. Pharmacol.201417161379139110.1111/bph.1241124102242
    [Google Scholar]
  27. HossainM.Z. AndoH. UnnoS. KitagawaJ. Targeting peripherally restricted cannabinoid receptor 1, cannabinoid receptor 2, and endocannabinoid-degrading enzymes for the treatment of neuropathic pain including neuropathic orofacial pain.Int. J. Mol. Sci.2020214142310.3390/ijms2104142332093166
    [Google Scholar]
  28. StasiulewiczA. ZnajdekK. GrudzieńM. PawińskiT. SulkowskaJ.I. A guide to targeting the endocannabinoid system in drug design.Int. J. Mol. Sci.2020218277810.3390/ijms2108277832316328
    [Google Scholar]
  29. BedseG. BluettR.J. PatrickT.A. Therapeutic endocannabinoid augmentation for mood and anxiety disorders: Comparative profiling of FAAH, MAGL and dual inhibitors.Transl. Psychiatry2018819210.1038/s41398‑018‑0141‑729695817
    [Google Scholar]
  30. BasavarajappaB. NixonR. ArancioO. Endocannabinoid system: Emerging role from neurodevelopment to neurodegeneration.Mini Rev. Med. Chem.20099444846210.2174/13895570978784792119356123
    [Google Scholar]
  31. CoveyD.P. MateoY. SulzerD. CheerJ.F. LovingerD.M. Endocannabinoid modulation of dopamine neurotransmission.Neuropharmacology2017124526110.1016/j.neuropharm.2017.04.03328450060
    [Google Scholar]
  32. Haj-DahmaneS. ShenR.Y. Modulation of the serotonin system by endocannabinoid signaling.Neuropharmacology201161341442010.1016/j.neuropharm.2011.02.01621354188
    [Google Scholar]
  33. Rodríguez-MuñozM. Sánchez-BlázquezP. MerlosM. Garzón-NiñoJ. Endocannabinoid control of glutamate NMDA receptors: The therapeutic potential and consequences of dysfunction.Oncotarget2016734558405586210.18632/oncotarget.1009527323834
    [Google Scholar]
  34. De MarchiN. De PetrocellisL. OrlandoP. DanieleF. FezzaF. Di MarzoV. Endocannabinoid signalling in the blood of patients with schizophrenia.Lipids Health Dis.200321510.1186/1476‑511X‑2‑512969514
    [Google Scholar]
  35. D’SouzaD.C. PerryE. MacDougallL. The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: Implications for psychosis.Neuropsychopharmacology20042981558157210.1038/sj.npp.130049615173844
    [Google Scholar]
  36. Busquets-GarciaA. BainsJ. MarsicanoG. CB1 receptor signaling in the brain: Extracting specificity from ubiquity.Neuropsychopharmacology201843142010.1038/npp.2017.20628862250
    [Google Scholar]
  37. OddiS. FiorenzaM.T. MaccarroneM. Endocannabinoid signaling in adult hippocampal neurogenesis: A mechanistic and integrated perspective.Prog Lipid Res.20239110123910.1016/j.plipres.2023.10123937385352
    [Google Scholar]
  38. TadijanA. VlašićI. VlainićJ. ĐikićD. OršolićN. Jazvinšćak JembrekM. Intracellular molecular targets and signaling pathways involved in antioxidative and neuroprotective effects of cannabinoids in neurodegenerative conditions.Antioxidants20221110204910.3390/antiox1110204936290771
    [Google Scholar]
  39. BhuniaS. KolishettiN. AriasA.Y. VashistA. NairM. Cannabidiol for neurodegenerative disorders: A comprehensive review.Front. Pharmacol.20221398971710.3389/fphar.2022.98971736386183
    [Google Scholar]
  40. CabralG.A. Griffin-ThomasL. Emerging role of the cannabinoid receptor CB2 in immune regulation: Therapeutic prospects for neuroinflammation.Expert Rev. Mol. Med.200911e310.1017/S146239940900095719152719
    [Google Scholar]
  41. Komorowska-MüllerJ.A. SchmöleA-C. CB2 receptor in microglia: The guardian of self-control.Int. J. Mol. Sci.20202211910.3390/ijms22010019
    [Google Scholar]
  42. HashieshH.M. SharmaC. GoyalS.N. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid.Biomed. Pharmacother.202114011163910.1016/j.biopha.2021.11163934091179
    [Google Scholar]
  43. ZhouJ. NooriH. BurkovskiyI. LafreniereJ.D. KellyM.E.M. LehmannC. Modulation of the endocannabinoid system following central nervous system injury.Int. J. Mol. Sci.201920238810.3390/ijms2002038830658442
    [Google Scholar]
  44. SultanaS. BurkovskiyI. ZhouJ. KellyM.M. LehmannC. Effect of cannabinoid 2 receptor modulation on the peripheral immune response in central nervous system injury-induced immunodeficiency syndrome.Cannabis Cannabinoid Res.20216432733910.1089/can.2020.013033998888
    [Google Scholar]
  45. JîtcăG. ŐszB.E. VariC.E. RuszC.M. Tero-VescanA. PușcașA. Cannabidiol: Bridge between antioxidant effect, cellular protection, and cognitive and physical performance.Antioxidants202312248510.3390/antiox1202048536830042
    [Google Scholar]
  46. AtalayS. Jarocka-KarpowiczI. SkrzydlewskaE. Antioxidative and anti-inflammatory properties of cannabidiol.Antioxidants2019912110.3390/antiox901002131881765
    [Google Scholar]
  47. PandeyR. MousawyK. NagarkattiM. NagarkattiP. Endocannabinoids and immune regulation.Pharmacol. Res.2009602859210.1016/j.phrs.2009.03.01919428268
    [Google Scholar]
  48. PertweeR.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9‐tetrahydrocannabivarin.Br. J. Pharmacol.2008153219921510.1038/sj.bjp.070744217828291
    [Google Scholar]
  49. ChayasirisobhonS. Mechanisms of action and pharmacokinetics of cannabis.Perm. J.20212511310.7812/TPP/19.20033635755
    [Google Scholar]
  50. LaarisN. GoodC.H. LupicaC.R. Δ9-tetrahydrocannabinol is a full agonist at CB1 receptors on GABA neuron axon terminals in the hippocampus.Neuropharmacology2010591-212112710.1016/j.neuropharm.2010.04.01320417220
    [Google Scholar]
  51. DhopeshwarkarA. MackieK. CB2 cannabinoid receptors as a therapeutic target-what does the future hold?Mol. Pharmacol.201486443043710.1124/mol.114.09464925106425
    [Google Scholar]
  52. NavarroG. Reyes-ResinaI. Rivas-SantistebanR. Cannabidiol skews biased agonism at cannabinoid CB1 and CB2 receptors with smaller effect in CB1-CB2 heteroreceptor complexes.Biochem. Pharmacol.201815714815810.1016/j.bcp.2018.08.04630194918
    [Google Scholar]
  53. De GregorioD. McLaughlinR.J. PosaL. Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain.Pain2019160113615010.1097/j.pain.000000000000138630157131
    [Google Scholar]
  54. CalapaiF. CardiaL. EspositoE. Pharmacological aspects and biological effects of cannabigerol and its synthetic derivatives.Evid. Based Complement. Alternat. Med.2022202211410.1155/2022/333651636397993
    [Google Scholar]
  55. NachnaniR. Raup-KonsavageW.M. VranaK.E. The pharmacological case for cannabigerol 2021; The pharmacological case for cannabigerol.J. Pharmacol. Exp. Ther.2021376220421210.1124/jpet.120.000340
    [Google Scholar]
  56. EldeebK. Leone-KablerS. HowlettA.C. CB1 cannabinoid receptor-mediated increases in cyclic AMP accumulation are correlated with reduced Gi/o function.J. Basic Clin. Physiol. Pharmacol.201627331132210.1515/jbcpp‑2015‑009627089415
    [Google Scholar]
  57. KendallD.A. YudowskiG.A. Cannabinoid receptors in the central nervous system: Their signaling and roles in disease.Front. Cell. Neurosci.20171029410.3389/fncel.2016.0029428101004
    [Google Scholar]
  58. WalterL. StellaN. Cannabinoids and neuroinflammation.Br. J. Pharmacol.2004141577578510.1038/sj.bjp.070566714757702
    [Google Scholar]
  59. CásedasG. MolinerC. MaggiF. MazzaraE. LópezV. Evaluation of two different Cannabis sativa L. extracts as antioxidant and neuroprotective agents.Front. Pharmacol.202213100986810.3389/fphar.2022.100986836176449
    [Google Scholar]
  60. UmareM.D. WankhedeN.L. BajajK.K. Interweaving of reactive oxygen species and major neurological and psychiatric disorders.Ann. Pharm. Fr.202280440942510.1016/j.pharma.2021.11.00434896378
    [Google Scholar]
  61. ValeriA. MazzonE. Cannabinoids and neurogenesis: The promised solution for neurodegeneration?Molecules20212620631310.3390/molecules2620631334684894
    [Google Scholar]
  62. RiederS.A. ChauhanA. SinghU. NagarkattiM. NagarkattiP. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression.Immunobiology2010215859860510.1016/j.imbio.2009.04.00119457575
    [Google Scholar]
  63. FuZ. ZhaoP.Y. YangX.P. Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review.Front. Pharmacol.202314109402010.3389/fphar.2023.109402036755953
    [Google Scholar]
  64. BadoleS.P. WankhedeN.L. TiwariP.L. UmareM.D. TaksandeB.G. UpaganlawarA.B. The importance of mitochondrial function in neurons: Focus on therapeutic targets in neurodegeneration.Adv. Biores.20211223424410.15515/abr.0976‑4585.12.1.234244
    [Google Scholar]
  65. YousafM. ChangD. LiuY. LiuT. ZhouX. Neuroprotection of cannabidiol, its synthetic derivatives and combination preparations against microglia-mediated neuroinflammation in neurological disorders.Molecules20222715496110.3390/molecules2715496135956911
    [Google Scholar]
  66. MardeV.S. TiwariP.L. WankhedeN.L. Neurodegenerative disorders associated with genes of mitochondria.Future J. Pharm. Sci.2021716610.1186/s43094‑021‑00215‑5
    [Google Scholar]
  67. TiwariP. WankhedeN. BadoleS. UmareM. TaksandeB. UpaganlawarA. Mitochondrial dysfunction in ageing: Involvement of oxidative stress and role of melatonin.Bull Env Pharmacol Life Sci2021102156172
    [Google Scholar]
  68. GoldenbergM.M. Overview of drugs used for epilepsy and seizures: Etiology, diagnosis, and treatment.P&T201035739241520689626
    [Google Scholar]
  69. WankhedeN.L. KaleM.B. UpaganlawarA.B. Involvement of molecular chaperone in protein-misfolding brain diseases.Biomed. Pharmacother.202214711264710.1016/j.biopha.2022.11264735149361
    [Google Scholar]
  70. UpaganlawarA.B. WankhedeN.L. KaleM.B. Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach.Biomed. Pharmacother.202114311214610.1016/j.biopha.2021.11214634507113
    [Google Scholar]
  71. RosenbergE.C. TsienR.W. WhalleyB.J. DevinskyO. Cannabinoids and epilepsy.Neurotherapeutics201512474776810.1007/s13311‑015‑0375‑526282273
    [Google Scholar]
  72. KooC.M. KangH.C. Could cannabidiol be a treatment option for intractable childhood and adolescent epilepsy?J. Epilepsy Res.201771162010.14581/jer.1700328775950
    [Google Scholar]
  73. PandolfoP. SilveirinhaV. Santos-RodriguesA. Cannabinoids inhibit the synaptic uptake of adenosine and dopamine in the rat and mouse striatum.Eur. J. Pharmacol.20116551-3384510.1016/j.ejphar.2011.01.01321266173
    [Google Scholar]
  74. KleinB.D. JacobsonC.A. MetcalfC.S. Evaluation of cannabidiol in animal seizure models by the epilepsy therapy screening program (ETSP).Neurochem. Res.20174271939194810.1007/s11064‑017‑2287‑828478594
    [Google Scholar]
  75. FrancoV. PeruccaE. Pharmacological and therapeutic properties of cannabidiol for epilepsy.Drugs201979131435145410.1007/s40265‑019‑01171‑431372958
    [Google Scholar]
  76. MangrulkarS.V. WankhedeN.L. KaleM.B. Mitochondrial dysfunction as a signaling target for therapeutic intervention in major neurodegenerative disease.Neurotox. Res.202341670872910.1007/s12640‑023‑00647‑237162686
    [Google Scholar]
  77. PaganiL. EckertA. Amyloid-beta interaction with mitochondria.Int. J. Alzheimers Dis.20112011192505010.4061/2011/92505021461357
    [Google Scholar]
  78. ThenmozhiA.J. ManivasagamT. EssaM.M. Role of plant polyphenols in Alzheimer’s disease.Adv. Neurobiol.20161215317110.1007/978‑3‑319‑28383‑8_927651253
    [Google Scholar]
  79. OutenJ.D. BurhanullahM.H. VandreyR. Cannabinoids for agitation in Alzheimer’s disease.Am. J. Geriatr. Psychiatry202129121253126310.1016/j.jagp.2021.01.01533573996
    [Google Scholar]
  80. JohnO.O. AmarachiI.S. ChinazomA.P. Phytotherapy: A promising approach for the treatment of Alzheimer’s disease.Pharmacol. Res. Mod. Chin. Med.2022210003010.1016/j.prmcm.2021.100030
    [Google Scholar]
  81. Conti FilhoC.E. LossL.B. Marcolongo-PereiraC. Advances in Alzheimer’s diseases pharmacological treatment.Front. Pharmacol.202314110145210.3389/fphar.2023.110145236817126
    [Google Scholar]
  82. VosT. AbajobirA.A. AbateK.H. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016.Lancet2017390101001211125910.1016/S0140‑6736(17)32154‑228919117
    [Google Scholar]
  83. LinM.T. BealM.F. Alzheimer’s APP mangles mitochondria.Nat. Med.200612111241124310.1038/nm1106‑124117088888
    [Google Scholar]
  84. RamírezB.G. BlázquezC. del PulgarT.G. GuzmánM. de CeballosM.L. Prevention of Alzheimer’s disease pathology by cannabinoids: Neuroprotection mediated by blockade of microglial activation.J. Neurosci.20052581904191310.1523/JNEUROSCI.4540‑04.200515728830
    [Google Scholar]
  85. EspositoG. ScuderiC. ValenzaM. Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement.PLoS One2011612e28668e810.1371/journal.pone.002866822163051
    [Google Scholar]
  86. VolicerL. StellyM. MorrisJ. McLaughlinJ. VolicerB.J. Effects of Dronabinol on anorexia and disturbed behavior in patients with Alzheimer’s disease.Int. J. Geriatr. Psychiatry199712991391910.1002/(SICI)1099‑1166(199709)12:9<913::AID‑GPS663>3.0.CO;2‑D9309469
    [Google Scholar]
  87. PrendervilleJ.A. KellyÁ.M. DownerE.J. The role of cannabinoids in adult neurogenesis.Br. J. Pharmacol.2015172163950396310.1111/bph.1318625951750
    [Google Scholar]
  88. HiddingU. MainkaT. BuhmannC. Therapeutic use of medical Cannabis in neurological diseases: A clinical update.J. Neural Transm. (Vienna)2024131211712610.1007/s00702‑023‑02719‑138015317
    [Google Scholar]
  89. LaprairieR.B. BagherA.M. KellyM.E.M. Denovan-WrightE.M. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor.Br. J. Pharmacol.2015172204790480510.1111/bph.1325026218440
    [Google Scholar]
  90. NavarroG. VaraniK. Reyes-ResinaI. Cannabigerol action at cannabinoid CB1 and CB2 receptors and at CB1-CB2 heteroreceptor complexes.Front. Pharmacol.2018963210.3389/fphar.2018.0063229977202
    [Google Scholar]
  91. JennyM. SchröcksnadelS. ÜberallF. FuchsD. The potential role of cannabinoids in modulating serotonergic signaling by their influence on tryptophan metabolism.Pharmaceuticals (Basel)2010382647266010.3390/ph308264727713369
    [Google Scholar]
  92. SammetaS.S. BanaraseT.A. RahangdaleS.R. Molecular understanding of ER-MT communication dysfunction during neurodegeneration.Mitochondrion202372597110.1016/j.mito.2023.07.00537495165
    [Google Scholar]
  93. DeuelL.M. SeebergerL.C. Complementary therapies in Parkinson disease: A review of acupuncture, Tai Chi, Qi Gong, Yoga, and cannabis.Neurotherapeutics20201741434145510.1007/s13311‑020‑00900‑y32785848
    [Google Scholar]
  94. ZouS. KumarU. Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system.Int. J. Mol. Sci.201819383310.3390/ijms1903083329533978
    [Google Scholar]
  95. ChungW.S. AllenN.J. ErogluC. Astrocytes control synapse formation, function, and elimination.Cold Spring Harb. Perspect. Biol.201579a02037010.1101/cshperspect.a02037025663667
    [Google Scholar]
  96. Eraso-PichotA. PouvreauS. Olivera-PintoA. Gomez-SotresP. SkupioU. MarsicanoG. Endocannabinoid signaling in astrocytes.Glia2023711445910.1002/glia.2424635822691
    [Google Scholar]
  97. GlassC.K. SaijoK. WinnerB. MarchettoM.C. GageF.H. Mechanisms underlying inflammation in neurodegeneration.Cell2010140691893410.1016/j.cell.2010.02.01620303880
    [Google Scholar]
  98. AmorS. PuentesF. BakerD. Van Der ValkP. Inflammation in neurodegenerative diseases.Immunology2010129215416910.1111/j.1365‑2567.2009.03225.x20561356
    [Google Scholar]
  99. VecchioD. VarrasiC. VirgilioE. SpagarinoA. NaldiP. CantelloR. Cannabinoids in multiple sclerosis: A neurophysiological analysis.Acta Neurol. Scand.2020142433333810.1111/ane.1331332632918
    [Google Scholar]
  100. RudroffT. SosnoffJ. Cannabidiol to improve mobility in people with multiple sclerosis.Front. Neurol.2018918310.3389/fneur.2018.0018329623067
    [Google Scholar]
  101. ShollerD.J. SchoeneL. SpindleT.R. Therapeutic efficacy of cannabidiol (CBD): A review of the evidence from clinical trials and human laboratory studies.Curr. Addict. Rep.20207340541210.1007/s40429‑020‑00326‑833585159
    [Google Scholar]
  102. MechaM. Carrillo-SalinasF.J. FeliúA. MestreL. GuazaC. Perspectives on cannabis-based therapy of multiple sclerosis: A mini-review.Front. Cell. Neurosci.2020143410.3389/fncel.2020.0003432140100
    [Google Scholar]
  103. HowlettA. BlumeL. DaltonG. CB(1) cannabinoid receptors and their associated proteins.Curr. Med. Chem.201017141382139310.2174/09298671079098002320166926
    [Google Scholar]
  104. MyersM.N. ZachutM. TamJ. ContrerasG.A. A proposed modulatory role of the endocannabinoid system on adipose tissue metabolism and appetite in periparturient dairy cows.J. Anim. Sci. Biotechnol.20211212110.1186/s40104‑021‑00549‑333663611
    [Google Scholar]
  105. LubetzkiC. StankoffB. Demyelination in multiple sclerosis.Handb. Clin. Neurol.2014122899910.1016/B978‑0‑444‑52001‑2.00004‑224507514
    [Google Scholar]
  106. CentonzeD. BariM. RossiS. The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis.Brain2007130102543255310.1093/brain/awm16017626034
    [Google Scholar]
  107. Ortega-GutiérrezS. Molina-HolgadoE. Arévalo-MartínÁ. Activation of the endocannabinoid system as a therapeutic approach in a murine model of multiple sclerosis.FASEB J.200519101338134010.1096/fj.04‑2464fje15941768
    [Google Scholar]
  108. FeliúA. Bonilla del RíoI. Carrillo-SalinasF.J. 2-arachidonoylglycerol reduces proteoglycans and enhances remyelination in a progressive model of demyelination.J. Neurosci.201737358385839810.1523/JNEUROSCI.2900‑16.201728751457
    [Google Scholar]
  109. FrankS. Treatment of Huntington’s disease.Neurotherapeutics201411115316010.1007/s13311‑013‑0244‑z24366610
    [Google Scholar]
  110. KimM. LeeH-S. LaForetG. Mutant huntingtin expression in clonal striatal cells: Dissociation of inclusion formation and neuronal survival by caspase inhibition.J. Neurosci.199919396497310.1523/JNEUROSCI.19‑03‑00964.19999920660
    [Google Scholar]
  111. BrowneS.E. FerranteR.J. BealM.F. Oxidative stress in Huntington’s disease.Brain Pathol.19999114716310.1111/j.1750‑3639.1999.tb00216.x9989457
    [Google Scholar]
  112. SagredoO. Ruth PazosM. ValdeolivasS. Fernandez-RuizJ. Cannabinoids: Novel medicines for the treatment of huntingtons disease.Recent Patents CNS Drug Discov.2012714148
    [Google Scholar]
  113. HorneE.A. CoyJ. SwinneyK. Downregulation of cannabinoid receptor 1 from neuropeptide Y interneurons in the basal ganglia of patients with Huntington’s disease and mouse models.Eur. J. Neurosci.201337342944010.1111/ejn.1204523167744
    [Google Scholar]
  114. VuicB. MilosT. TudorL. Cannabinoid CB2 receptors in neurodegenerative proteinopathies: New insights and therapeutic potential.Biomedicines20221012300010.3390/biomedicines1012300036551756
    [Google Scholar]
  115. GlassM. DragunowM. FaullR.L.M. The pattern of neurodegeneration in Huntington’s disease: A comparative study of cannabinoid, dopamine, adenosine and GABAA receptor alterations in the human basal ganglia in Huntington’s disease.Neuroscience200097350551910.1016/S0306‑4522(00)00008‑710828533
    [Google Scholar]
  116. Lastres-BeckerI. MiguelR. Fernández-RuizJ. The endocannabinoid system and Huntington’s disease.Curr. Drug Targets CNS Neurol. Disord.20032533534710.2174/156800703348275114529364
    [Google Scholar]
  117. HillardC.J. MuthianS. KearnC.S. Effects of CB1 cannabinoid receptor activation on cerebellar granule cell nitric oxide synthase activity.FEBS Lett.1999459227728110.1016/S0014‑5793(99)01253‑310518035
    [Google Scholar]
  118. LeonardB.E. AriciogluF. Cannabinoids and neuroinflammation: Therapeutic implications.J. Affect. Disord. Rep.20231210046310.1016/j.jadr.2023.100463
    [Google Scholar]
  119. HampsonA.J. GrimaldiM. AxelrodJ. WinkD. Cannabidiol and (−)Δ9-tetrahydrocannabinol are neuroprotective antioxidants.Proc. Natl. Acad. Sci. USA199895148268827310.1073/pnas.95.14.82689653176
    [Google Scholar]
  120. AmeriA. The effects of cannabinoids on the brain.Prog. Neurobiol.199958431534810.1016/S0301‑0082(98)00087‑210368032
    [Google Scholar]
  121. NazarkoL. Dementia: Prevalence and pathophysiology.Br. J. Healthc. Assist.201913626627010.12968/bjha.2019.13.6.266
    [Google Scholar]
  122. InglisF. The tolerability and safety of cholinesterase inhibitors in the treatment of dementia.Int. J. Clin. Pract. Suppl.2002127456312139367
    [Google Scholar]
  123. WaltherS. MahlbergR. EichmannU. KunzD. Delta-9-tetrahydrocannabinol for nighttime agitation in severe dementia.Psychopharmacology (Berl.)2006185452452810.1007/s00213‑006‑0343‑116521031
    [Google Scholar]
  124. van den ElsenG.A.H. AhmedA.I.A. VerkesR.J. Tetrahydrocannabinol for neuropsychiatric symptoms in dementia.Neurology201584232338234610.1212/WNL.000000000000167525972490
    [Google Scholar]
  125. PeballM. KrismerF. KnausH.G. Non‐motor symptoms in Parkinson’s disease are reduced by nabilone.Ann. Neurol.202088471272210.1002/ana.2586432757413
    [Google Scholar]
  126. PassmoreM.J. The cannabinoid receptor agonist nabilone for the treatment of dementia‐related agitation.Int. J. Geriatr. Psychiatry200823111611710.1002/gps.182818081000
    [Google Scholar]
  127. DevinskyO. MarshE. FriedmanD. Cannabidiol in patients with treatment-resistant epilepsy: An open-label interventional trial.Lancet Neurol.201615327027810.1016/S1474‑4422(15)00379‑826724101
    [Google Scholar]
  128. DevinskyO. PatelA.D. CrossJ.H. Effect of cannabidiol on drop seizures in the lennox-gastaut syndrome.N. Engl. J. Med.2018378201888189710.1056/NEJMoa171463129768152
    [Google Scholar]
  129. O’BrienT.J. BerkovicS.F. FrenchJ.A. Adjunctive transdermal cannabidiol for adults with focal epilepsy.JAMA Netw. Open202257e222018910.1001/jamanetworkopen.2022.2018935802375
    [Google Scholar]
  130. van den ElsenG.A.H. TobbenL. AhmedA.I.A. Effects of tetrahydrocannabinol on balance and gait in patients with dementia: A randomised controlled crossover trial.J. Psychopharmacol.201731218419110.1177/026988111666535727624148
    [Google Scholar]
  131. DevinskyO. CrossJ.H. LauxL. Trial of cannabidiol for drug-resistant seizures in the dravet syndrome.N. Engl. J. Med.2017376212011202010.1056/NEJMoa161161828538134
    [Google Scholar]
  132. ThieleE.A. BebinE.M. BhathalH. Add-on cannabidiol treatment for drug-resistant seizures in tuberous sclerosis complex.JAMA Neurol.202178328529210.1001/jamaneurol.2020.460733346789
    [Google Scholar]
  133. ChagasM.H.N. ZuardiA.W. TumasV. Effects of cannabidiol in the treatment of patients with Parkinson’s disease: An exploratory double-blind trial.J. Psychopharmacol.201428111088109810.1177/026988111455035525237116
    [Google Scholar]
  134. de FariaS.M. de Morais FabrícioD. TumasV. Effects of acute cannabidiol administration on anxiety and tremors induced by a Simulated Public Speaking Test in patients with Parkinson’s disease.J. Psychopharmacol.202034218919610.1177/026988111989553631909680
    [Google Scholar]
  135. CarrollC.B. BainP.G. TeareL. Cannabis for dyskinesia in Parkinson disease.Neurology20046371245125010.1212/01.WNL.0000140288.48796.8E15477546
    [Google Scholar]
  136. López-Sendón MorenoJ.L. García CaldenteyJ. Trigo CubilloP. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease.J. Neurol.201626371390140010.1007/s00415‑016‑8145‑927159993
    [Google Scholar]
  137. ConsroeP. LagunaJ. AllenderJ. Controlled clinical trial of cannabidiol in Huntington’s disease.Pharmacol. Biochem. Behav.199140370170810.1016/0091‑3057(91)90386‑G1839644
    [Google Scholar]
  138. ZajicekJ. BallS. WrightD. Effect of dronabinol on progression in progressive multiple sclerosis (CUPID): A randomised, placebo-controlled trial.Lancet Neurol.201312985786510.1016/S1474‑4422(13)70159‑523856559
    [Google Scholar]
  139. BallS. VickeryJ. HobartJ. WrightD. GreenC. ShearerJ. The Cannabinoid Use in Progressive Inflammatory brain Disease (CUPID) trial: A randomised double-blind placebo-controlled parallel-group multicentre trial and economic evaluation of cannabinoids to slow progression in multiple sclerosis.Health Technol Assess (Winchester, England)20151912118810.3310/hta19120
    [Google Scholar]
  140. ZajicekJ.P. HobartJ.C. SladeA. BarnesD. MattisonP.G. Multiple sclerosis and extract of cannabis: Results of the MUSEC trial.J. Neurol. Neurosurg. Psychiatry201283111125113210.1136/jnnp‑2012‑30246822791906
    [Google Scholar]
  141. Abu-SawwaR. StehlingC. Epidiolex (Cannabidiol) primer: Frequently asked questions for patients and caregivers.J. Pediatr. Pharmacol. Ther.2020251757710.5863/1551‑6776‑25.1.7531897080
    [Google Scholar]
  142. de VriesM. van RijckevorselD.C.M. Wilder-SmithO.H.G. van GoorH. Dronabinol and chronic pain: Importance of mechanistic considerations.Expert Opin. Pharmacother.201415111525153410.1517/14656566.2014.91810224819592
    [Google Scholar]
  143. TodaroB. Cannabinoids in the treatment of chemotherapy-induced nausea and vomiting.J. Natl. Compr. Canc. Netw.201210448749210.6004/jnccn.2012.004822491047
    [Google Scholar]
  144. PaganoC. NavarraG. CoppolaL. AviliaG. BifulcoM. LaezzaC. Cannabinoids: Therapeutic use in clinical practice.Int. J. Mol. Sci.2022236334410.3390/ijms2306334435328765
    [Google Scholar]
  145. KeatingG.M. Delta-9-tetrahydrocannabinol/cannabidiol oromucosal spray (Sativex®): A review in multiple sclerosis-related spasticity.Drugs201777556357410.1007/s40265‑017‑0720‑628293911
    [Google Scholar]
  146. ChenP.X. RogersM.A. Opportunities and challenges in developing orally administered cannabis edibles.Curr. Opin. Food Sci.201928713
    [Google Scholar]
  147. MarcuJ. The legalization of cannabinoid products and standardizing cannabis-drug development in the United States: A brief report.Dialogues Clin. Neurosci.202022328929310.31887/DCNS.2020.22.3/jmarcu33162772
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128318194240918113954
Loading
/content/journals/cpd/10.2174/0113816128318194240918113954
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test