Skip to content
2000
image of Decoding the Therapeutic Potential of Cannabis and Cannabinoids in Neurological Disorders

Abstract

For millennia, has served diverse roles, from medicinal applications to recreational use. Despite its extensive historical use, only a fraction of its components have been explored until recent times. The therapeutic potential of Cannabis and its constituents has garnered attention, with suggestions for treating various conditions such as Parkinson's disease, epilepsy, Alzheimer's disease, and other Neurological disorders. Recent research, particularly on animal experimental models, has unveiled the neuroprotective properties of cannabis. This neuroprotective effect is orchestrated through numerous G protein-coupled receptors (GPCRs) and the two cannabinoid receptors, CB1 and CB2. While the capacity of cannabinoids to safeguard neurons is evident, a significant challenge lies in determining the optimal cannabinoid receptor agonist and its application in clinical trials. The intricate interplay of cannabinoids with the endocannabinoid system, involving CB1 and CB2 receptors, underscores the need for precise understanding and targeted approaches. Unravelling the molecular intricacies of this interaction is vital to harness the therapeutic potential of cannabinoids effectively. As the exploration of cannabis components accelerates, there is a growing awareness of the need for nuanced strategies in utilizing cannabinoid receptor agonists in clinical settings. The evolving landscape of cannabis research presents exciting possibilities for developing targeted interventions that capitalize on the neuroprotective benefits of cannabinoids while navigating the complexities of receptor specificity and clinical applicability.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128318194240918113954
2024-10-09
2024-11-21
Loading full text...

Full text loading...

References

  1. Grotenhermen F. Müller-Vahl K. The therapeutic potential of cannabis and cannabinoids. Dtsch. Arztebl. Int. 2012 109 29-30 495 501 10.3238/arztebl.2012.0495 23008748
    [Google Scholar]
  2. Fernández-Ruiz J. Galve-Roperh I. Sagredo O. Guzmán M. Possible therapeutic applications of cannabis in the neuropsychopharmacology field. Eur. Neuropsychopharmacol. 2020 36 217 234 10.1016/j.euroneuro.2020.01.013 32057592
    [Google Scholar]
  3. Chayasirisobhon S. The Role of Cannabidiol in Neurological Disorders. Perm. J. 2021 25 2 1 10.7812/TPP/20.156 33970090
    [Google Scholar]
  4. Chye Y. Christensen E. Solowij N. Yücel M. The Endocannabinoid System and Cannabidiol’s Promise for the Treatment of Substance Use Disorder. Front. Psychiatry 2019 10 63 10.3389/fpsyt.2019.00063 30837904
    [Google Scholar]
  5. Farag S. Kayser O. The Cannabis Plant: Botanical Aspects. Handbook of Cannabis and Related Pathologies: Biology.Pharmacology, Diagnosis, and Treatment Amsterdam Elsevier 2017 3 12 10.1016/B978‑0‑12‑800756‑3.00001‑6
    [Google Scholar]
  6. Borges R. Batista J. Jr Viana R. Baetas A. Orestes E. Andrade M. Honório K. Da Silva A. Understanding the molecular aspects of tetrahydrocannabinol and cannabidiol as antioxidants. Molecules 2013 18 10 12663 12674 10.3390/molecules181012663 24129275
    [Google Scholar]
  7. Bow E.W. Rimoldi J.M. The structure-function relationships of classical cannabinoids: CB1/CB2 modulation. Perspect. Medicin. Chem. 2016 8 PMC.S32171 10.4137/PMC.S32171 27398024
    [Google Scholar]
  8. Lu H.C. Mackie K. Review of the Endocannabinoid System. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021 6 6 607 615 10.1016/j.bpsc.2020.07.016 32980261
    [Google Scholar]
  9. Lu H.C. Mackie K. An introduction to the endogenous cannabinoid system. Biol. Psychiatry 2016 79 7 516 525 10.1016/j.biopsych.2015.07.028 26698193
    [Google Scholar]
  10. Palese F. Pontis S. Realini N. Piomelli D. A protective role for N-acylphosphatidylethanolamine phospholipase D in 6-OHDA-induced neurodegeneration. Sci. Rep. 2019 9 1 15927 10.1038/s41598‑019‑51799‑1 31685899
    [Google Scholar]
  11. Castillo P.E. Younts T.J. Chávez A.E. Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron 2012 76 1 70 81 10.1016/j.neuron.2012.09.020 23040807
    [Google Scholar]
  12. Scherma M. Masia P. Satta V. Fratta W. Fadda P. Tanda G. Brain activity of anandamide: A rewarding bliss? Acta Pharmacol. Sin. 2019 40 3 309 323 10.1038/s41401‑018‑0075‑x 30050084
    [Google Scholar]
  13. Thomas E.A. Cravatt B.F. Danielson P.E. Gilula N.B. Sutcliffe J.G. Fatty acid amide hydrolase, the degradative enzyme for anandamide and oleamide, has selective distribution in neurons within the rat central nervous system. J. Neurosci. Res. 1997 50 6 1047 1052 10.1002/(SICI)1097‑4547(19971215)50:6<1047::AID‑JNR16>3.0.CO;2‑1 9452020
    [Google Scholar]
  14. Basavarajappa B. Critical enzymes involved in endocannabinoid metabolism. Protein Pept. Lett. 2007 14 3 237 246 10.2174/092986607780090829 17346227
    [Google Scholar]
  15. Bie B. Wu J. Foss J.F. Naguib M. An overview of the cannabinoid type 2 receptor system and its therapeutic potential. Curr. Opin. Anaesthesiol. 2018 31 4 407 414 10.1097/ACO.0000000000000616 29794855
    [Google Scholar]
  16. Benito C. Tolón R.M. Pazos M.R. Núñez E. Castillo A.I. Romero J. Cannabinoid CB 2 receptors in human brain inflammation. Br. J. Pharmacol. 2008 153 2 277 285 10.1038/sj.bjp.0707505 17934510
    [Google Scholar]
  17. Dasram M.H. Walker R.B. Khamanga S.M. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int. J. Mol. Sci. 2022 23 21 13223 10.3390/ijms232113223 36362014
    [Google Scholar]
  18. Mackie K. Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb. Exp. Pharmacol. 2005 168 168 299 325 10.1007/3‑540‑26573‑2_10 16596779
    [Google Scholar]
  19. Turcotte C. Blanchet M.R. Laviolette M. Flamand N. The CB2 receptor and its role as a regulator of inflammation. Cell. Mol. Life Sci. 2016 73 23 4449 4470 10.1007/s00018‑016‑2300‑4 27402121
    [Google Scholar]
  20. Santoro A. Mele E. Marino M. Viggiano A. Nori S.L. Meccariello R. The complex interplay between endocannabinoid system and the estrogen system in central nervous system and periphery. Int. J. Mol. Sci. 2021 22 2 972 10.3390/ijms22020972 33478092
    [Google Scholar]
  21. Carey M.R. Myoga M.H. McDaniels K.R. Marsicano G. Lutz B. Mackie K. Regehr W.G. Presynaptic CB1 receptors regulate synaptic plasticity at cerebellar parallel fiber synapses. J. Neurophysiol. 2011 105 2 958 963 10.1152/jn.00980.2010 21084685
    [Google Scholar]
  22. Pertwee R.G. The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS J. 2005 7 3 E625 E654 10.1208/aapsj070364 16353941
    [Google Scholar]
  23. Cassano T. Calcagnini S. Pace L. De Marco F. Romano A. Gaetani S. Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target. Front. Neurosci. 2017 11 30 10.3389/fnins.2017.00030 28210207
    [Google Scholar]
  24. Ahn K. Johnson D.S. Cravatt B.F. Fatty acid amide hydrolase as a potential therapeutic target for the treatment of pain and CNS disorders. Expert Opin. Drug Discov. 2009 4 7 763 784 10.1517/17460440903018857 20544003
    [Google Scholar]
  25. Yarar E. Role and Function of Endocannabinoid System in Major Depressive Disease. Med. Cannabis Cannabinoids 2020 4 1 1 12 10.1159/000511979 34676346
    [Google Scholar]
  26. Murataeva N. Straiker A. Mackie K. Parsing the players: 2‐arachidonoylglycerol synthesis and degradation in the CNS. Br. J. Pharmacol. 2014 171 6 1379 1391 10.1111/bph.12411 24102242
    [Google Scholar]
  27. Hossain M.Z. Ando H. Unno S. Kitagawa J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int. J. Mol. Sci. 2020 21 4 1423 10.3390/ijms21041423 32093166
    [Google Scholar]
  28. Stasiulewicz A. Znajdek K. Grudzień M. Pawiński T. Sulkowska J.I. A Guide to Targeting the Endocannabinoid System in Drug Design. Int. J. Mol. Sci. 2020 21 8 2778 10.3390/ijms21082778 32316328
    [Google Scholar]
  29. Bedse G. Bluett R.J. Patrick T.A. Romness N.K. Gaulden A.D. Kingsley P.J. Plath N. Marnett L.J. Patel S. Therapeutic endocannabinoid augmentation for mood and anxiety disorders: Comparative profiling of FAAH, MAGL and dual inhibitors. Transl. Psychiatry 2018 8 1 92 10.1038/s41398‑018‑0141‑7 29695817
    [Google Scholar]
  30. Basavarajappa B. Nixon R. Arancio O. Endocannabinoid system: Emerging role from neurodevelopment to neurodegeneration. Mini Rev. Med. Chem. 2009 9 4 448 462 10.2174/138955709787847921 19356123
    [Google Scholar]
  31. Covey D.P. Mateo Y. Sulzer D. Cheer J.F. Lovinger D.M. Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology 2017 124 52 61 10.1016/j.neuropharm.2017.04.033 28450060
    [Google Scholar]
  32. Haj-Dahmane S. Shen R.Y. Modulation of the serotonin system by endocannabinoid signaling. Neuropharmacology 2011 61 3 414 420 10.1016/j.neuropharm.2011.02.016 21354188
    [Google Scholar]
  33. Rodríguez-Muñoz M. Sánchez-Blázquez P. Merlos M. Garzón-Niño J. Endocannabinoid control of glutamate NMDA receptors: The therapeutic potential and consequences of dysfunction. Oncotarget 2016 7 34 55840 55862 10.18632/oncotarget.10095 27323834
    [Google Scholar]
  34. De Marchi N. De Petrocellis L. Orlando P. Daniele F. Fezza F. Di Marzo V. Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids Health Dis. 2003 2 1 5 10.1186/1476‑511X‑2‑5 12969514
    [Google Scholar]
  35. D’Souza D.C. Perry E. MacDougall L. Ammerman Y. Cooper T. Wu Y. Braley G. Gueorguieva R. Krystal J.H. The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: Implications for psychosis. Neuropsychopharmacology 2004 29 8 1558 1572 10.1038/sj.npp.1300496 15173844
    [Google Scholar]
  36. Busquets-Garcia A. Bains J. Marsicano G. CB1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity. Neuropsychopharmacology 2018 43 1 4 20 10.1038/npp.2017.206 28862250
    [Google Scholar]
  37. Oddi S. Fiorenza M.T. Maccarrone M. Endocannabinoid signaling in adult hippocampal neurogenesis: A mechanistic and integrated perspective. Prog. Lipid Res. 2023 91 101239 https://doi.org/https://doi.org/10.1016/j.plipres.2023.101239 10.1016/j.plipres.2023.101239 37385352
    [Google Scholar]
  38. Tadijan A. Vlašić I. Vlainić J. Đikić D. Oršolić N. Jazvinšćak Jembrek M. Intracellular Molecular Targets and Signaling Pathways Involved in Antioxidative and Neuroprotective Effects of Cannabinoids in Neurodegenerative Conditions. Antioxidants 2022 11 10 2049 10.3390/antiox11102049 36290771
    [Google Scholar]
  39. Bhunia S. Kolishetti N. Arias A.Y. Vashist A. Nair M. Cannabidiol for neurodegenerative disorders: A comprehensive review. Front. Pharmacol. 2022 13 989717 10.3389/fphar.2022.989717 36386183
    [Google Scholar]
  40. Cabral G.A. Griffin-Thomas L. Emerging role of the cannabinoid receptor CB 2 in immune regulation: Therapeutic prospects for neuroinflammation. Expert Rev. Mol. Med. 2009 11 e3 10.1017/S1462399409000957 19152719
    [Google Scholar]
  41. Komorowska-Müller J.A. Schmöle A-C. CB2 Receptor in Microglia: The Guardian of Self-Control. Int J Mol Sci. 2020 22 1 19 10.3390/ijms22010019
    [Google Scholar]
  42. Hashiesh H.M. Sharma C. Goyal S.N. Sadek B. Jha N.K. Kaabi J.A. Ojha S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed. Pharmacother. 2021 140 111639 10.1016/j.biopha.2021.111639 34091179
    [Google Scholar]
  43. Zhou J. Noori H. Burkovskiy I. Lafreniere J.D. Kelly M.E.M. Lehmann C. Modulation of the Endocannabinoid System Following Central Nervous System Injury. Int. J. Mol. Sci. 2019 20 2 388 10.3390/ijms20020388 30658442
    [Google Scholar]
  44. Sultana S. Burkovskiy I. Zhou J. Kelly M.M. Lehmann C. Effect of Cannabinoid 2 Receptor Modulation on the Peripheral Immune Response in Central Nervous System Injury-Induced Immunodeficiency Syndrome. Cannabis Cannabinoid Res. 2021 6 4 327 339 10.1089/can.2020.0130 33998888
    [Google Scholar]
  45. Jîtcă G. Ősz B.E. Vari C.E. Rusz C.M. Tero-Vescan A. Pușcaș A. Cannabidiol: Bridge between Antioxidant Effect, Cellular Protection, and Cognitive and Physical Performance. Antioxidants 2023 12 2 485 10.3390/antiox12020485 36830042
    [Google Scholar]
  46. Atalay S. Jarocka-Karpowicz I. Skrzydlewska E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants 2019 9 1 21 10.3390/antiox9010021 31881765
    [Google Scholar]
  47. Pandey R. Mousawy K. Nagarkatti M. Nagarkatti P. Endocannabinoids and immune regulation. Pharmacol. Res. 2009 60 2 85 92 10.1016/j.phrs.2009.03.019 19428268
    [Google Scholar]
  48. Pertwee R.G. The diverse CB 1 and CB 2 receptor pharmacology of three plant cannabinoids: Δ 9 ‐tetrahydrocannabinol, cannabidiol and Δ 9 ‐tetrahydrocannabivarin. Br. J. Pharmacol. 2008 153 2 199 215 10.1038/sj.bjp.0707442 17828291
    [Google Scholar]
  49. Chayasirisobhon S. Mechanisms of Action and Pharmacokinetics of Cannabis. Perm. J. 2021 25 1 1 3 10.7812/TPP/19.200 33635755
    [Google Scholar]
  50. Laaris N. Good C.H. Lupica C.R. Δ9-tetrahydrocannabinol is a full agonist at CB1 receptors on GABA neuron axon terminals in the hippocampus. Neuropharmacology 2010 59 1-2 121 127 10.1016/j.neuropharm.2010.04.013 20417220
    [Google Scholar]
  51. Dhopeshwarkar A. Mackie K. CB2 Cannabinoid receptors as a therapeutic target-what does the future hold? Mol. Pharmacol. 2014 86 4 430 437 10.1124/mol.114.094649 25106425
    [Google Scholar]
  52. Navarro G. Reyes-Resina I. Rivas-Santisteban R. Sánchez de Medina V. Morales P. Casano S. Ferreiro-Vera C. Lillo A. Aguinaga D. Jagerovic N. Nadal X. Franco R. Cannabidiol skews biased agonism at cannabinoid CB1 and CB2 receptors with smaller effect in CB1-CB2 heteroreceptor complexes. Biochem. Pharmacol. 2018 157 148 158 10.1016/j.bcp.2018.08.046 30194918
    [Google Scholar]
  53. De Gregorio D. McLaughlin R.J. Posa L. Ochoa-Sanchez R. Enns J. Lopez-Canul M. Aboud M. Maione S. Comai S. Gobbi G. Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain. Pain 2019 160 1 136 150 10.1097/j.pain.0000000000001386 30157131
    [Google Scholar]
  54. Calapai F. Cardia L. Esposito E. Ammendolia I. Mondello C. Lo Giudice R. Gangemi S. Calapai G. Mannucci C. Pharmacological Aspects and Biological Effects of Cannabigerol and Its Synthetic Derivatives. Evid. Based Complement. Alternat. Med. 2022 2022 1 14 10.1155/2022/3336516 36397993
    [Google Scholar]
  55. Nachnani R Raup-Konsavage WM Vrana KE The Pharmacological Case for Cannabigerol. 2021 The Pharmacological Case for Cannabigerol. J Pharmacol Exp Ther. 2021 376 2 204 212 10.1124/jpet.120.000340
    [Google Scholar]
  56. Eldeeb K. Leone-Kabler S. Howlett A.C. CB 1 cannabinoid receptor-mediated increases in cyclic AMP accumulation are correlated with reduced Gi/o function. J. Basic Clin. Physiol. Pharmacol. 2016 27 3 311 322 10.1515/jbcpp‑2015‑0096 27089415
    [Google Scholar]
  57. Kendall D.A. Yudowski G.A. Cannabinoid Receptors in the Central Nervous System: Their Signaling and Roles in Disease. Front. Cell. Neurosci. 2017 10 294 10.3389/fncel.2016.00294 28101004
    [Google Scholar]
  58. Walter L. Stella N. Cannabinoids and neuroinflammation. Br. J. Pharmacol. 2004 141 5 775 785 10.1038/sj.bjp.0705667 14757702
    [Google Scholar]
  59. Cásedas G. Moliner C. Maggi F. Mazzara E. López V. Evaluation of two different Cannabis sativa L. extracts as antioxidant and neuroprotective agents. Front. Pharmacol. 2022 13 1009868 10.3389/fphar.2022.1009868 36176449
    [Google Scholar]
  60. Umare M.D. Wankhede N.L. Bajaj K.K. Trivedi R.V. Taksande B.G. Umekar M.J. Mahore J.G. Kale M.B. Interweaving of reactive oxygen species and major neurological and psychiatric disorders. Ann. Pharm. Fr. 2022 80 4 409 425 10.1016/j.pharma.2021.11.004 34896378
    [Google Scholar]
  61. Valeri A. Mazzon E. Cannabinoids and Neurogenesis: The Promised Solution for Neurodegeneration? Molecules 2021 26 20 6313 10.3390/molecules26206313 34684894
    [Google Scholar]
  62. Rieder S.A. Chauhan A. Singh U. Nagarkatti M. Nagarkatti P. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. Immunobiology 2010 215 8 598 605 10.1016/j.imbio.2009.04.001 19457575
    [Google Scholar]
  63. Fu Z. Zhao P.Y. Yang X.P. Li H. Hu S.D. Xu Y.X. Du X.H. Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review. Front. Pharmacol. 2023 14 1094020 10.3389/fphar.2023.1094020 36755953
    [Google Scholar]
  64. Badole S.P. Wankhede N.L. Tiwari P.L. Umare M.D. Taksande B.G. Upaganlawar A.B. The Importance of Mitochondrial Function in Neurons: Focus on Therapeutic Targets in Neurodegeneration. Adv. Biores. 2021 12 234 244 10.15515/abr.0976‑4585.12.1.234244
    [Google Scholar]
  65. Yousaf M. Chang D. Liu Y. Liu T. Zhou X. Neuroprotection of Cannabidiol, Its Synthetic Derivatives and Combination Preparations against Microglia-Mediated Neuroinflammation in Neurological Disorders. Molecules 2022 27 15 4961 10.3390/molecules27154961 35956911
    [Google Scholar]
  66. Marde V.S. Tiwari P.L. Wankhede N.L. Taksande B.G. Upaganlawar A.B. Umekar M.J. Kale M.B. Neurodegenerative disorders associated with genes of mitochondria. Future J. Pharm. Sci. 2021 7 1 66 10.1186/s43094‑021‑00215‑5
    [Google Scholar]
  67. Tiwari P Wankhede N Badole S Umare M Taksande B Upaganlawar A Mitochondrial Dysfunction in Ageing: Involvement of Oxidative Stress and Role of Melatonin. Bull. Env. Pharmacol. Life Sci. 2021 10 2 156 172
    [Google Scholar]
  68. Goldenberg M.M. Overview of drugs used for epilepsy and seizures: Etiology, diagnosis, and treatment. P&T 2010 35 7 392 415 20689626
    [Google Scholar]
  69. Wankhede N.L. Kale M.B. Upaganlawar A.B. Taksande B.G. Umekar M.J. Behl T. Abdellatif A.A.H. Bhaskaran P.M. Dachani S.R. Sehgal A. Singh S. Sharma N. Makeen H.A. Albratty M. Dailah H.G. Bhatia S. Al-Harrasi A. Bungau S. Involvement of molecular chaperone in protein-misfolding brain diseases. Biomed. Pharmacother. 2022 147 112647 10.1016/j.biopha.2022.112647 35149361
    [Google Scholar]
  70. Upaganlawar A.B. Wankhede N.L. Kale M.B. Umare M.D. Sehgal A. Singh S. Bhatia S. Al-Harrasi A. Najda A. Nurzyńska-Wierdak R. Bungau S. Behl T. Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach. Biomed. Pharmacother. 2021 143 112146 10.1016/j.biopha.2021.112146 34507113
    [Google Scholar]
  71. Rosenberg E.C. Tsien R.W. Whalley B.J. Devinsky O. Cannabinoids and Epilepsy. Neurotherapeutics 2015 12 4 747 768 10.1007/s13311‑015‑0375‑5 26282273
    [Google Scholar]
  72. Koo C.M. Kang H.C. Could Cannabidiol be a Treatment Option for Intractable Childhood and Adolescent Epilepsy? J. Epilepsy Res. 2017 7 1 16 20 10.14581/jer.17003 28775950
    [Google Scholar]
  73. Pandolfo P. Silveirinha V. Santos-Rodrigues A. Venance L. Ledent C. Takahashi R.N. Cunha R.A. Köfalvi A. Cannabinoids inhibit the synaptic uptake of adenosine and dopamine in the rat and mouse striatum. Eur. J. Pharmacol. 2011 655 1-3 38 45 10.1016/j.ejphar.2011.01.013 21266173
    [Google Scholar]
  74. Klein B.D. Jacobson C.A. Metcalf C.S. Smith M.D. Wilcox K.S. Hampson A.J. Kehne J.H. Evaluation of Cannabidiol in Animal Seizure Models by the Epilepsy Therapy Screening Program (ETSP). Neurochem. Res. 2017 42 7 1939 1948 10.1007/s11064‑017‑2287‑8 28478594
    [Google Scholar]
  75. Franco V. Perucca E. Pharmacological and Therapeutic Properties of Cannabidiol for Epilepsy. Drugs 2019 79 13 1435 1454 10.1007/s40265‑019‑01171‑4 31372958
    [Google Scholar]
  76. Mangrulkar S.V. Wankhede N.L. Kale M.B. Upaganlawar A.B. Taksande B.G. Umekar M.J. Anwer M.K. Dailah H.G. Mohan S. Behl T. Mitochondrial Dysfunction as a Signaling Target for Therapeutic Intervention in Major Neurodegenerative Disease. Neurotox. Res. 2023 41 6 708 729 10.1007/s12640‑023‑00647‑2 37162686
    [Google Scholar]
  77. Pagani L. Eckert A. Amyloid-Beta interaction with mitochondria. Int. J. Alzheimers Dis. 2011 2011 1 925050 10.4061/2011/925050 21461357
    [Google Scholar]
  78. Thenmozhi A.J. Manivasagam T. Essa M.M. Role of Plant Polyphenols in Alzheimer’s Disease. Adv. Neurobiol. 2016 12 153 171 10.1007/978‑3‑319‑28383‑8_9 27651253
    [Google Scholar]
  79. Outen J.D. Burhanullah M.H. Vandrey R. Amjad H. Harper D.G. Patrick R.E. May R.L. Agronin M.E. Forester B.P. Rosenberg P.B. Cannabinoids for Agitation in Alzheimer’s Disease. Am. J. Geriatr. Psychiatry 2021 29 12 1253 1263 10.1016/j.jagp.2021.01.015 33573996
    [Google Scholar]
  80. John O.O. Amarachi I.S. Chinazom A.P. Adaeze E. Kale M.B. Umare M.D. Upaganlawar A.B. Phytotherapy: A promising approach for the treatment of Alzheimer’s disease. Pharmacol. Res. Mod. Chin. Med. 2022 2 100030 10.1016/j.prmcm.2021.100030
    [Google Scholar]
  81. Conti Filho C.E. Loss L.B. Marcolongo-Pereira C. Rossoni Junior J.V. Barcelos R.M. Chiarelli-Neto O. Silva B.S. Passamani Ambrosio R. Castro F.C.A.Q. Teixeira S.F. Mezzomo N.J. Advances in Alzheimer’s disease’s pharmacological treatment. Front. Pharmacol. 2023 14 1101452 10.3389/fphar.2023.1101452 36817126
    [Google Scholar]
  82. Vos T. Abajobir A.A. Abate K.H. Abbafati C. Abbas K.M. Abd-Allah F. Abdulkader R.S. Abdulle A.M. Abebo T.A. Abera S.F. Aboyans V. Abu-Raddad L.J. Ackerman I.N. Adamu A.A. Adetokunboh O. Afarideh M. Afshin A. Agarwal S.K. Aggarwal R. Agrawal A. Agrawal S. Ahmadieh H. Ahmed M.B. Aichour M.T.E. Aichour A.N. Aichour I. Aiyar S. Akinyemi R.O. Akseer N. Al Lami F.H. Alahdab F. Al-Aly Z. Alam K. Alam N. Alam T. Alasfoor D. Alene K.A. Ali R. Alizadeh-Navaei R. Alkerwi A. Alla F. Allebeck P. Allen C. Al-Maskari F. Al-Raddadi R. Alsharif U. Alsowaidi S. Altirkawi K.A. Amare A.T. Amini E. Ammar W. Amoako Y.A. Andersen H.H. Antonio C.A.T. Anwari P. Ärnlöv J. Artaman A. Aryal K.K. Asayesh H. Asgedom S.W. Assadi R. Atey T.M. Atnafu N.T. Atre S.R. Avila-Burgos L. Avokphako E.F.G.A. Awasthi A. Bacha U. Badawi A. Balakrishnan K. Banerjee A. Bannick M.S. Barac A. Barber R.M. Barker-Collo S.L. Bärnighausen T. Barquera S. Barregard L. Barrero L.H. Basu S. Battista B. Battle K.E. Baune B.T. Bazargan-Hejazi S. Beardsley J. Bedi N. Beghi E. Béjot Y. Bekele B.B. Bell M.L. Bennett D.A. Bensenor I.M. Benson J. Berhane A. Berhe D.F. Bernabé E. Betsu B.D. Beuran M. Beyene A.S. Bhala N. Bhansali A. Bhatt S. Bhutta Z.A. Biadgilign S. Bicer B.K. Bienhoff K. Bikbov B. Birungi C. Biryukov S. Bisanzio D. Bizuayehu H.M. Boneya D.J. Boufous S. Bourne R.R.A. Brazinova A. Brugha T.S. Buchbinder R. Bulto L.N.B. Bumgarner B.R. Butt Z.A. Cahuana-Hurtado L. Cameron E. Car M. Carabin H. Carapetis J.R. Cárdenas R. Carpenter D.O. Carrero J.J. Carter A. Carvalho F. Casey D.C. Caso V. Castañeda-Orjuela C.A. Castle C.D. Catalá-López F. Chang H-Y. Chang J-C. Charlson F.J. Chen H. Chibalabala M. Chibueze C.E. Chisumpa V.H. Chitheer A.A. Christopher D.J. Ciobanu L.G. Cirillo M. Colombara D. Cooper C. Cortesi P.A. Criqui M.H. Crump J.A. Dadi A.F. Dalal K. Dandona L. Dandona R. das Neves J. Davitoiu D.V. de Courten B. De Leo D.D. Defo B.K. Degenhardt L. Deiparine S. Dellavalle R.P. Deribe K. Des Jarlais D.C. Dey S. Dharmaratne S.D. Dhillon P.K. Dicker D. Ding E.L. Djalalinia S. Do H.P. Dorsey E.R. dos Santos K.P.B. Douwes-Schultz D. Doyle K.E. Driscoll T.R. Dubey M. Duncan B.B. El-Khatib Z.Z. Ellerstrand J. Enayati A. Endries A.Y. Ermakov S.P. Erskine H.E. Eshrati B. Eskandarieh S. Esteghamati A. Estep K. Fanuel F.B.B. Farinha C.S.E.S. Faro A. Farzadfar F. Fazeli M.S. Feigin V.L. Fereshtehnejad S-M. Fernandes J.C. Ferrari A.J. Feyissa T.R. Filip I. Fischer F. Fitzmaurice C. Flaxman A.D. Flor L.S. Foigt N. Foreman K.J. Franklin R.C. Fullman N. Fürst T. Furtado J.M. Futran N.D. Gakidou E. Ganji M. Garcia-Basteiro A.L. Gebre T. Gebrehiwot T.T. Geleto A. Gemechu B.L. Gesesew H.A. Gething P.W. Ghajar A. Gibney K.B. Gill P.S. Gillum R.F. Ginawi I.A.M. Giref A.Z. Gishu M.D. Giussani G. Godwin W.W. Gold A.L. Goldberg E.M. Gona P.N. Goodridge A. Gopalani S.V. Goto A. Goulart A.C. Griswold M. Gugnani H.C. Gupta R. Gupta R. Gupta T. Gupta V. Hafezi-Nejad N. Hailu G.B. Hailu A.D. Hamadeh R.R. Hamidi S. Handal A.J. Hankey G.J. Hanson S.W. Hao Y. Harb H.L. Hareri H.A. Haro J.M. Harvey J. Hassanvand M.S. Havmoeller R. Hawley C. Hay S.I. Hay R.J. Henry N.J. Heredia-Pi I.B. Hernandez J.M. Heydarpour P. Hoek H.W. Hoffman H.J. Horita N. Hosgood H.D. Hostiuc S. Hotez P.J. Hoy D.G. Htet A.S. Hu G. Huang H. Huynh C. Iburg K.M. Igumbor E.U. Ikeda C. Irvine C.M.S. Jacobsen K.H. Jahanmehr N. Jakovljevic M.B. Jassal S.K. Javanbakht M. Jayaraman S.P. Jeemon P. Jensen P.N. Jha V. Jiang G. John D. Johnson S.C. Johnson C.O. Jonas J.B. Jürisson M. Kabir Z. Kadel R. Kahsay A. Kamal R. Kan H. Karam N.E. Karch A. Karema C.K. Kasaeian A. Kassa G.M. Kassaw N.A. Kassebaum N.J. Kastor A. Katikireddi S.V. Kaul A. Kawakami N. Keiyoro P.N. Kengne A.P. Keren A. Khader Y.S. Khalil I.A. Khan E.A. Khang Y-H. Khosravi A. Khubchandani J. Kiadaliri A.A. Kieling C. Kim Y.J. Kim D. Kim P. Kimokoti R.W. Kinfu Y. Kisa A. Kissimova-Skarbek K.A. Kivimaki M. Knudsen A.K. Kokubo Y. Kolte D. Kopec J.A. Kosen S. Koul P.A. Koyanagi A. Kravchenko M. Krishnaswami S. Krohn K.J. Kumar G.A. Kumar P. Kumar S. Kyu H.H. Lal D.K. Lalloo R. Lambert N. Lan Q. Larsson A. Lavados P.M. Leasher J.L. Lee P.H. Lee J-T. Leigh J. Leshargie C.T. Leung J. Leung R. Levi M. Li Y. Li Y. Li Kappe D. Liang X. Liben M.L. Lim S.S. Linn S. Liu P.Y. Liu A. Liu S. Liu Y. Lodha R. Logroscino G. London S.J. Looker K.J. Lopez A.D. Lorkowski S. Lotufo P.A. Low N. Lozano R. Lucas T.C.D. Macarayan E.R.K. Magdy Abd El Razek H. Magdy Abd El Razek M. Mahdavi M. Majdan M. Majdzadeh R. Majeed A. Malekzadeh R. Malhotra R. Malta D.C. Mamun A.A. Manguerra H. Manhertz T. Mantilla A. Mantovani L.G. Mapoma C.C. Marczak L.B. Martinez-Raga J. Martins-Melo F.R. Martopullo I. März W. Mathur M.R. Mazidi M. McAlinden C. McGaughey M. McGrath J.J. McKee M. McNellan C. Mehata S. Mehndiratta M.M. Mekonnen T.C. Memiah P. Memish Z.A. Mendoza W. Mengistie M.A. Mengistu D.T. Mensah G.A. Meretoja T.J. Meretoja A. Mezgebe H.B. Micha R. Millear A. Miller T.R. Mills E.J. Mirarefin M. Mirrakhimov E.M. Misganaw A. Mishra S.R. Mitchell P.B. Mohammad K.A. Mohammadi A. Mohammed K.E. Mohammed S. Mohanty S.K. Mokdad A.H. Mollenkopf S.K. Monasta L. Montico M. Moradi-Lakeh M. Moraga P. Mori R. Morozoff C. Morrison S.D. Moses M. Mountjoy-Venning C. Mruts K.B. Mueller U.O. Muller K. Murdoch M.E. Murthy G.V.S. Musa K.I. Nachega J.B. Nagel G. Naghavi M. Naheed A. Naidoo K.S. Naldi L. Nangia V. Natarajan G. Negasa D.E. Negoi R.I. Negoi I. Newton C.R. Ngunjiri J.W. Nguyen T.H. Nguyen Q.L. Nguyen C.T. Nguyen G. Nguyen M. Nichols E. Ningrum D.N.A. Nolte S. Nong V.M. Norrving B. Noubiap J.J.N. O’Donnell M.J. Ogbo F.A. Oh I-H. Okoro A. Oladimeji O. Olagunju T.O. Olagunju A.T. Olsen H.E. Olusanya B.O. Olusanya J.O. Ong K. Opio J.N. Oren E. Ortiz A. Osgood-Zimmerman A. Osman M. Owolabi M.O. Pa M. Pacella R.E. Pana A. Panda B.K. Papachristou C. Park E-K. Parry C.D. Parsaeian M. Patten S.B. Patton G.C. Paulson K. Pearce N. Pereira D.M. Perico N. Pesudovs K. Peterson C.B. Petzold M. Phillips M.R. Pigott D.M. Pillay J.D. Pinho C. Plass D. Pletcher M.A. Popova S. Poulton R.G. Pourmalek F. Prabhakaran D. Prasad N.M. Prasad N. Purcell C. Qorbani M. Quansah R. Quintanilla B.P.A. Rabiee R.H.S. Radfar A. Rafay A. Rahimi K. Rahimi-Movaghar A. Rahimi-Movaghar V. Rahman M.H.U. Rahman M. Rai R.K. Rajsic S. Ram U. Ranabhat C.L. Rankin Z. Rao P.C. Rao P.V. Rawaf S. Ray S.E. Reiner R.C. Reinig N. Reitsma M.B. Remuzzi G. Renzaho A.M.N. Resnikoff S. Rezaei S. Ribeiro A.L. Ronfani L. Roshandel G. Roth G.A. Roy A. Rubagotti E. Ruhago G.M. Saadat S. Sadat N. Safdarian M. Safi S. Safiri S. Sagar R. Sahathevan R. Salama J. Saleem H.O.B. Salomon J.A. Salvi S.S. Samy A.M. Sanabria J.R. Santomauro D. Santos I.S. Santos J.V. Santric Milicevic M.M. Sartorius B. Satpathy M. Sawhney M. Saxena S. Schmidt M.I. Schneider I.J.C. Schöttker B. Schwebel D.C. Schwendicke F. Seedat S. Sepanlou S.G. Servan-Mori E.E. Setegn T. Shackelford K.A. Shaheen A. Shaikh M.A. Shamsipour M. Shariful Islam S.M. Sharma J. Sharma R. She J. Shi P. Shields C. Shifa G.T. Shigematsu M. Shinohara Y. Shiri R. Shirkoohi R. Shirude S. Shishani K. Shrime M.G. Sibai A.M. Sigfusdottir I.D. Silva D.A.S. Silva J.P. Silveira D.G.A. Singh J.A. Singh N.P. Sinha D.N. Skiadaresi E. Skirbekk V. Slepak E.L. Sligar A. Smith D.L. Smith M. Sobaih B.H.A. Sobngwi E. Sorensen R.J.D. Sousa T.C.M. Sposato L.A. Sreeramareddy C.T. Srinivasan V. Stanaway J.D. Stathopoulou V. Steel N. Stein M.B. Stein D.J. Steiner T.J. Steiner C. Steinke S. Stokes M.A. Stovner L.J. Strub B. Subart M. Sufiyan M.B. Sunguya B.F. Sur P.J. Swaminathan S. Sykes B.L. Sylte D.O. Tabarés-Seisdedos R. Taffere G.R. Takala J.S. Tandon N. Tavakkoli M. Taveira N. Taylor H.R. Tehrani-Banihashemi A. Tekelab T. Terkawi A.S. Tesfaye D.J. Tesssema B. Thamsuwan O. Thomas K.E. Thrift A.G. Tiruye T.Y. Tobe-Gai R. Tollanes M.C. Tonelli M. Topor-Madry R. Tortajada M. Touvier M. Tran B.X. Tripathi S. Troeger C. Truelsen T. Tsoi D. Tuem K.B. Tuzcu E.M. Tyrovolas S. Ukwaja K.N. Undurraga E.A. Uneke C.J. Updike R. Uthman O.A. Uzochukwu B.S.C. van Boven J.F.M. Varughese S. Vasankari T. Venkatesh S. Venketasubramanian N. Vidavalur R. Violante F.S. Vladimirov S.K. Vlassov V.V. Vollset S.E. Wadilo F. Wakayo T. Wang Y-P. Weaver M. Weichenthal S. Weiderpass E. Weintraub R.G. Werdecker A. Westerman R. Whiteford H.A. Wijeratne T. Wiysonge C.S. Wolfe C.D.A. Woodbrook R. Woolf A.D. Workicho A. Xavier D. Xu G. Yadgir S. Yaghoubi M. Yakob B. Yan L.L. Yano Y. Ye P. Yimam H.H. Yip P. Yonemoto N. Yoon S-J. Yotebieng M. Younis M.Z. Zaidi Z. Zaki M.E.S. Zegeye E.A. Zenebe Z.M. Zhang X. Zhou M. Zipkin B. Zodpey S. Zuhlke L.J. Murray C.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017 390 10100 1211 1259 10.1016/S0140‑6736(17)32154‑2 28919117
    [Google Scholar]
  83. Lin M.T. Beal M.F. Alzheimer’s APP mangles mitochondria. Nat. Med. 2006 12 11 1241 1243 10.1038/nm1106‑1241 17088888
    [Google Scholar]
  84. Ramírez B.G. Blázquez C. del Pulgar T.G. Guzmán M. de Ceballos M.L. Prevention of Alzheimer’s disease pathology by cannabinoids: Neuroprotection mediated by blockade of microglial activation. J. Neurosci. 2005 25 8 1904 1913 10.1523/JNEUROSCI.4540‑04.2005 15728830
    [Google Scholar]
  85. Esposito G. Scuderi C. Valenza M. Togna G.I. Latina V. De Filippis D. Cipriano M. Carratù M.R. Iuvone T. Steardo L. Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement. PLoS One 2011 6 12 e28668 e28668 10.1371/journal.pone.0028668 22163051
    [Google Scholar]
  86. Volicer L. Stelly M. Morris J. McLaughlin J. Volicer B.J. Effects of Dronabinol on anorexia and disturbed behavior in patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatry 1997 12 9 913 919 10.1002/(SICI)1099‑1166(199709)12:9<913::AID‑GPS663>3.0.CO;2‑D 9309469
    [Google Scholar]
  87. Prenderville J.A. Kelly Á.M. Downer E.J. The role of cannabinoids in adult neurogenesis. Br. J. Pharmacol. 2015 172 16 3950 3963 10.1111/bph.13186 25951750
    [Google Scholar]
  88. Hidding U. Mainka T. Buhmann C. Therapeutic use of medical Cannabis in neurological diseases: A clinical update. J. Neural Transm. (Vienna) 2023 ••• 10.1007/s00702‑023‑02719‑1 38015317
    [Google Scholar]
  89. Laprairie R.B. Bagher A.M. Kelly M.E.M. Denovan-Wright E.M. Cannabidiol is a negative allosteric modulator of the cannabinoid CB 1 receptor. Br. J. Pharmacol. 2015 172 20 4790 4805 10.1111/bph.13250 26218440
    [Google Scholar]
  90. Navarro G. Varani K. Reyes-Resina I. Sánchez de Medina V. Rivas-Santisteban R. Sánchez-Carnerero Callado C. Vincenzi F. Casano S. Ferreiro-Vera C. Canela E.I. Borea P.A. Nadal X. Franco R. Cannabigerol Action at Cannabinoid CB1 and CB2 Receptors and at CB1–CB2 Heteroreceptor Complexes. Front. Pharmacol. 2018 9 632 10.3389/fphar.2018.00632 29977202
    [Google Scholar]
  91. Jenny M. Schröcksnadel S. Überall F. Fuchs D. The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism. Pharmaceuticals (Basel) 2010 3 8 2647 2660 10.3390/ph3082647 27713369
    [Google Scholar]
  92. Sammeta S.S. Banarase T.A. Rahangdale S.R. Wankhede N.L. Aglawe M.M. Taksande B.G. Mangrulkar S.V. Upaganlawar A.B. Koppula S. Kopalli S.R. Umekar M.J. Kale M.B. Molecular understanding of ER-MT communication dysfunction during neurodegeneration. Mitochondrion 2023 72 59 71 10.1016/j.mito.2023.07.005 37495165
    [Google Scholar]
  93. Deuel L.M. Seeberger L.C. Complementary Therapies in Parkinson Disease: A Review of Acupuncture, Tai Chi, Qi Gong, Yoga, and Cannabis. Neurotherapeutics 2020 17 4 1434 1455 10.1007/s13311‑020‑00900‑y 32785848
    [Google Scholar]
  94. Zou S. Kumar U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci. 2018 19 3 833 10.3390/ijms19030833 29533978
    [Google Scholar]
  95. Chung W.S. Allen N.J. Eroglu C. Astrocytes Control Synapse Formation, Function, and Elimination. Cold Spring Harb. Perspect. Biol. 2015 7 9 a020370 10.1101/cshperspect.a020370 25663667
    [Google Scholar]
  96. Eraso-Pichot A. Pouvreau S. Olivera-Pinto A. Gomez-Sotres P. Skupio U. Marsicano G. Endocannabinoid signaling in astrocytes. Glia 2023 71 1 44 59 10.1002/glia.24246 35822691
    [Google Scholar]
  97. Glass C.K. Saijo K. Winner B. Marchetto M.C. Gage F.H. Mechanisms underlying inflammation in neurodegeneration. Cell 2010 140 6 918 934 10.1016/j.cell.2010.02.016 20303880
    [Google Scholar]
  98. Amor S. Puentes F. Baker D. Van Der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010 129 2 154 169 10.1111/j.1365‑2567.2009.03225.x 20561356
    [Google Scholar]
  99. Vecchio D. Varrasi C. Virgilio E. Spagarino A. Naldi P. Cantello R. Cannabinoids in multiple sclerosis: A neurophysiological analysis. Acta Neurol. Scand. 2020 142 4 333 338 10.1111/ane.13313 32632918
    [Google Scholar]
  100. Rudroff T. Sosnoff J. Cannabidiol to Improve Mobility in People with Multiple Sclerosis. Front. Neurol. 2018 9 183 10.3389/fneur.2018.00183 29623067
    [Google Scholar]
  101. Sholler D.J. Schoene L. Spindle T.R. Therapeutic Efficacy of Cannabidiol (CBD): A Review of the Evidence From Clinical Trials and Human Laboratory Studies. Curr. Addict. Rep. 2020 7 3 405 412 10.1007/s40429‑020‑00326‑8 33585159
    [Google Scholar]
  102. Mecha M. Carrillo-Salinas F.J. Feliú A. Mestre L. Guaza C. Perspectives on Cannabis-Based Therapy of Multiple Sclerosis: A Mini-Review. Front. Cell. Neurosci. 2020 14 34 10.3389/fncel.2020.00034 32140100
    [Google Scholar]
  103. Howlett A. Blume L. Dalton G. CB(1) cannabinoid receptors and their associated proteins. Curr. Med. Chem. 2010 17 14 1382 1393 10.2174/092986710790980023 20166926
    [Google Scholar]
  104. Myers M.N. Zachut M. Tam J. Contreras G.A. A proposed modulatory role of the endocannabinoid system on adipose tissue metabolism and appetite in periparturient dairy cows. J. Anim. Sci. Biotechnol. 2021 12 1 21 10.1186/s40104‑021‑00549‑3 33663611
    [Google Scholar]
  105. Lubetzki C. Stankoff B. Demyelination in multiple sclerosis. Handb. Clin. Neurol. 2014 122 89 99 10.1016/B978‑0‑444‑52001‑2.00004‑2 24507514
    [Google Scholar]
  106. Centonze D. Bari M. Rossi S. Prosperetti C. Furlan R. Fezza F. De Chiara V. Battistini L. Bernardi G. Bernardini S. Martino G. Maccarrone M. The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain 2007 130 10 2543 2553 10.1093/brain/awm160 17626034
    [Google Scholar]
  107. Ortega-Gutiérrez S. Molina-Holgado E. Arévalo-Martín Á. Correa F. Viso A. López-Rodríguez M.L. Di Marzo V. Guaza C. Activation of the endocannabinoid system as a therapeutic approach in a murine model of multiple sclerosis. FASEB J. 2005 19 10 1338 1340 10.1096/fj.04‑2464fje 15941768
    [Google Scholar]
  108. Feliú A. Bonilla del Río I. Carrillo-Salinas F.J. Hernández-Torres G. Mestre L. Puente N. Ortega-Gutiérrez S. López-Rodríguez M.L. Grandes P. Mecha M. Guaza C. 2-Arachidonoylglycerol Reduces Proteoglycans and Enhances Remyelination in a Progressive Model of Demyelination. J. Neurosci. 2017 37 35 8385 8398 10.1523/JNEUROSCI.2900‑16.2017 28751457
    [Google Scholar]
  109. Frank S. Treatment of Huntington’s disease. Neurotherapeutics 2014 11 1 153 160 10.1007/s13311‑013‑0244‑z 24366610
    [Google Scholar]
  110. Kim M. Lee H-S. LaForet G. McIntyre C. Martin E.J. Chang P. Kim T.W. Williams M. Reddy P.H. Tagle D. Boyce F.M. Won L. Heller A. Aronin N. DiFiglia M. Mutant huntingtin expression in clonal striatal cells: Dissociation of inclusion formation and neuronal survival by caspase inhibition. J. Neurosci. 1999 19 3 964 973 10.1523/JNEUROSCI.19‑03‑00964.1999 9920660
    [Google Scholar]
  111. Browne S.E. Ferrante R.J. Beal M.F. Oxidative stress in Huntington’s disease. Brain Pathol. 1999 9 1 147 163 10.1111/j.1750‑3639.1999.tb00216.x 9989457
    [Google Scholar]
  112. Sagredo O. Ruth Pazos M. Valdeolivas S. Fernandez-Ruiz J. Cannabinoids: Novel Medicines for the Treatment of Huntingtons Disease. Recent Patents CNS Drug Disc. 2012 7 1 41 48
    [Google Scholar]
  113. Horne E.A. Coy J. Swinney K. Fung S. Cherry A.E.T. Marrs W.R. Naydenov A.V. Lin Y.H. Sun X. Dirk Keene C. Grouzmann E. Muchowski P. Bates G.P. Mackie K. Stella N. Downregulation of cannabinoid receptor 1 from neuropeptide Y interneurons in the basal ganglia of patients with Huntington’s disease and mouse models. Eur. J. Neurosci. 2013 37 3 429 440 10.1111/ejn.12045 23167744
    [Google Scholar]
  114. Vuic B. Milos T. Tudor L. Konjevod M. Nikolac Perkovic M. Jazvinscak Jembrek M. Nedic Erjavec G. Svob Strac D. Cannabinoid CB2 Receptors in Neurodegenerative Proteinopathies: New Insights and Therapeutic Potential. Biomedicines 2022 10 12 3000 10.3390/biomedicines10123000 36551756
    [Google Scholar]
  115. Glass M. Dragunow M. Faull R.L.M. The pattern of neurodegeneration in Huntington’s disease: A comparative study of cannabinoid, dopamine, adenosine and GABAA receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 2000 97 3 505 519 10.1016/S0306‑4522(00)00008‑7 10828533
    [Google Scholar]
  116. Lastres-Becker I. Miguel R. Fernández-Ruiz J. The endocannabinoid system and Huntington’s disease. Curr. Drug Targets CNS Neurol. Disord. 2003 2 5 335 347 10.2174/1568007033482751 14529364
    [Google Scholar]
  117. Hillard C.J. Muthian S. Kearn C.S. Effects of CB 1 cannabinoid receptor activation on cerebellar granule cell nitric oxide synthase activity. FEBS Lett. 1999 459 2 277 281 10.1016/S0014‑5793(99)01253‑3 10518035
    [Google Scholar]
  118. Leonard B.E. Aricioglu F. Cannabinoids and neuroinflammation: Therapeutic implications. J. Affect. Disord. Rep. 2023 12 100463 https://doi.org/https://doi.org/10.1016/j.jadr.2023.100463 10.1016/j.jadr.2023.100463
    [Google Scholar]
  119. Hampson A.J. Grimaldi M. Axelrod J. Wink D. Cannabidiol and (−)Δ 9 -tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl. Acad. Sci. USA 1998 95 14 8268 8273 10.1073/pnas.95.14.8268 9653176
    [Google Scholar]
  120. Ameri A. The effects of cannabinoids on the brain. Prog. Neurobiol. 1999 58 4 315 348 10.1016/S0301‑0082(98)00087‑2 10368032
    [Google Scholar]
  121. Nazarko L. Dementia: Prevalence and pathophysiology. Br. J. Healthc. Assist. 2019 13 6 266 270 10.12968/bjha.2019.13.6.266
    [Google Scholar]
  122. Inglis F. The tolerability and safety of cholinesterase inhibitors in the treatment of dementia. Int. J. Clin. Pract. Suppl. 2002 127 45 63 12139367
    [Google Scholar]
  123. Walther S. Mahlberg R. Eichmann U. Kunz D. Delta-9-tetrahydrocannabinol for nighttime agitation in severe dementia. Psychopharmacology (Berl.) 2006 185 4 524 528 10.1007/s00213‑006‑0343‑1 16521031
    [Google Scholar]
  124. van den Elsen G.A.H. Ahmed A.I.A. Verkes R.J. Kramers C. Feuth T. Rosenberg P.B. van der Marck M.A. Olde Rikkert M.G.M. Tetrahydrocannabinol for neuropsychiatric symptoms in dementia. Neurology 2015 84 23 2338 2346 10.1212/WNL.0000000000001675 25972490
    [Google Scholar]
  125. Peball M. Krismer F. Knaus H.G. Djamshidian A. Werkmann M. Carbone F. Ellmerer P. Heim B. Marini K. Valent D. Goebel G. Ulmer H. Stockner H. Wenning G.K. Stolz R. Krejcy K. Poewe W. Seppi K. Non‐Motor Symptoms in Parkinson’s Disease are Reduced by Nabilone. Ann. Neurol. 2020 88 4 712 722 10.1002/ana.25864 32757413
    [Google Scholar]
  126. Passmore M.J. The cannabinoid receptor agonist nabilone for the treatment of dementia‐related agitation. Int. J. Geriatr. Psychiatry 2008 23 1 116 117 10.1002/gps.1828 18081000
    [Google Scholar]
  127. Devinsky O. Marsh E. Friedman D. Thiele E. Laux L. Sullivan J. Miller I. Flamini R. Wilfong A. Filloux F. Wong M. Tilton N. Bruno P. Bluvstein J. Hedlund J. Kamens R. Maclean J. Nangia S. Singhal N.S. Wilson C.A. Patel A. Cilio M.R. Cannabidiol in patients with treatment-resistant epilepsy: An open-label interventional trial. Lancet Neurol. 2016 15 3 270 278 10.1016/S1474‑4422(15)00379‑8 26724101
    [Google Scholar]
  128. Devinsky O. Patel A.D. Cross J.H. Villanueva V. Wirrell E.C. Privitera M. Greenwood S.M. Roberts C. Checketts D. VanLandingham K.E. Zuberi S.M. Effect of Cannabidiol on Drop Seizures in the Lennox–Gastaut Syndrome. N. Engl. J. Med. 2018 378 20 1888 1897 10.1056/NEJMoa1714631 29768152
    [Google Scholar]
  129. O’Brien T.J. Berkovic S.F. French J.A. Messenheimer J.A. Sebree T.B. Bonn-Miller M.O. Gutterman D.L. Wijayath M. Patrikios P. Reutens D. Frasca J. Seneviratne U. D’Souza W. Bergin P. Anderson T. Rosemergy I. Nikpour A. Kwan P. Asztely F. Somerville E. Adjunctive Transdermal Cannabidiol for Adults With Focal Epilepsy. JAMA Netw. Open 2022 5 7 e2220189 10.1001/jamanetworkopen.2022.20189 35802375
    [Google Scholar]
  130. van den Elsen G.A.H. Tobben L. Ahmed A.I.A. Verkes R.J. Kramers C. Marijnissen R.M. Olde Rikkert M.G.M. van der Marck M.A. Effects of tetrahydrocannabinol on balance and gait in patients with dementia: A randomised controlled crossover trial. J. Psychopharmacol. 2017 31 2 184 191 10.1177/0269881116665357 27624148
    [Google Scholar]
  131. Devinsky O. Cross J.H. Laux L. Marsh E. Miller I. Nabbout R. Scheffer I.E. Thiele E.A. Wright S. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. N. Engl. J. Med. 2017 376 21 2011 2020 10.1056/NEJMoa1611618 28538134
    [Google Scholar]
  132. Thiele E.A. Bebin E.M. Bhathal H. Jansen F.E. Kotulska K. Lawson J.A. O’Callaghan F.J. Wong M. Sahebkar F. Checketts D. Knappertz V. Archer J. Arndt D.H. Barron T. Bebin E.M. Bhathal H. Cantarín-Extremera V. Sanchez-Carpintero R. Ciliberto M.A. Cock H. De Wit M-C.Y. Devinsky O. Falip M. Filloux F.M. Fountain N.B. Gawlowicz J. Greenwood R.S. Hamandi K. Jansen F.E. Joshi C. Józwiak S. Klein P. Kotulska K. Kwan P. Lawson J.A. Lisewski P. Miller I.O. Morse R.P. Mostajelean A.S. Nolan D.A. O’Brien T.J. O’Callaghan F.J. Paredes F. Perry M.S. Ramos F.J. Reutens D. Roberts C.M. Saneto R.P. Sharp G.B. Saxena A. Sparagana S.P. Tatachar P. Thiele E.A. Wheless J.W. Wirrell E.C. Wong M.H. Wong M. Wu J.Y. Zolnowska M. Add-on Cannabidiol Treatment for Drug-Resistant Seizures in Tuberous Sclerosis Complex. JAMA Neurol. 2021 78 3 285 292 10.1001/jamaneurol.2020.4607 33346789
    [Google Scholar]
  133. Chagas M.H.N. Zuardi A.W. Tumas V. Pena-Pereira M.A. Sobreira E.T. Bergamaschi M.M. dos Santos A.C. Teixeira A.L. Hallak J.E.C. Crippa J.A.S. Effects of cannabidiol in the treatment of patients with Parkinson’s disease: An exploratory double-blind trial. J. Psychopharmacol. 2014 28 11 1088 1098 10.1177/0269881114550355 25237116
    [Google Scholar]
  134. de Faria S.M. de Morais Fabrício D. Tumas V. Castro P.C. Ponti M.A. Hallak J.E.C. Zuardi A.W. Crippa J.A.S. Chagas M.H.N. Effects of acute cannabidiol administration on anxiety and tremors induced by a Simulated Public Speaking Test in patients with Parkinson’s disease. J. Psychopharmacol. 2020 34 2 189 196 10.1177/0269881119895536 31909680
    [Google Scholar]
  135. Carroll C.B. Bain P.G. Teare L. Liu X. Joint C. Wroath C. Parkin S.G. Fox P. Wright D. Hobart J. Zajicek J.P. Cannabis for dyskinesia in Parkinson disease. Neurology 2004 63 7 1245 1250 10.1212/01.WNL.0000140288.48796.8E 15477546
    [Google Scholar]
  136. López-Sendón Moreno J.L. García Caldentey J. Trigo Cubillo P. Ruiz Romero C. García Ribas G. Alonso Arias M.A.A. García de Yébenes M.J. Tolón R.M. Galve-Roperh I. Sagredo O. Valdeolivas S. Resel E. Ortega-Gutierrez S. García-Bermejo M.L. Fernández Ruiz J. Guzmán M. García de Yébenes Prous J. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease. J. Neurol. 2016 263 7 1390 1400 10.1007/s00415‑016‑8145‑9 27159993
    [Google Scholar]
  137. Consroe P. Laguna J. Allender J. Snider S. Stern L. Sandyk R. Kennedy K. Schram K. Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol. Biochem. Behav. 1991 40 3 701 708 10.1016/0091‑3057(91)90386‑G 1839644
    [Google Scholar]
  138. Zajicek J. Ball S. Wright D. Vickery J. Nunn A. Miller D. Cano M.G. McManus D. Mallik S. Hobart J. Effect of dronabinol on progression in progressive multiple sclerosis (CUPID): A randomised, placebo-controlled trial. Lancet Neurol. 2013 12 9 857 865 10.1016/S1474‑4422(13)70159‑5 23856559
    [Google Scholar]
  139. Ball S Vickery J Hobart J Wright D Green C Shearer J The Cannabinoid Use in Progressive Inflammatory brain Disease (CUPID) trial: A randomised double-blind placebo-controlled parallel-group multicentre trial and economic evaluation of cannabinoids to slow progression in multiple sclerosis. Health Technol. Assess. (Winchester, England) 2015 19 12 1 188 10.3310/hta19120
    [Google Scholar]
  140. Zajicek J.P. Hobart J.C. Slade A. Barnes D. Mattison P.G. Multiple sclerosis and extract of cannabis: Results of the MUSEC trial. J. Neurol. Neurosurg. Psychiatry 2012 83 11 1125 1132 10.1136/jnnp‑2012‑302468 22791906
    [Google Scholar]
  141. Abu-Sawwa R. Stehling C. Epidiolex (Cannabidiol) Primer: Frequently Asked Questions for Patients and Caregivers. J. Pediatr. Pharmacol. Ther. 2020 25 1 75 77 10.5863/1551‑6776‑25.1.75 31897080
    [Google Scholar]
  142. de Vries M. van Rijckevorsel D.C.M. Wilder-Smith O.H.G. van Goor H. Dronabinol and chronic pain: Importance of mechanistic considerations. Expert Opin. Pharmacother. 2014 15 11 1525 1534 10.1517/14656566.2014.918102 24819592
    [Google Scholar]
  143. Todaro B. Cannabinoids in the treatment of chemotherapy-induced nausea and vomiting. J. Natl. Compr. Canc. Netw. 2012 10 4 487 492 10.6004/jnccn.2012.0048 22491047
    [Google Scholar]
  144. Pagano C. Navarra G. Coppola L. Avilia G. Bifulco M. Laezza C. Cannabinoids: Therapeutic Use in Clinical Practice. Int. J. Mol. Sci. 2022 23 6 3344 10.3390/ijms23063344 35328765
    [Google Scholar]
  145. Keating G.M. Delta-9-Tetrahydrocannabinol/Cannabidiol Oromucosal Spray (Sativex®): A Review in Multiple Sclerosis-Related Spasticity. Drugs 2017 77 5 563 574 10.1007/s40265‑017‑0720‑6 28293911
    [Google Scholar]
  146. Chen P.X. Rogers M.A. Opportunities and challenges in developing orally administered cannabis edibles. Curr. Opin. Food Sci. 2019 28 7 13
    [Google Scholar]
  147. Marcu J. The legalization of cannabinoid products and standardizing cannabis-drug development in the United States: A brief report
. Dialogues Clin. Neurosci. 2020 22 3 289 293 10.31887/DCNS.2020.22.3/jmarcu 33162772
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128318194240918113954
Loading
/content/journals/cpd/10.2174/0113816128318194240918113954
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Alzheimer's disease ; multiple sclerosis ; Parkinson's disease ; Cannabis ; cannabinoids
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test