Skip to content
2000
Volume 31, Issue 8
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Diabetic nephropathy (DN) is increasing worldwide in parallel with type 2 diabetes mellitus. Identifying diagnostic biomarkers for DN at an early stage is crucial due to the considerable societal and economic burden associated with diabetes mellitus (DM) and its risk factors. In the past, early indicators of microvascular problems, such as microalbuminuria (MA), have been used to predict the possibility of developing advanced chronic kidney disease (CKD). However, because of the incapacity of MA to appropriately estimate DN, particularly, non-albuminuric DN, additional markers have been suggested for recognizing the early renal abnormalities and structural lesions, even before MA. This study aims to assess the existing and future biomarkers used to diagnose or predict early DN. This review provides comprehensive insight into diagnostic approaches for early detection of CKD, addressing the following areas: (i) markers of glomerular damage, (ii) markers of tubular damage, (iii) oxidative stress biomarkers, (iv) inflammatory biomarkers and (v) futuristic biomarkers such as micro-ribonucleic acids (miRNAs), proteomics, metabolomics and genomics and gut microbiota. Early detection of DN may lead to improvement in clinical management and quality of life, emphasizing the importance of identifying a specific and reliable predictive biomarker. Emerging serum and urinary biomarkers offer promise for early DN diagnosis, potentially reducing prevalence and preventing progression to end-stage renal disease (ESRD). Further advancements in miRNAs, proteomics, metabolomics genomics and gut microbiota offer prospects for even earlier and more precise DN diagnosis.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128333694240928161703
2025-10-16
2025-02-01
Loading full text...

Full text loading...

References

  1. NaamanS.C. BakrisG.L. Diabetic nephropathy: Update on pillars of therapy slowing progression.Diabetes Care20234691574158610.2337/dci23‑003037625003
    [Google Scholar]
  2. PleniceanuO. TwigG. TzurD. GruberN. Stern-ZimmerM. AfekA. ErlichT. Keinan-BokerL. SkoreckiK. Calderon-MargalitR. VivanteA. Kidney failure risk in type 1 vs. type 2 childhood-onset diabetes mellitus.Pediatr. Nephrol.202136233334010.1007/s00467‑020‑04631‑232761484
    [Google Scholar]
  3. SagmeisterM.S. HarperL. HardyR.S. Cortisol excess in chronic kidney disease – A review of changes and impact on mortality.Front. Endocrinol.202313107580910.3389/fendo.2022.107580936733794
    [Google Scholar]
  4. MottlA.K. AlicicR. ArgyropoulosC. BrosiusF.C. MauerM. MolitchM. NelsonR.G. PerreaultL. NicholasS.B. KDOQI US commentary on the KDIGO 2020 clinical practice guideline for diabetes management in CKD.Am. J. Kidney Dis.202279445747910.1053/j.ajkd.2021.09.01035144840
    [Google Scholar]
  5. KhanM.A.B. HashimM.J. KingJ.K. GovenderR.D. MustafaH. Al KaabiJ. Epidemiology of type 2 diabetes-global burden of disease and forecasted trends.J. Epidemiol. Glob. Health201910110711110.2991/jegh.k.191028.00132175717
    [Google Scholar]
  6. XueR. GuiD. ZhengL. ZhaiR. WangF. WangN. Mechanistic insight and management of diabetic nephropathy: Recent progress and future perspective.J. Diabetes Res.201720171710.1155/2017/183980928386567
    [Google Scholar]
  7. MatthewsJ. HeratL. SchlaichM.P. MatthewsV. The impact of SGLT2 inhibitors in the heart and kidneys regardless of diabetes status.Int. J. Mol. Sci.202324181424310.3390/ijms24181424337762542
    [Google Scholar]
  8. GheithO. FaroukN. NampooryN. HalimM.A. Al-OtaibiT. Diabetic kidney disease: World wide difference of prevalence and risk factors.J. Nephropharmacol.201551495628197499
    [Google Scholar]
  9. AritonD.M. Jiménez-BaladoJ. MaisterraO. PujadasF. SolerM.J. DelgadoP. Diabetes, albuminuria and the kidney-brain axis.J. Clin. Med.20211011236410.3390/jcm1011236434072230
    [Google Scholar]
  10. MallikR. ChowdhuryT.A. Pharmacotherapy to delay the progression of diabetic kidney disease in people with type 2 diabetes: Past, present and future.Ther. Adv. Endocrinol. Metab.2022132042018822108160110.1177/2042018822108160135281302
    [Google Scholar]
  11. KhanS.S. CoreshJ. PencinaM.J. NdumeleC.E. RangaswamiJ. ChowS.L. PalaniappanL.P. SperlingL.S. ViraniS.S. HoJ.E. NeelandI.J. TuttleK.R. Rajgopal SinghR. ElkindM.S.V. Lloyd-JonesD.M. Novel prediction equations for absolute risk assessment of total cardiovascular disease incorporating cardiovascular-kidney-metabolic health: A scientific statement from the American Heart Association.Circulation2023148241982200410.1161/CIR.000000000000119137947094
    [Google Scholar]
  12. BaxiH. DubeyK. HussainS. PDB70 prevalence of peripheral neuropathy and associated pain IN patients with diabetes mellitus.Value Health2019222S15210.1016/j.jval.2019.04.619
    [Google Scholar]
  13. MuskietM.H.A. WheelerD.C. HeerspinkH.J.L. New pharmacological strategies for protecting kidney function in type 2 diabetes.Lancet Diabetes Endocrinol.20197539741210.1016/S2213‑8587(18)30263‑830579729
    [Google Scholar]
  14. MirakhmedovaH.T. BotyrovaN.A. Actual problems of diabetic nephropathy, risk factors, stages, progression, mechanism, diagnosis and management.Int J Health System Med Sci2022112
    [Google Scholar]
  15. BabelR.A. DandekarM.P. A review on cellular and molecular mechanisms linked to the development of diabetes complications.Curr. Diabetes Rev.202117445747310.2174/18756417MTExbMTQy033143626
    [Google Scholar]
  16. Toth-ManikowskiS. AttaM.G. Diabetic kidney disease: Pathophysiology and therapeutic targets.J. Diabetes Res.2015201511610.1155/2015/69701026064987
    [Google Scholar]
  17. Rayego-MateosS. Morgado-PascualJ.L. Opazo-RíosL. Guerrero-HueM. García-CaballeroC. Vázquez-CarballoC. MasS. SanzA.B. HerenciaC. MezzanoS. Gómez-GuerreroC. MorenoJ.A. EgidoJ. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy.Int. J. Mol. Sci.20202111379810.3390/ijms2111379832471207
    [Google Scholar]
  18. MittalM. SiddiquiM.R. TranK. ReddyS.P. MalikA.B. Reactive oxygen species in inflammation and tissue injury.Antioxid. Redox Signal.20142071126116710.1089/ars.2012.514923991888
    [Google Scholar]
  19. HuZ.B. LuJ. ChenP.P. LuC.C. ZhangJ.X. LiX.Q. YuanB.Y. HuangS.J. RuanX.Z. LiuB.C. MaK.L. Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis.Theranostics20201062803281610.7150/thno.4057132194836
    [Google Scholar]
  20. HussainS. HabibA. HussainM.S. NajmiA.K. Potential biomarkers for early detection of diabetic kidney disease.Diabetes Res. Clin. Pract.202016110808210.1016/j.diabres.2020.10808232057966
    [Google Scholar]
  21. ConcepciónM. QuirozJ. SuarezJ. PazJ. RoseboomP. IldefonsoS. CribillerosD. ZavaletaF. CoronadoJ. ConcepciónL. Novel Biomarkers for the diagnosis of diabetic nephropathy.Caspian J. Intern. Med.202415338239110.22088/cjim.15.3.38239011442
    [Google Scholar]
  22. SatyanarayanaG. KeishamN. BatraH.S. vS.M. KhanM. GuptaS. MahindraV. Evaluation of serum ceruloplasmin levels as a biomarker for oxidative stress in patients with diabetic retinopathy.Cureus2021132e1307010.7759/cureus.1307033680612
    [Google Scholar]
  23. Cohen-BucayA. ViswanathanG. Urinary markers of glomerular injury in diabetic nephropathy.Int. J. Nephrol.2012201211110.1155/2012/14698722645683
    [Google Scholar]
  24. Papadopoulou-MarketouN. Kanaka-GantenbeinC. MarketosN. ChrousosG.P. PapassotiriouI. Biomarkers of diabetic nephropathy: A 2017 update.Crit. Rev. Clin. Lab. Sci.201754532634210.1080/10408363.2017.137768228956668
    [Google Scholar]
  25. GluhovschiC. GluhovschiG. PetricaL. TimarR. VelciovS. IonitaI. KaycsaA. TimarB. Urinary biomarkers in the assessment of early diabetic nephropathy.J. Diabetes Res.2016201611310.1155/2016/462612527413755
    [Google Scholar]
  26. FisehaT. Urinary biomarkers for early diabetic nephropathy in type 2 diabetic patients.Biomark. Res.2015311610.1186/s40364‑015‑0042‑326146561
    [Google Scholar]
  27. AhmedS.A. AzizW.M. ShakerS.E. FayedD.B. ShawkyH. Urinary transferrin and proinflammatory markers predict the earliest diabetic nephropathy onset.Biomarkers202227217818710.1080/1354750X.2021.202363934957874
    [Google Scholar]
  28. Al-RubeaanK. SiddiquiK. Al-GhonaimM.A. YoussefA.M. Al-SharqawiA.H. AlNaqebD. Assessment of the diagnostic value of different biomarkers in relation to various stages of diabetic nephropathy in type 2 diabetic patients.Sci. Rep.201771268410.1038/s41598‑017‑02421‑928577020
    [Google Scholar]
  29. LepeddaA.J. De MuroP. CapobiancoG. FormatoM. Significance of urinary glycosaminoglycans/proteoglycans in the evaluation of type 1 and type 2 diabetes complications.J. Diabetes Complications201731114915510.1016/j.jdiacomp.2016.10.01327842978
    [Google Scholar]
  30. AllenM. BansalV. SiddiquiF. HoppensteadtD. KrupaE. FareedJ. KantarciogluB. The relevance of thrombo-inflammatory biomarkers and their relationship with circulating glycosaminoglycans in end-stage renal disease patients.Clin. Appl. Thromb. Hemost.2023291076029623116951210.1177/1076029623116951237062946
    [Google Scholar]
  31. EsawyH. El-HagrasyH.A. HassanM.M. EsawyH.S. Plasma type IV collagen levels as a potential biomarker for early detection of nephropathy in diabetes mellitus patients.Egypt. J. Immunol.202431315016010.55133/eji.31031538996049
    [Google Scholar]
  32. MahfouzM. ShomanM. HassanM. Assessment of urinary type IV collagen, alpha-1 microglobulin, and transferrin in type 2 diabetes mellitus with nephropathy.J Med Sci Res20203118
    [Google Scholar]
  33. YuH. WangH. SuX. CaoA. YaoX. WangY. ZhuB. WangH. FangJ. Serum chromogranin A correlated with albuminuria in diabetic patients and is associated with early diabetic nephropathy.BMC Nephrol.20222314110.1186/s12882‑022‑02667‑035062888
    [Google Scholar]
  34. DablaP.K. Renal function in diabetic nephropathy.World J. Diabetes201012485610.4239/wjd.v1.i2.4821537427
    [Google Scholar]
  35. KostovskaI. TrajkovskaT. TopuzovskaS. CekovskaS. SpasovskiG. KostovskiO. LabudovicD. Urinary nephrin is earlier, more sensitive and specific marker of diabetic nephropathy than microalbuminuria.J. Med. Biochem.2020391839010.2478/jomb‑2019‑002632549781
    [Google Scholar]
  36. JimB. GhantaM. QipoA. FanY. ChuangP.Y. CohenH.W. AbadiM. ThomasD.B. HeJ.C. Dysregulated nephrin in diabetic nephropathy of type 2 diabetes: A cross sectional study.PLoS One201275e3604110.1371/journal.pone.003604122615747
    [Google Scholar]
  37. Naunova-TimovskaS. CekovskaS. SahpazovaE. TasićV. Neutrophil gelatinase-associated lipocalin as an early biomarker of acute kidney injury in newborns.Acta Clinica Croatica.2020591556110.20471/acc.2020.59.01.07
    [Google Scholar]
  38. VeigaG. AlvesB. PerezM. AlcantaraL.V. RaimundoJ. ZambranoL. EncinaJ. PereiraE.C. BacciM. MuradN. FonsecaF. NGAL and SMAD1 gene expression in the early detection of diabetic nephropathy by liquid biopsy.J. Clin. Pathol.2020731171372110.1136/jclinpath‑2020‑20649432184218
    [Google Scholar]
  39. HussainS. Chand JamaliM. HabibA. HussainM.S. AkhtarM. NajmiA.K. Diabetic kidney disease: An overview of prevalence, risk factors, and biomarkers.Clin. Epidemiol. Glob. Health202192610.1016/j.cegh.2020.05.016
    [Google Scholar]
  40. ChenG. ShanX. WangH. Significant association of urinary alpha-1-microglobulin compared to urinary neutrophil gelatinase-associated lipocalin with renal insufficiency in patients with type 2 diabetes.Nephrology (Carlton)202126540040710.1111/nep.1385133484208
    [Google Scholar]
  41. BonventreJ.V. Kidney injury molecule-1: A translational journey.Trans. Am. Clin. Climatol. Assoc.201412529329925125746
    [Google Scholar]
  42. BanoG. ImamM.T. BajpaiR. AlemG. KashyapV.K. HabibA. NajmiA.K. Expression of angiopoetin- like protein-4 and kidney injury molecule-1 as preliminary diagnostic markers for diabetes-related kidney disease: A single center-based cross-sectional study.J. Pers. Med.202313457710.3390/jpm1304057737108963
    [Google Scholar]
  43. KimS.R. LeeY. LeeS.G. KangE.S. ChaB.S. KimJ.H. LeeB.W. Urinary N-acetyl-β-D-glucosaminidase, an early marker of diabetic kidney disease, might reflect glucose excursion in patients with type 2 diabetes.Medicine (Baltimore)20169527e411410.1097/MD.000000000000411427399115
    [Google Scholar]
  44. TillmanL. TabishT.A. KamalyN. MossP. El-bririA. ThiemermannC. PranjolM.Z.I. YaqoobM.M. Advancements in nanomedicines for the detection and treatment of diabetic kidney disease.Biomat Biosyst2022610004710.1016/j.bbiosy.2022.10004736824160
    [Google Scholar]
  45. MurtyM.S.N. SharmaU.K. PandeyV.B. KankareS.B. Serum cystatin C as a marker of renal function in detection of early acute kidney injury.Indian J. Nephrol.201323318018310.4103/0971‑4065.11184023814415
    [Google Scholar]
  46. CampionC.G. Sanchez-FerrasO. BatchuS.N. Potential role of serum and urinary biomarkers in diagnosis and prognosis of diabetic nephropathy.Can. J. Kidney Health Dis.20174205435811770537110.1177/205435811770537128616250
    [Google Scholar]
  47. ThakralA.K. SinhaA. JainA. HabibA. AlamS. Study of inflammatory markers as prognostic indicator in acute pancreatitis.Eur. J. Cardiovasc. Med.2023132
    [Google Scholar]
  48. ChenY. QiaoY. XuY. LingW. PanY. HuangY. GengL. ZhaoH. ZhangX. Serum TNF-α concentrations in type 2 diabetes mellitus patients and diabetic nephropathy patients: A systematic review and meta-analysis.Immunol. Lett.2017186525810.1016/j.imlet.2017.04.00328414180
    [Google Scholar]
  49. Soltani-FardE. TaghvimiS. KarimiF. VahediF. KhatamiS.H. BehroojH. Deylami HayatiM. MovahedpourA. GhasemiH. Urinary biomarkers in diabetic nephropathy.Clin. Chim. Acta202456111976210.1016/j.cca.2024.11976238844018
    [Google Scholar]
  50. GohdaT. NiewczasM.A. FicocielloL.H. WalkerW.H. SkupienJ. RosettiF. CullereX. JohnsonA.C. CrabtreeG. SmilesA.M. MayadasT.N. WarramJ.H. KrolewskiA.S. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes.J. Am. Soc. Nephrol.201223351652410.1681/ASN.201106062822266664
    [Google Scholar]
  51. LousaI. ReisF. BeirãoI. AlvesR. BeloL. Santos-SilvaA. New potential biomarkers for chronic kidney disease management-A review of the literature.Int. J. Mol. Sci.20202214310.3390/ijms2201004333375198
    [Google Scholar]
  52. YoshimuraT. LiC. WangY. MatsukawaA. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis.Cell. Mol. Immunol.202320771473810.1038/s41423‑023‑01013‑037208442
    [Google Scholar]
  53. TyeS.C. DenigP. HeerspinkH.J.L. Precision medicine approaches for diabetic kidney disease: Opportunities and challenges.Nephrol. Dial. Transplant.202136Suppl. 2ii3ii910.1093/ndt/gfab04534153985
    [Google Scholar]
  54. SenT. KoshinoA. NealB. BijlsmaM.J. ArnottC. LiJ. HansenM.K. IxJ.H. HeerspinkH.J.L. Mechanisms of action of the sodium-glucose cotransporter-2 (SGLT2) inhibitor canagliflozin on tubular inflammation and damage: A post hoc mediation analysis of the CANVAS trial.Diabetes Obes. Metab.202224101950195610.1111/dom.1477935635326
    [Google Scholar]
  55. TamF.W.K. RiserB.L. MeeranK. RambowJ. PuseyC.D. FrankelA.H. Urinary monocyte chemoattractant protein-1 (MCP-1) and connective tissue growth factor (CCN2) as prognostic markers for progression of diabetic nephropathy.Cytokine2009471374210.1016/j.cyto.2009.04.00119409809
    [Google Scholar]
  56. HrpR.S. NstA.T. GanieR.A. Differences in interleukin 18 levels in diabetic nephropathy and non-diabetic nephropathy patients.Int J Res Sci Manage2020711727810.29121/ijrsm.v7.i11.2020.9
    [Google Scholar]
  57. DuffS. IrwinR. CoteJ.M. RedahanL. McMahonB.A. MarshB. NicholA. HoldenS. DoranP. MurrayP.T. Urinary biomarkers predict progression and adverse outcomes of acute kidney injury in critical illness.Nephrol. Dial. Transplant.20223791668167810.1093/ndt/gfab26334491355
    [Google Scholar]
  58. NakamuraA. ShikataK. HiramatsuM. NakatouT. KitamuraT. WadaJ. ItoshimaT. MakinoH. Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes.Diabetes Care200528122890289510.2337/diacare.28.12.289016306550
    [Google Scholar]
  59. HirookaY. NozakiY. Interleukin-18 in inflammatory kidney disease.Front. Med. (Lausanne)2021863910310.3389/fmed.2021.63910333732720
    [Google Scholar]
  60. Ali KhanR. KapurP. JainA. FarahF. BhandariU. Effect of orlistat on periostin, adiponectin, inflammatory markers and ultrasound grades of fatty liver in obese NAFLD patients.Ther. Clin. Risk Manag.20171313914910.2147/TCRM.S12462128260907
    [Google Scholar]
  61. HuangY. LuW. LuH. The clinical efficacy and safety of dapagliflozin in patients with diabetic nephropathy.Diabetol. Metab. Syndr.20221414710.1186/s13098‑022‑00815‑y35351189
    [Google Scholar]
  62. Sanchez-AlamoB. ShabakaA. CachofeiroV. Cases-CoronaC. Fernandez-JuarezG. PRONEDI study investigators Serum interleukin-6 levels predict kidney disease progression in diabetic nephropathy.Clin. Nephrol.20229711910.5414/CN11022334753557
    [Google Scholar]
  63. TrakarnvanichT. SatirapojB. SuraamornkulS. ChirananthavatT. SanpatchayapongA. ClaimonT. Effect of dipeptidyl peptidase-4 (DPP-4) inhibition on biomarkers of kidney injury and vascular calcification in diabetic kidney disease: A randomized controlled trial.J. Diabetes Res.20212021111110.1155/2021/738262034697593
    [Google Scholar]
  64. SenthilkumarG.P. AnithalekshmiM.S. YasirM. ParameswaranS. PackirisamyR. BobbyZ. Role of omentin 1 and IL-6 in type 2 diabetes mellitus patients with diabetic nephropathy.Diabetes Metab. Syndr.2018121232610.1016/j.dsx.2017.08.00528864059
    [Google Scholar]
  65. SenatorskiG. PaczekL. KropiewnickaE. BartłomiejczykI. Cytokines in noninvasive diagnostics of diabetic nephropathy progression.Pol. Merkuriusz Lek.2002131Suppl. 1283212621778
    [Google Scholar]
  66. MaedlerK. DharmadhikariG. SchumannD.M. StørlingJ. Interleukin-1 beta targeted therapy for type 2 diabetes.Expert Opin. Biol. Ther.2009991177118810.1517/1471259090313668819604125
    [Google Scholar]
  67. KanyS. VollrathJ.T. ReljaB. Cytokines in inflammatory disease.Int. J. Mol. Sci.20192023600810.3390/ijms2023600831795299
    [Google Scholar]
  68. SakaiN. WadaT. YokoyamaH. LippM. UehaS. MatsushimaK. KanekoS. Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis.Proc. Natl. Acad. Sci. USA200610338140981410310.1073/pnas.051120010316966615
    [Google Scholar]
  69. FengY. ZhongX. NiH.F. WangC. TangT.T. WangL.T. SongK.Y. TangR.N. LiuH. LiuB.C. LvL.L. Urinary small extracellular vesicles derived CCL21 mRNA as biomarker linked with pathogenesis for diabetic nephropathy.J. Transl. Med.202119135510.1186/s12967‑021‑03030‑x34404433
    [Google Scholar]
  70. TervaertT.W.C. MooyaartA.L. AmannK. CohenA.H. CookH.T. DrachenbergC.B. FerrarioF. FogoA.B. HaasM. de HeerE. JohK. NoëlL.H. RadhakrishnanJ. SeshanS.V. BajemaI.M. BruijnJ.A. Renal Pathology Society Pathologic classification of diabetic nephropathy.J. Am. Soc. Nephrol.201021455656310.1681/ASN.201001001020167701
    [Google Scholar]
  71. EvansM.D. OlinskiR. LoftS. CookeM.S. [European Standards Committee on Ur Toward consensus in the analysis of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine as a noninvasive biomarker of oxidative stress.FASEB J.20102441249126010.1096/fj.09‑14712419966135
    [Google Scholar]
  72. SinghA. KukretiR. SasoL. KukretiS. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes.Molecules202227395010.3390/molecules2703095035164215
    [Google Scholar]
  73. KernE.F.O. ErhardP. SunW. GenuthS. WeissM.F. Early urinary markers of diabetic kidney disease: A nested case-control study from the Diabetes Control and Complications Trial (DCCT).Am. J. Kidney Dis.201055582483410.1053/j.ajkd.2009.11.00920138413
    [Google Scholar]
  74. BăbţanA.M. IleaA. BoşcaB.A. CrişanM. PetrescuN.B. CollinoM. SainzR.M. GerlachJ.Q. CâmpianR.S. Advanced glycation end products as biomarkers in systemic diseases: Premises and perspectives of salivary advanced glycation end products.Biomarkers Med.201913647949510.2217/bmm‑2018‑044830968701
    [Google Scholar]
  75. XuX. LiC. ZhouP. JiangT. Uric acid transporters hiding in the intestine.Pharm. Biol.201654123151315510.1080/13880209.2016.119584727563755
    [Google Scholar]
  76. LiG.X. JiaoX.H. ChengX.B. Correlations between blood uric acid and the incidence and progression of type 2 diabetes nephropathy.Eur. Rev. Med. Pharmacol. Sci.201822250651110.26355/eurrev_201801_1420229424910
    [Google Scholar]
  77. SimpsonK. WonnacottA. FraserD.J. BowenT. MicroRNAs in diabetic nephropathy: From biomarkers to therapy.Curr. Diab. Rep.20161633510.1007/s11892‑016‑0724‑826973290
    [Google Scholar]
  78. PezzolesiM.G. SatakeE. McDonnellK.P. MajorM. SmilesA.M. KrolewskiA.S. Circulating TGF-β1–regulated miRNAs and the risk of rapid progression to ESRD in type 1 diabetes.Diabetes20156493285329310.2337/db15‑011625931475
    [Google Scholar]
  79. EissaS. MatboliM. BekhetM.M. Clinical verification of a novel urinary microRNA panal: 133b, -342 and -30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis.Biomed. Pharmacother.201683929910.1016/j.biopha.2016.06.01827470555
    [Google Scholar]
  80. BaruttaF. BrunoG. MatulloG. ChaturvediN. GrimaldiS. SchalkwijkC. StehouwerC.D. FullerJ.H. GrudenG. MicroRNA-126 and micro-/ macrovascular complications of type 1 diabetes in the EURODIAB prospective complications study.Acta Diabetol.201754213313910.1007/s00592‑016‑0915‑427696070
    [Google Scholar]
  81. ZürbigP. JerumsG. HovindP. MacIsaacR.J. MischakH. NielsenS.E. PanagiotopoulosS. PerssonF. RossingP. Urinary proteomics for early diagnosis in diabetic nephropathy.Diabetes201261123304331310.2337/db12‑034822872235
    [Google Scholar]
  82. DingX. ZhangD. RenQ. HuY. WangJ. HaoJ. WangH. ZhaoX. WangX. SongC. DuJ. YangF. ZhuH. Identification of a non-invasive urinary exosomal biomarker for diabetic nephropathy using data-independent acquisition proteomics.Int. J. Mol. Sci.202324171356010.3390/ijms24171356037686366
    [Google Scholar]
  83. ZubiriI. Posada-AyalaM. Sanz-MarotoA. CalvoE. Martin-LorenzoM. Gonzalez-CaleroL. de la CuestaF. LopezJ.A. Fernandez-FernandezB. OrtizA. VivancoF. Alvarez-LlamasG. Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis.J. Proteomics2014969210210.1016/j.jprot.2013.10.03724211404
    [Google Scholar]
  84. InoueK. WadaJ. EguchiJ. NakatsukaA. TeshigawaraS. MurakamiK. OgawaD. TeramiT. KatayamaA. ToneA. IsedaI. HidaK. YamadaM. OgawaT. MakinoH. Urinary fetuin-A is a novel marker for diabetic nephropathy in type 2 diabetes identified by lectin microarray.PLoS One2013810e7711810.1371/journal.pone.007711824143207
    [Google Scholar]
  85. KimuraT. YasudaK. YamamotoR. SogaT. RakugiH. HayashiT. IsakaY. Identification of biomarkers for development of end-stage kidney disease in chronic kidney disease by metabolomic profiling.Sci. Rep.2016612613810.1038/srep2613827188985
    [Google Scholar]
  86. FillaL.A. EdwardsJ.L. Metabolomics in diabetic complications.Mol. Biosyst.20161241090110510.1039/C6MB00014B26891794
    [Google Scholar]
  87. ColhounH.M. MarcovecchioM.L. Biomarkers of diabetic kidney disease.Diabetologia2018615996101110.1007/s00125‑018‑4567‑529520581
    [Google Scholar]
  88. ConservaF. GesualdoL. PapaleM. A systems biology overview on human diabetic nephropathy: From genetic susceptibility to post-transcriptional and post-translational modifications.J. Diabetes Res.2016201612310.1155/2016/793450426798653
    [Google Scholar]
  89. KurashigeM. ImamuraM. ArakiS. SuzukiD. BabazonoT. UzuT. UmezonoT. ToyodaM. KawaiK. ImanishiM. HanaokaK. MaegawaH. UchigataY. HosoyaT. MaedaS. The influence of a single nucleotide polymorphism within CNDP1 on susceptibility to diabetic nephropathy in Japanese women with type 2 diabetes.PLoS One201381e5406410.1371/journal.pone.005406423342076
    [Google Scholar]
  90. LiW. YangS. QiaoR. ZhangJ. Potential value of urinary exosome-derived let-7c-5p in the diagnosis and progression of type II diabetic nephropathy.Clin. Lab.20186405/201870971810.7754/Clin.Lab.2018.17103129739042
    [Google Scholar]
  91. DonderskiR. SzczepanekJ. NaruszewiczN. NaruszewiczR. TretynA. Skoczylas-MakowskaN. TylochJ. Odrowąż-SypniewskaG. ManitiusJ. Analysis of profibrogenic microRNAs (miRNAs) expression in urine and serum of chronic kidney disease (CKD) stage 1–4 patients and their relationship with proteinuria and kidney function.Int. Urol. Nephrol.202254493794710.1007/s11255‑021‑02928‑134312814
    [Google Scholar]
  92. ParkS. KimO.H. LeeK. ParkI.B. KimN.H. MoonS. ImJ. SharmaS.P. OhB.C. NamS. LeeD.H. Plasma and urinary extracellular vesicle microRNAs and their related pathways in diabetic kidney disease.Genomics2022114411040710.1016/j.ygeno.2022.11040735716820
    [Google Scholar]
  93. GuoJ. LiJ. ZhaoJ. YangS. WangL. ChengG. LiuD. XiaoJ. LiuZ. ZhaoZ. MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by targeting tristetraprolin.Sci. Rep.201771231410.1038/s41598‑017‑01027‑528539664
    [Google Scholar]
  94. KamelM.F. NassarM. ElbendaryA. MohamedA.G.A. AbdullahM.G. GomaaH.R.A. AwadE.M.I. MahmoudH.H. ElfikiM.A. AbdallaN.H. Abd ElkareemR.M. SolimanA.S. ElmessieryR.M. The potential use of urinary transferrin, urinary adiponectin, urinary retinol binding protein, and serum zinc alpha 2 glycoprotein levels as novel biomarkers for early diagnosis of diabetic nephropathy: A case-control study.Diabetes Metab. Syndr.202216410247310.1016/j.dsx.2022.10247335405355
    [Google Scholar]
  95. KwonS. HyeonJ.S. JungY. LiL. AnJ.N. KimY.C. YangS.H. KimT. KimD.K. LimC.S. HwangG.S. LeeJ.P. Urine myo-inositol as a novel prognostic biomarker for diabetic kidney disease: A targeted metabolomics study using nuclear magnetic resonance.Kidney Res. Clin. Pract.202342444545910.23876/j.krcp.22.15237551126
    [Google Scholar]
  96. PengH. LiuX. IeongC.A. TouT. TsaiT. ZhuH. LiuZ. LiuP. A metabolomics study of metabolites associated with the glomerular filtration rate.BMC Nephrol.202324110510.1186/s12882‑023‑03147‑937085754
    [Google Scholar]
  97. PalmerN.D. NgM.C.Y. HicksP.J. MudgalP. LangefeldC.D. FreedmanB.I. BowdenD.W. Evaluation of candidate nephropathy susceptibility genes in a genome-wide association study of African American diabetic kidney disease.PLoS One201492e8827310.1371/journal.pone.008827324551085
    [Google Scholar]
  98. McDonoughC.W. PalmerN.D. HicksP.J. RohB.H. AnS.S. CookeJ.N. HesterJ.M. WingM.R. BostromM.A. RudockM.E. LewisJ.P. TalbertM.E. BlevinsR.A. LuL. NgM.C.Y. SaleM.M. DiversJ. LangefeldC.D. FreedmanB.I. BowdenD.W. A genome-wide association study for diabetic nephropathy genes in African Americans.Kidney Int.201179556357210.1038/ki.2010.46721150874
    [Google Scholar]
  99. LehtoM. GroopP.H. The gut-kidney axis: Putative interconnections between gastrointestinal and renal disorders.Front. Endocrinol. (Lausanne)2018955310.3389/fendo.2018.0055330283404
    [Google Scholar]
  100. FanY. PedersenO. Gut microbiota in human metabolic health and disease.Nat. Rev. Microbiol.2021191557110.1038/s41579‑020‑0433‑932887946
    [Google Scholar]
  101. SalgueroM. Al-ObaideM. SinghR. SiepmannT. VasylyevaT. Dysbiosis of Gram-negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type 2 diabetic patients with chronic kidney disease.Exp. Ther. Med.20191853461346910.3892/etm.2019.794331602221
    [Google Scholar]
  102. TaoS. LiL. LiL. LiuY. RenQ. ShiM. LiuJ. JiangJ. MaH. HuangZ. XiaZ. PanJ. WeiT. WangY. LiP. LanT. TangX. ZengX. LeiS. TangH. MaL. FuP. Understanding the gut–kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: An analysis of the gut microbiota composition.Acta Diabetol.201956558159210.1007/s00592‑019‑01316‑730888537
    [Google Scholar]
  103. WuI.W. GaoS.S. ChouH.C. YangH.Y. ChangL.C. KuoY.L. DinhM.C.V. ChungW.H. YangC.W. LaiH.C. HsiehW.P. SuS.C. Integrative metagenomic and metabolomic analyses reveal severity-specific signatures of gut microbiota in chronic kidney disease.Theranostics202010125398541110.7150/thno.4172532373220
    [Google Scholar]
  104. ZhouB. FengB. QinZ. ZhaoY. ChenY. ShiZ. GongY. ZhangJ. YuanF. MuJ. Activation of farnesoid X receptor downregulates visfatin and attenuates diabetic nephropathy.Mol. Cell. Endocrinol.2016419728210.1016/j.mce.2015.10.00126450152
    [Google Scholar]
  105. TangW.H.W. WangZ. KennedyD.J. WuY. BuffaJ.A. Agatisa-BoyleB. LiX.S. LevisonB.S. HazenS.L. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease.Circ. Res.2015116344845510.1161/CIRCRESAHA.116.30536025599331
    [Google Scholar]
  106. Sequeira-AntunesB. FerreiraH.A. Urinary biomarkers and point- of-care urinalysis devices for early diagnosis and management of disease: A review.Biomedicines2023114105110.3390/biomedicines1104105137189669
    [Google Scholar]
  107. TianY. GaoL. AbdussalamA. XuG. Research progress on bionic recognition and biosensors for the detection of biomarkers of diabetic nephropathy.Chemosensors (Basel)2023111051010.3390/chemosensors11100510
    [Google Scholar]
  108. WuJ. DongM. RigattoC. LiuY. LinF. Lab-on-chip technology for chronic disease diagnosis.NPJ Digit. Med.201811710.1038/s41746‑017‑0014‑031304292
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128333694240928161703
Loading
/content/journals/cpd/10.2174/0113816128333694240928161703
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test