Skip to content
2000
image of Insights into the Novel Biomarkers Expressed in Diabetic Nephropathy: Potential Clinical Applications

Abstract

Diabetic nephropathy (DN) is increasing worldwide in parallel with type 2 diabetes mellitus. Identifying diagnostic biomarkers for DN at an early stage is crucial due to the considerable societal and economic burden associated with diabetes mellitus (DM) and its risk factors. In the past, early indicators of microvascular problems, such as microalbuminuria (MA), have been used to predict the possibility of developing advanced chronic kidney disease (CKD). However, because of the incapacity of MA to appropriately estimate DN, particularly, non-albuminuric DN, additional markers have been suggested for recognizing the early renal abnormalities and structural lesions, even before MA. This study aims to assess the existing and future biomarkers used to diagnose or predict early DN. This review provides comprehensive insight into diagnostic approaches for early detection of CKD, addressing the following areas: (i) markers of glomerular damage, (ii) markers of tubular damage, (iii) oxidative stress biomarkers, (iv) inflammatory biomarkers and (v) futuristic biomarkers such as micro-ribonucleic acids (miRNAs), proteomics, metabolomics and genomics and gut microbiota. Early detection of DN may lead to improvement in clinical management and quality of life, emphasizing the importance of identifying a specific and reliable predictive biomarker. Emerging serum and urinary biomarkers offer promise for early DN diagnosis, potentially reducing prevalence and preventing progression to end-stage renal disease (ESRD). Further advancements in miRNAs, proteomics, metabolomics genomics and gut microbiota offer prospects for even earlier and more precise DN diagnosis.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128333694240928161703
2024-10-16
2025-01-18
Loading full text...

Full text loading...

References

  1. Naaman S.C. Bakris G.L. Diabetic nephropathy: update on pillars of therapy slowing progression. Diabetes Care 2023 46 9 1574 1586 10.2337/dci23‑0030 37625003
    [Google Scholar]
  2. Pleniceanu O. Twig G. Tzur D. Gruber N. Stern-Zimmer M. Afek A. Erlich T. Keinan-Boker L. Skorecki K. Calderon-Margalit R. Vivante A. Kidney failure risk in type 1 vs. type 2 childhood-onset diabetes mellitus. Pediatr. Nephrol. 2021 36 2 333 340 10.1007/s00467‑020‑04631‑2 32761484
    [Google Scholar]
  3. Sagmeister M.S. Harper L. Hardy R.S. Cortisol excess in chronic kidney disease – A review of changes and impact on mortality. Front. Endocrinol. 2023 13 1075809 10.3389/fendo.2022.1075809 36733794
    [Google Scholar]
  4. Mottl A.K. Alicic R. Argyropoulos C. Brosius F.C. Mauer M. Molitch M. Nelson R.G. Perreault L. Nicholas S.B. KDOQI US commentary on the KDIGO 2020 clinical practice guideline for diabetes management in CKD. Am. J. Kidney Dis. 2022 79 4 457 479 10.1053/j.ajkd.2021.09.010 35144840
    [Google Scholar]
  5. Khan M.A.B. Hashim M.J. King J.K. Govender R.D. Mustafa H. Al Kaabi J. Epidemiology of type 2 diabetes—global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 2019 10 1 107 111 10.2991/jegh.k.191028.001 32175717
    [Google Scholar]
  6. Xue R. Gui D. Zheng L. Zhai R. Wang F. Wang N. Mechanistic insight and management of diabetic nephropathy: recent progress and future perspective. J. Diabetes Res. 2017 2017 1 7 10.1155/2017/1839809 28386567
    [Google Scholar]
  7. Matthews J. Herat L. Schlaich M.P. Matthews V. The Impact of SGLT2 Inhibitors in the Heart and Kidneys Regardless of Diabetes Status. Int. J. Mol. Sci. 2023 24 18 14243 10.3390/ijms241814243 37762542
    [Google Scholar]
  8. Gheith O. Farouk N. Nampoory N. Halim M.A. Al-Otaibi T. Diabetic kidney disease: world wide difference of prevalence and risk factors. J. Nephropharmacol. 2015 5 1 49 56 28197499
    [Google Scholar]
  9. Ariton D.M. Jiménez-Balado J. Maisterra O. Pujadas F. Soler M.J. Delgado P. Diabetes, Albuminuria and the Kidney—Brain Axis. J. Clin. Med. 2021 10 11 2364 10.3390/jcm10112364 34072230
    [Google Scholar]
  10. Mallik R. Chowdhury T.A. Pharmacotherapy to delay the progression of diabetic kidney disease in people with type 2 diabetes: past, present and future. Ther. Adv. Endocrinol. Metab. 2022 13 10.1177/20420188221081601 35281302
    [Google Scholar]
  11. Khan S.S. Coresh J. Pencina M.J. Ndumele C.E. Rangaswami J. Chow S.L. Palaniappan L.P. Sperling L.S. Virani S.S. Ho J.E. Neeland I.J. Tuttle K.R. Rajgopal Singh R. Elkind M.S.V. Lloyd-Jones D.M. Novel prediction equations for absolute risk assessment of total cardiovascular disease incorporating cardiovascular-kidney-metabolic health: a scientific statement from the American Heart Association. Circulation 2023 148 24 1982 2004 10.1161/CIR.0000000000001191 37947094
    [Google Scholar]
  12. Baxi H. Dubey K. Hussain S. PDB70 prevalence of peripheral neuropathy and associated pain IN patients with diabetes mellitus. Value Health 2019 22 2 S152 10.1016/j.jval.2019.04.619
    [Google Scholar]
  13. Muskiet M.H.A. Wheeler D.C. Heerspink H.J.L. New pharmacological strategies for protecting kidney function in type 2 diabetes. Lancet Diabetes Endocrinol. 2019 7 5 397 412 10.1016/S2213‑8587(18)30263‑8 30579729
    [Google Scholar]
  14. Mirakhmedova H.T. Botyrova N.A. Actual Problems of Diabetic Nephropathy, Risk Factors, Stages, Progression, Mechanism, Diagnosis and Management. Int J Health System Med Sci 2022 1 1 2
    [Google Scholar]
  15. Babel R.A. Dandekar M.P. A review on cellular and molecular mechanisms linked to the development of diabetes complications. Curr. Diabetes Rev. 2021 17 4 457 473 10.2174/18756417MTExbMTQy0 33143626
    [Google Scholar]
  16. Toth-Manikowski S. Atta M.G. Diabetic kidney disease: pathophysiology and therapeutic targets. J. Diabetes Res. 2015 2015 1 16 10.1155/2015/697010 26064987
    [Google Scholar]
  17. Rayego-Mateos S. Morgado-Pascual J.L. Opazo-Ríos L. Guerrero-Hue M. García-Caballero C. Vázquez-Carballo C. Mas S. Sanz A.B. Herencia C. Mezzano S. Gómez-Guerrero C. Moreno J.A. Egido J. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy. Int. J. Mol. Sci. 2020 21 11 3798 10.3390/ijms21113798 32471207
    [Google Scholar]
  18. Mittal M. Siddiqui M.R. Tran K. Reddy S.P. Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014 20 7 1126 1167 10.1089/ars.2012.5149 23991888
    [Google Scholar]
  19. Hu Z.B. Lu J. Chen P.P. Lu C.C. Zhang J.X. Li X.Q. Yuan B.Y. Huang S.J. Ruan X.Z. Liu B.C. Ma K.L. Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis. Theranostics 2020 10 6 2803 2816 10.7150/thno.40571 32194836
    [Google Scholar]
  20. Hussain S. Habib A. Hussain M.S. Najmi A.K. Potential biomarkers for early detection of diabetic kidney disease. Diabetes Res. Clin. Pract. 2020 161 108082 10.1016/j.diabres.2020.108082 32057966
    [Google Scholar]
  21. Concepción M. Quiroz J. Suarez J. Paz J. Roseboom P. Ildefonso S. Cribilleros D. Zavaleta F. Coronado J. Concepción L. Novel Biomarkers for the diagnosis of diabetic nephropathy. Caspian J. Intern. Med. 2024 15 3 382 391 10.22088/cjim.15.3.382 39011442
    [Google Scholar]
  22. Satyanarayana G. Keisham N. Batra H.S. v S.M. Khan M. Gupta S. Mahindra V. Evaluation of serum ceruloplasmin levels as a biomarker for oxidative stress in patients with diabetic retinopathy. Cureus 2021 13 2 e13070 10.7759/cureus.13070 33680612
    [Google Scholar]
  23. Cohen-Bucay A. Viswanathan G. Urinary markers of glomerular injury in diabetic nephropathy. Int. J. Nephrol. 2012 2012 1 11 10.1155/2012/146987 22645683
    [Google Scholar]
  24. Papadopoulou-Marketou N. Kanaka-Gantenbein C. Marketos N. Chrousos G.P. Papassotiriou I. Biomarkers of diabetic nephropathy: A 2017 update. Crit. Rev. Clin. Lab. Sci. 2017 54 5 326 342 10.1080/10408363.2017.1377682 28956668
    [Google Scholar]
  25. Gluhovschi C. Gluhovschi G. Petrica L. Timar R. Velciov S. Ionita I. Kaycsa A. Timar B. Urinary biomarkers in the assessment of early diabetic nephropathy. J. Diabetes Res. 2016 2016 1 13 10.1155/2016/4626125 27413755
    [Google Scholar]
  26. Fiseha T. Urinary biomarkers for early diabetic nephropathy in type 2 diabetic patients. Biomark. Res. 2015 3 1 16 10.1186/s40364‑015‑0042‑3 26146561
    [Google Scholar]
  27. Ahmed S.A. Aziz W.M. Shaker S.E. Fayed D.B. Shawky H. Urinary transferrin and proinflammatory markers predict the earliest diabetic nephropathy onset. Biomarkers 2022 27 2 178 187 10.1080/1354750X.2021.2023639 34957874
    [Google Scholar]
  28. Al-Rubeaan K. Siddiqui K. Al-Ghonaim M.A. Youssef A.M. Al-Sharqawi A.H. AlNaqeb D. Assessment of the diagnostic value of different biomarkers in relation to various stages of diabetic nephropathy in type 2 diabetic patients. Sci. Rep. 2017 7 1 2684 10.1038/s41598‑017‑02421‑9 28577020
    [Google Scholar]
  29. Lepedda A.J. De Muro P. Capobianco G. Formato M. Significance of urinary glycosaminoglycans/proteoglycans in the evaluation of type 1 and type 2 diabetes complications. J. Diabetes Complications 2017 31 1 149 155 10.1016/j.jdiacomp.2016.10.013 27842978
    [Google Scholar]
  30. Allen M. Bansal V. Siddiqui F. Hoppensteadt D. Krupa E. Fareed J. Kantarcioglu B. The relevance of thrombo-inflammatory biomarkers and their relationship with circulating glycosaminoglycans in end-stage renal disease patients. Clin. Appl. Thromb. Hemost. 2023 29 10.1177/10760296231169512 37062946
    [Google Scholar]
  31. Esawy H. El-Hagrasy H.A. Hassan M.M. Esawy H.S. Plasma type IV collagen levels as a potential biomarker for early detection of nephropathy in diabetes mellitus patients. Egypt. J. Immunol. 2024 31 3 150 160 10.55133/eji.310315 38996049
    [Google Scholar]
  32. Mahfouz M. Shoman M. Hassan M. Assessment of urinary type IV collagen, alpha-1 microglobulin, and transferrin in type 2 diabetes mellitus with nephropathy. Journal of Medicine in Scientific Research 2020 3 1 18
    [Google Scholar]
  33. Yu H. Wang H. Su X. Cao A. Yao X. Wang Y. Zhu B. Wang H. Fang J. Serum chromogranin A correlated with albuminuria in diabetic patients and is associated with early diabetic nephropathy. BMC Nephrol. 2022 23 1 41 10.1186/s12882‑022‑02667‑0 35062888
    [Google Scholar]
  34. Dabla P.K. Renal function in diabetic nephropathy. World J. Diabetes 2010 1 2 48 56 10.4239/wjd.v1.i2.48 21537427
    [Google Scholar]
  35. Kostovska I. Trajkovska T. Topuzovska S. Cekovska S. Spasovski G. Kostovski O. Labudovic D. Urinary nephrin is earlier, more sensitive and specific marker of diabetic nephropathy than microalbuminuria. J. Med. Biochem. 2019 0 0 83 90 10.2478/jomb‑2019‑0026 32549781
    [Google Scholar]
  36. Jim B. Ghanta M. Qipo A. Fan Y. Chuang P.Y. Cohen H.W. Abadi M. Thomas D.B. He J.C. Dysregulated nephrin in diabetic nephropathy of type 2 diabetes: a cross sectional study. PLoS One 2012 7 5 e36041 10.1371/journal.pone.0036041 22615747
    [Google Scholar]
  37. Naunova-Timovska S. Cekovska S. Sahpazova E. Tasić V. Neutrophil gelatinase-associated lipocalin as an early biomarker of acute kidney injury in newborns. Acta Clinica Croatica. 2020 59 1 55 61 10.20471/acc.2020.59.01.07
    [Google Scholar]
  38. Veiga G. Alves B. Perez M. Alcantara L.V. Raimundo J. Zambrano L. Encina J. Pereira E.C. Bacci M. Murad N. Fonseca F. NGAL and SMAD1 gene expression in the early detection of diabetic nephropathy by liquid biopsy. J. Clin. Pathol. 2020 73 11 713 721 10.1136/jclinpath‑2020‑206494 32184218
    [Google Scholar]
  39. Hussain S. Chand Jamali M. Habib A. Hussain M.S. Akhtar M. Najmi A.K. Diabetic kidney disease: An overview of prevalence, risk factors, and biomarkers. Clin. Epidemiol. Glob. Health 2021 9 2 6 10.1016/j.cegh.2020.05.016
    [Google Scholar]
  40. Chen G. Shan X. Wang H. Significant association of urinary alpha-1-microglobulin compared to urinary neutrophil gelatinase-associated lipocalin with renal insufficiency in patients with type 2 diabetes. Nephrology (Carlton) 2021 26 5 400 407 10.1111/nep.13851 33484208
    [Google Scholar]
  41. Bonventre J.V. Kidney injury molecule-1: a translational journey. Trans. Am. Clin. Climatol. Assoc. 2014 125 293 299 25125746
    [Google Scholar]
  42. Bano G. Imam M.T. Bajpai R. Alem G. Kashyap V.K. Habib A. Najmi A.K. Expression of angiopoetin- like protein-4 and kidney injury molecule-1 as preliminary diagnostic markers for diabetes-related kidney disease: A single center-based cross-sectional study. J. Pers. Med. 2023 13 4 577 10.3390/jpm13040577 37108963
    [Google Scholar]
  43. Kim S.R. Lee Y. Lee S.G. Kang E.S. Cha B.S. Kim J.H. Lee B.W. Urinary N-acetyl-β-D-glucosaminidase, an early marker of diabetic kidney disease, might reflect glucose excursion in patients with type 2 diabetes. Medicine (Baltimore) 2016 95 27 e4114 10.1097/MD.0000000000004114 27399115
    [Google Scholar]
  44. Tillman L. Tabish T.A. Kamaly N. Moss P. El-briri A. Thiemermann C. Pranjol M.Z.I. Yaqoob M.M. Advancements in nanomedicines for the detection and treatment of diabetic kidney disease. Biomaterials and Biosystems 2022 6 100047 10.1016/j.bbiosy.2022.100047 36824160
    [Google Scholar]
  45. Murty M.S.N. Sharma U.K. Pandey V.B. Kankare S.B. Serum cystatin C as a marker of renal function in detection of early acute kidney injury. Indian J. Nephrol. 2013 23 3 180 183 10.4103/0971‑4065.111840 23814415
    [Google Scholar]
  46. Campion C.G. Sanchez-Ferras O. Batchu S.N. Potential role of serum and urinary biomarkers in diagnosis and prognosis of diabetic nephropathy. Can. J. Kidney Health Dis. 2017 4 10.1177/2054358117705371 28616250
    [Google Scholar]
  47. Thakral A.K. Sinha A. Jain A. Habib A. Alam S. Study of Inflammatory Markers as Prognostic Indicator in Acute Pancreatitis. Eur. J. Cardiovasc. Med. 2023 13 2
    [Google Scholar]
  48. Chen Y. Qiao Y. Xu Y. Ling W. Pan Y. Huang Y. Geng L. Zhao H. Zhang X. Serum TNF-α concentrations in type 2 diabetes mellitus patients and diabetic nephropathy patients: A systematic review and meta-analysis. Immunol. Lett. 2017 186 52 58 10.1016/j.imlet.2017.04.003 28414180
    [Google Scholar]
  49. Soltani-Fard E. Taghvimi S. Karimi F. Vahedi F. Khatami S.H. Behrooj H. Deylami Hayati M. Movahedpour A. Ghasemi H. Urinary biomarkers in diabetic nephropathy. Clin. Chim. Acta 2024 561 119762 10.1016/j.cca.2024.119762 38844018
    [Google Scholar]
  50. Gohda T. Niewczas M.A. Ficociello L.H. Walker W.H. Skupien J. Rosetti F. Cullere X. Johnson A.C. Crabtree G. Smiles A.M. Mayadas T.N. Warram J.H. Krolewski A.S. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J. Am. Soc. Nephrol. 2012 23 3 516 524 10.1681/ASN.2011060628 22266664
    [Google Scholar]
  51. Lousa I. Reis F. Beirão I. Alves R. Belo L. Santos-Silva A. New potential biomarkers for chronic kidney disease management—A review of the literature. Int. J. Mol. Sci. 2020 22 1 43 10.3390/ijms22010043 33375198
    [Google Scholar]
  52. Yoshimura T. Li C. Wang Y. Matsukawa A. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis. Cell. Mol. Immunol. 2023 20 7 714 738 10.1038/s41423‑023‑01013‑0 37208442
    [Google Scholar]
  53. Tye S.C. Denig P. Heerspink H.J.L. Precision medicine approaches for diabetic kidney disease: opportunities and challenges. Nephrol. Dial. Transplant. 2021 36 Suppl. 2 ii3 ii9 10.1093/ndt/gfab045 34153985
    [Google Scholar]
  54. Sen T. Koshino A. Neal B. Bijlsma M.J. Arnott C. Li J. Hansen M.K. Ix J.H. Heerspink H.J.L. Mechanisms of action of the sodium-glucose cotransporter-2 ( SGLT2) inhibitor canagliflozin on tubular inflammation and damage: A post hoc mediation analysis of the CANVAS trial. Diabetes Obes. Metab. 2022 24 10 1950 1956 10.1111/dom.14779 35635326
    [Google Scholar]
  55. Tam F.W.K. Riser B.L. Meeran K. Rambow J. Pusey C.D. Frankel A.H. Urinary monocyte chemoattractant protein-1 (MCP-1) and connective tissue growth factor (CCN2) as prognostic markers for progression of diabetic nephropathy. Cytokine 2009 47 1 37 42 10.1016/j.cyto.2009.04.001 19409809
    [Google Scholar]
  56. Hrp R.S. Nst A.T. Ganie R.A. Differences in interleukin 18 levels in diabetic nephropathy and non-diabetic nephropathy patients. International journal of Research science and Management 2020 7 11 72 78 10.29121/ijrsm.v7.i11.2020.9
    [Google Scholar]
  57. Duff S. Irwin R. Cote J.M. Redahan L. McMahon B.A. Marsh B. Nichol A. Holden S. Doran P. Murray P.T. Urinary biomarkers predict progression and adverse outcomes of acute kidney injury in critical illness. Nephrol. Dial. Transplant. 2022 37 9 1668 1678 10.1093/ndt/gfab263 34491355
    [Google Scholar]
  58. Nakamura A. Shikata K. Hiramatsu M. Nakatou T. Kitamura T. Wada J. Itoshima T. Makino H. Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care 2005 28 12 2890 2895 10.2337/diacare.28.12.2890 16306550
    [Google Scholar]
  59. Hirooka Y. Nozaki Y. Interleukin-18 in inflammatory kidney disease. Front. Med. (Lausanne) 2021 8 639103 10.3389/fmed.2021.639103 33732720
    [Google Scholar]
  60. Ali Khan R. Kapur P. Jain A. Farah F. Bhandari U. Effect of orlistat on periostin, adiponectin, inflammatory markers and ultrasound grades of fatty liver in obese NAFLD patients. Ther. Clin. Risk Manag. 2017 13 139 149 10.2147/TCRM.S124621 28260907
    [Google Scholar]
  61. Huang Y. Lu W. Lu H. The clinical efficacy and safety of dapagliflozin in patients with diabetic nephropathy. Diabetol. Metab. Syndr. 2022 14 1 47 10.1186/s13098‑022‑00815‑y 35351189
    [Google Scholar]
  62. Sanchez-Alamo B. Shabaka A. Cachofeiro V. Cases-Corona C. Fernandez-Juarez G. PRONEDI study investigators Serum interleukin-6 levels predict kidney disease progression in diabetic nephropathy. Clin. Nephrol. 2022 97 1 1 9 10.5414/CN110223 34753557
    [Google Scholar]
  63. Trakarnvanich T. Satirapoj B. Suraamornkul S. Chirananthavat T. Sanpatchayapong A. Claimon T. Effect of dipeptidyl peptidase-4 (DPP-4) inhibition on biomarkers of kidney injury and vascular calcification in diabetic kidney disease: a randomized controlled trial. J. Diabetes Res. 2021 2021 1 1 11 10.1155/2021/7382620 34697593
    [Google Scholar]
  64. Senthilkumar G.P. Anithalekshmi M.S. Yasir M. Parameswaran S. Packirisamy R. Bobby Z. Role of omentin 1 and IL-6 in type 2 diabetes mellitus patients with diabetic nephropathy. Diabetes Metab. Syndr. 2018 12 1 23 26 10.1016/j.dsx.2017.08.005 28864059
    [Google Scholar]
  65. Senatorski G. Paczek L. Kropiewnicka E. Bartłomiejczyk I. [Cytokines in noninvasive diagnostics of diabetic nephropathy progression]. Pol. Merkuriusz Lek. 2002 13 1 Suppl. 1 28 32 12621778
    [Google Scholar]
  66. Maedler K. Dharmadhikari G. Schumann D.M. Størling J. Interleukin-1 beta targeted therapy for type 2 diabetes. Expert Opin. Biol. Ther. 2009 9 9 1177 1188 10.1517/14712590903136688 19604125
    [Google Scholar]
  67. Kany S. Vollrath J.T. Relja B. Cytokines in inflammatory disease. Int. J. Mol. Sci. 2019 20 23 6008 10.3390/ijms20236008 31795299
    [Google Scholar]
  68. Sakai N. Wada T. Yokoyama H. Lipp M. Ueha S. Matsushima K. Kaneko S. Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc. Natl. Acad. Sci. USA 2006 103 38 14098 14103 10.1073/pnas.0511200103 16966615
    [Google Scholar]
  69. Feng Y. Zhong X. Ni H.F. Wang C. Tang T.T. Wang L.T. Song K.Y. Tang R.N. Liu H. Liu B.C. Lv L.L. Urinary small extracellular vesicles derived CCL21 mRNA as biomarker linked with pathogenesis for diabetic nephropathy. J. Transl. Med. 2021 19 1 355 10.1186/s12967‑021‑03030‑x 34404433
    [Google Scholar]
  70. Tervaert T.W.C. Mooyaart A.L. Amann K. Cohen A.H. Cook H.T. Drachenberg C.B. Ferrario F. Fogo A.B. Haas M. de Heer E. Joh K. Noël L.H. Radhakrishnan J. Seshan S.V. Bajema I.M. Bruijn J.A. Renal Pathology Society Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 2010 21 4 556 563 10.1681/ASN.2010010010 20167701
    [Google Scholar]
  71. Evans M.D. Olinski R. Loft S. Cooke M.S. [European Standards Committee on Ur Toward consensus in the analysis of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine as a noninvasive biomarker of oxidative stress. FASEB J. 2010 24 4 1249 1260 10.1096/fj.09‑147124 19966135
    [Google Scholar]
  72. Singh A. Kukreti R. Saso L. Kukreti S. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules 2022 27 3 950 10.3390/molecules27030950 35164215
    [Google Scholar]
  73. Kern E.F.O. Erhard P. Sun W. Genuth S. Weiss M.F. Early urinary markers of diabetic kidney disease: a nested case-control study from the Diabetes Control and Complications Trial (DCCT). Am. J. Kidney Dis. 2010 55 5 824 834 10.1053/j.ajkd.2009.11.009 20138413
    [Google Scholar]
  74. Băbţan A.M. Ilea A. Boşca B.A. Crişan M. Petrescu N.B. Collino M. Sainz R.M. Gerlach J.Q. Câmpian R.S. Advanced glycation end products as biomarkers in systemic diseases: premises and perspectives of salivary advanced glycation end products. Biomarkers Med. 2019 13 6 479 495 10.2217/bmm‑2018‑0448 30968701
    [Google Scholar]
  75. Xu X. Li C. Zhou P. Jiang T. Uric acid transporters hiding in the intestine. Pharm. Biol. 2016 54 12 3151 3155 10.1080/13880209.2016.1195847 27563755
    [Google Scholar]
  76. Li G.X. Jiao X.H. Cheng X.B. Correlations between blood uric acid and the incidence and progression of type 2 diabetes nephropathy. Eur. Rev. Med. Pharmacol. Sci. 2018 22 2 506 511 10.26355/eurrev_201801_14202 29424910
    [Google Scholar]
  77. Simpson K. Wonnacott A. Fraser D.J. Bowen T. MicroRNAs in diabetic nephropathy: from biomarkers to therapy. Curr. Diab. Rep. 2016 16 3 35 10.1007/s11892‑016‑0724‑8 26973290
    [Google Scholar]
  78. Pezzolesi M.G. Satake E. McDonnell K.P. Major M. Smiles A.M. Krolewski A.S. Circulating TGF-β1–regulated miRNAs and the risk of rapid progression to ESRD in type 1 diabetes. Diabetes 2015 64 9 3285 3293 10.2337/db15‑0116 25931475
    [Google Scholar]
  79. Eissa S. Matboli M. Bekhet M.M. Clinical verification of a novel urinary microRNA panal: 133b, -342 and -30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis. Biomed. Pharmacother. 2016 83 92 99 10.1016/j.biopha.2016.06.018 27470555
    [Google Scholar]
  80. Barutta F. Bruno G. Matullo G. Chaturvedi N. Grimaldi S. Schalkwijk C. Stehouwer C.D. Fuller J.H. Gruden G. MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB Prospective Complications Study. Acta Diabetol. 2017 54 2 133 139 10.1007/s00592‑016‑0915‑4 27696070
    [Google Scholar]
  81. Zürbig P. Jerums G. Hovind P. MacIsaac R.J. Mischak H. Nielsen S.E. Panagiotopoulos S. Persson F. Rossing P. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes 2012 61 12 3304 3313 10.2337/db12‑0348 22872235
    [Google Scholar]
  82. Ding X. Zhang D. Ren Q. Hu Y. Wang J. Hao J. Wang H. Zhao X. Wang X. Song C. Du J. Yang F. Zhu H. Identification of a non-invasive urinary exosomal biomarker for diabetic nephropathy using data-independent acquisition proteomics. Int. J. Mol. Sci. 2023 24 17 13560 10.3390/ijms241713560 37686366
    [Google Scholar]
  83. Zubiri I. Posada-Ayala M. Sanz-Maroto A. Calvo E. Martin-Lorenzo M. Gonzalez-Calero L. de la Cuesta F. Lopez J.A. Fernandez-Fernandez B. Ortiz A. Vivanco F. Alvarez-Llamas G. Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis. J. Proteomics 2014 96 92 102 10.1016/j.jprot.2013.10.037 24211404
    [Google Scholar]
  84. Inoue K. Wada J. Eguchi J. Nakatsuka A. Teshigawara S. Murakami K. Ogawa D. Terami T. Katayama A. Tone A. Iseda I. Hida K. Yamada M. Ogawa T. Makino H. Urinary fetuin-A is a novel marker for diabetic nephropathy in type 2 diabetes identified by lectin microarray. PLoS One 2013 8 10 e77118 10.1371/journal.pone.0077118 24143207
    [Google Scholar]
  85. Kimura T. Yasuda K. Yamamoto R. Soga T. Rakugi H. Hayashi T. Isaka Y. Identification of biomarkers for development of end-stage kidney disease in chronic kidney disease by metabolomic profiling. Sci. Rep. 2016 6 1 26138 10.1038/srep26138 27188985
    [Google Scholar]
  86. Filla L.A. Edwards J.L. Metabolomics in diabetic complications. Mol. Biosyst. 2016 12 4 1090 1105 10.1039/C6MB00014B 26891794
    [Google Scholar]
  87. Colhoun H.M. Marcovecchio M.L. Biomarkers of diabetic kidney disease. Diabetologia 2018 61 5 996 1011 10.1007/s00125‑018‑4567‑5 29520581
    [Google Scholar]
  88. Conserva F. Gesualdo L. Papale M. A systems biology overview on human diabetic nephropathy: from genetic susceptibility to post-transcriptional and post-translational modifications. J. Diabetes Res. 2016 2016 1 23 10.1155/2016/7934504 26798653
    [Google Scholar]
  89. Kurashige M. Imamura M. Araki S. Suzuki D. Babazono T. Uzu T. Umezono T. Toyoda M. Kawai K. Imanishi M. Hanaoka K. Maegawa H. Uchigata Y. Hosoya T. Maeda S. The influence of a single nucleotide polymorphism within CNDP1 on susceptibility to diabetic nephropathy in Japanese women with type 2 diabetes. PLoS One 2013 8 1 e54064 10.1371/journal.pone.0054064 23342076
    [Google Scholar]
  90. Li W. Yang S. Qiao R. Zhang J. Potential Value of Urinary Exosome-Derived let-7c-5p in the Diagnosis and Progression of Type II Diabetic Nephropathy. Clin. Lab. 2018 64 05/2018 709 718 10.7754/Clin.Lab.2018.171031 29739042
    [Google Scholar]
  91. Donderski R. Szczepanek J. Naruszewicz N. Naruszewicz R. Tretyn A. Skoczylas-Makowska N. Tyloch J. Odrowąż-Sypniewska G. Manitius J. Analysis of profibrogenic microRNAs (miRNAs) expression in urine and serum of chronic kidney disease (CKD) stage 1–4 patients and their relationship with proteinuria and kidney function. Int. Urol. Nephrol. 2022 54 4 937 947 10.1007/s11255‑021‑02928‑1 34312814
    [Google Scholar]
  92. Park S. Kim O.H. Lee K. Park I.B. Kim N.H. Moon S. Im J. Sharma S.P. Oh B.C. Nam S. Lee D.H. Plasma and urinary extracellular vesicle microRNAs and their related pathways in diabetic kidney disease. Genomics 2022 114 4 110407 10.1016/j.ygeno.2022.110407 35716820
    [Google Scholar]
  93. Guo J. Li J. Zhao J. Yang S. Wang L. Cheng G. Liu D. Xiao J. Liu Z. Zhao Z. MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by targeting tristetraprolin. Sci. Rep. 2017 7 1 2314 10.1038/s41598‑017‑01027‑5 28539664
    [Google Scholar]
  94. Kamel M.F. Nassar M. Elbendary A. Mohamed A.G.A. Abdullah M.G. Gomaa H.R.A. Awad E.M.I. Mahmoud H.H. Elfiki M.A. Abdalla N.H. Abd Elkareem R.M. Soliman A.S. Elmessiery R.M. The potential use of urinary transferrin, urinary adiponectin, urinary Retinol Binding Protein, and serum zinc alpha 2 glycoprotein levels as novel biomarkers for early diagnosis of diabetic nephropathy: A case-control study. Diabetes Metab. Syndr. 2022 16 4 102473 10.1016/j.dsx.2022.102473 35405355
    [Google Scholar]
  95. Kwon S. Hyeon J.S. Jung Y. Li L. An J.N. Kim Y.C. Yang S.H. Kim T. Kim D.K. Lim C.S. Hwang G.S. Lee J.P. Urine myo-inositol as a novel prognostic biomarker for diabetic kidney disease: a targeted metabolomics study using nuclear magnetic resonance. Kidney Res. Clin. Pract. 2023 42 4 445 459 10.23876/j.krcp.22.152 37551126
    [Google Scholar]
  96. Peng H. Liu X. Ieong C.A. Tou T. Tsai T. Zhu H. Liu Z. Liu P. A Metabolomics study of metabolites associated with the glomerular filtration rate. BMC Nephrol. 2023 24 1 105 10.1186/s12882‑023‑03147‑9 37085754
    [Google Scholar]
  97. Palmer N.D. Ng M.C.Y. Hicks P.J. Mudgal P. Langefeld C.D. Freedman B.I. Bowden D.W. Evaluation of candidate nephropathy susceptibility genes in a genome-wide association study of African American diabetic kidney disease. PLoS One 2014 9 2 e88273 10.1371/journal.pone.0088273 24551085
    [Google Scholar]
  98. McDonough C.W. Palmer N.D. Hicks P.J. Roh B.H. An S.S. Cooke J.N. Hester J.M. Wing M.R. Bostrom M.A. Rudock M.E. Lewis J.P. Talbert M.E. Blevins R.A. Lu L. Ng M.C.Y. Sale M.M. Divers J. Langefeld C.D. Freedman B.I. Bowden D.W. A genome-wide association study for diabetic nephropathy genes in African Americans. Kidney Int. 2011 79 5 563 572 10.1038/ki.2010.467 21150874
    [Google Scholar]
  99. Lehto M. Groop P.H. The gut-kidney axis: putative interconnections between gastrointestinal and renal disorders. Front. Endocrinol. (Lausanne) 2018 9 553 10.3389/fendo.2018.00553 30283404
    [Google Scholar]
  100. Fan Y. Pedersen O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021 19 1 55 71 10.1038/s41579‑020‑0433‑9 32887946
    [Google Scholar]
  101. Salguero M. Al-Obaide M. Singh R. Siepmann T. Vasylyeva T. Dysbiosis of Gram‑negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type�2 diabetic patients with chronic kidney disease. Exp. Ther. Med. 2019 18 5 3461 3469 10.3892/etm.2019.7943 31602221
    [Google Scholar]
  102. Tao S. Li L. Li L. Liu Y. Ren Q. Shi M. Liu J. Jiang J. Ma H. Huang Z. Xia Z. Pan J. Wei T. Wang Y. Li P. Lan T. Tang X. Zeng X. Lei S. Tang H. Ma L. Fu P. Understanding the gut–kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition. Acta Diabetol. 2019 56 5 581 592 10.1007/s00592‑019‑01316‑7 30888537
    [Google Scholar]
  103. Wu I.W. Gao S.S. Chou H.C. Yang H.Y. Chang L.C. Kuo Y.L. Dinh M.C.V. Chung W.H. Yang C.W. Lai H.C. Hsieh W.P. Su S.C. Integrative metagenomic and metabolomic analyses reveal severity-specific signatures of gut microbiota in chronic kidney disease. Theranostics 2020 10 12 5398 5411 10.7150/thno.41725 32373220
    [Google Scholar]
  104. Zhou B. Feng B. Qin Z. Zhao Y. Chen Y. Shi Z. Gong Y. Zhang J. Yuan F. Mu J. Activation of farnesoid X receptor downregulates visfatin and attenuates diabetic nephropathy. Mol. Cell. Endocrinol. 2016 419 72 82 10.1016/j.mce.2015.10.001 26450152
    [Google Scholar]
  105. Tang W.H.W. Wang Z. Kennedy D.J. Wu Y. Buffa J.A. Agatisa-Boyle B. Li X.S. Levison B.S. Hazen S.L. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 2015 116 3 448 455 10.1161/CIRCRESAHA.116.305360 25599331
    [Google Scholar]
  106. Sequeira-Antunes B. Ferreira H.A. Urinary biomarkers and point-of-care urinalysis devices for early diagnosis and management of disease: a review. Biomedicines 2023 11 4 1051 10.3390/biomedicines11041051 37189669
    [Google Scholar]
  107. Tian Y. Gao L. Abdussalam A. Xu G. Research Progress on Bionic Recognition and Biosensors for the Detection of Biomarkers of Diabetic Nephropathy. Chemosensors (Basel) 2023 11 10 510 10.3390/chemosensors11100510
    [Google Scholar]
  108. Wu J. Dong M. Rigatto C. Liu Y. Lin F. Lab-on-chip technology for chronic disease diagnosis. NPJ Digit. Med. 2018 1 1 7 10.1038/s41746‑017‑0014‑0 31304292
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128333694240928161703
Loading
/content/journals/cpd/10.2174/0113816128333694240928161703
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test