Skip to content
2000
Volume 1, Issue 2
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

The structure, properties, synthesis, negligible toxicity, and surface modification of PAMAM (polyamidoamine dendrimers) are all discussed in this review. The properties of supramolecular PAMAM dendrimers in nanopolymer science have shown great progress in delivering medicines. A divergent strategy was used to construct a Generation four (G4.0) PAMAM dendrimer with an ethylenediaminetetraacetic acid core and repeating units of acrylic acid and ethylenediamine. PAMAM dendrimers have an amidoamine repeat branching architecture that starts with an ethylene diamine initiator core. A generation [G] is a set of branching steps that follow each other. Drug molecules can be transferred either as covalently bonded to the functional groups on the dendrimer surface or by forming non-covalent complexes with dendrimers. Full-generation PAMAM dendrimers are terminated with amine surface [G0, G1, G2, G3, G4], whereas half-generation dendrimers are terminated with carboxylate [G1.5, G2.5, .]. PAMAM dendrimers appear to have negligible toxicity and immunogenicity, as well as favorable biodistribution; according to the current study, they can improve drug solubility, prevent drug degradation, increase circulation time, and potentially target drugs. According to the characterization study, they exhibit strong lipophilic qualities, allowing them to easily pass the blood-brain barrier. Due to the cheaper polydispersity index of dendrimers, they possess greater stability, and the void spaces of dendrimers are accessible for drug loading. The existence of a duplet functional group on the dendrimers enables appending vectors, ligands and devices to target drug delivery in the body.

Loading

Article metrics loading...

/content/journals/cosci/10.2174/2666779701666220907092152
2022-09-01
2024-12-28
Loading full text...

Full text loading...

References

  1. SampathkumarS. YaremaK. Dendrimers in Cancer Treatment and Diagnosis. Nanotechnologies for the Life Sciences.New YorkWiley200714310.1002/9783527610419.ntls0071
    [Google Scholar]
  2. KlajnertB. BryszewskaM. Dendrimers: Properties and applications.Acta Biochim. Pol.200148119920810.18388/abp.2001_5127 11440170
    [Google Scholar]
  3. TomaliaD. FréchetJ. Discovery of dendrimers and dendritic polymers: A brief historical perspective.J. Polym. Sci. A Polym. Chem.200240162719272810.1002/pola.10301
    [Google Scholar]
  4. TomaliaD.A. The dendritic state.Mater. Today200583344610.1016/S1369‑7021(05)00746‑7
    [Google Scholar]
  5. TomaliaD. BakerH. DewaldJ. HallM. KallosG. MartinS. A new class of polymers: Starburst-dendritic macromolecules.Polym. J.198517111713210.1295/polymj.17.117
    [Google Scholar]
  6. NewkomeG.R. YaoZ.Q. BakerG.R. GuptaV.K. Cascade molecules: A new approach to micelles.1aA [27]-arborol.J. Org. Chem.198550112003200410.1021/jo00211a052
    [Google Scholar]
  7. HawkerC.J. FrechetJ.M.J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic mac-romolecules.J. Am. Chem. Soc.2002112217638764710.1021/ja00177a027
    [Google Scholar]
  8. de GennesP.G. HervetH. Statistics of « starburst » polymers.J Phys Lettres.198344935136010.1051/jphyslet:01983004409035100
    [Google Scholar]
  9. MansfieldM.L. KlushinL.I. Monte carlo studies of dendrimer macromolecules.Macromolecules200226164262426810.1021/ma00068a029
    [Google Scholar]
  10. BhalgatM.K. RobertsJ.C. Molecular modeling of polyamidoamine (PAMAM) StarburstTM dendrimers.Eur. Polym. J.200036364765110.1016/S0014‑3057(99)00088‑9
    [Google Scholar]
  11. WolinskyJ.B. GrinstaffM.W. Therapeutic and diagnostic applications of dendrimers for cancer treatment.Adv. Drug Deliv. Rev.20086091037105510.1016/j.addr.2008.02.012 18448187
    [Google Scholar]
  12. KulhariH. PoojaD. PrajapatiS.K. ChauhanA.S. Performance evaluation of PAMAM dendrimer based simvastatin formulations.Int. J. Pharm.20114051-220320910.1016/j.ijpharm.2010.12.002 21145960
    [Google Scholar]
  13. BakerJ.R.Jr Dendrimer-based nanoparticles for cancer therapy.Hematology20091270871910.1182/asheducation‑2009.1.708 20008257
    [Google Scholar]
  14. DuncanR. Polymer conjugates as anticancer nanomedicines.Nat. Rev. Cancer20066968870110.1038/nrc1958 16900224
    [Google Scholar]
  15. TalanovV.S. ReginoC.A.S. KobayashiH. BernardoM. ChoykeP.L. BrechbielM.W. Dendrimer-based nanoprobe for dual modali-ty magnetic resonance and fluorescence imaging.Nano Lett.2006671459146310.1021/nl060765q 16834429
    [Google Scholar]
  16. YoonH.C. HongM.Y. KimH.S. Affinity biosensor for avidin using a double functionalized dendrimer monolayer on a gold electrode.Anal. Biochem.2000282112112810.1006/abio.2000.4608 10860508
    [Google Scholar]
  17. ZimmermanS. Dendrimers in molecular recognition and self-assembly.Curr. Opin. Colloid Interface Sci.199721899910.1016/S1359‑0294(97)80013‑1
    [Google Scholar]
  18. ZengF. ZimmermanS.C. Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly.Chem. Rev.19979751681171210.1021/cr9603892 11851463
    [Google Scholar]
  19. TomaliaD.A. HedstrandD.M. FerrittoM.S. Comb-Burst dendrimer topology. New macromolecular architecture derived from dendritic grafting.Macromolecules19912461435143810.1021/ma00006a039
    [Google Scholar]
  20. MaciejewskiM. Concepts of trapping topologically by shell molecules. J. Macromol.Sci. Part A - Chem.198217468970310.1080/00222338208062416
    [Google Scholar]
  21. KimY.H. WebsterO.W. Water soluble hyperbranched polyphenylene: “a unimolecular micelle?J. Am. Chem. Soc.1990112114592459310.1021/ja00167a094
    [Google Scholar]
  22. NewkomeG.R. MoorefieldC.N. BakerG.R. JohnsonA.L. BeheraR.K. Alkane cascade polymers possessing micellar topology: Mi-cellanoic acid derivatives.Angew. Chem. Int. Ed. Engl.19913091176117810.1002/anie.199111761
    [Google Scholar]
  23. ValérioC. FillautJ-L. RuizJ. GuittardJ. BlaisJ-C. AstrucD. The dendritic effect in molecular recognition: ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anions.J. Am. Chem. Soc.1997119102588258910.1021/ja964127t
    [Google Scholar]
  24. AstrucD. Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology.Nat. Chem.20124425526710.1038/nchem.1304 22437709
    [Google Scholar]
  25. TwymanL.J. KingA.S.H. MartinI.K. Catalysis inside dendrimers.Chem. Soc. Rev.2002312698210.1039/b107812g 12109207
    [Google Scholar]
  26. AstrucD. BoisselierE. OrnelasC. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine.Chem. Rev.201011041857195910.1021/cr900327d 20356105
    [Google Scholar]
  27. AzarN.T.P. MutluP. KhodadustR. GunduzU. Poly amidoamine PAMAM nanoparticles: Synthesis and biomedical applications.Hacettepe J Biol Chem.2013413289299
    [Google Scholar]
  28. JanaszewskaA. StudzianM. PetersenJ.F. FickerM. PaolucciV. ChristensenJ.B. TomaliaD.A. Klajnert-MaculewiczB. Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups-its uptake, efflux, and location in a cell.Colloids Surf. B Biointerfaces20171591121121610.1016/j.colsurfb.2017.07.052 28797971
    [Google Scholar]
  29. JanaszewskaA. CiolkowskiM. WróbelD. PetersenJ.F. FickerM. ChristensenJ.B. BryszewskaM. KlajnertB. Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines.Nanomedicine 20139446146410.1016/j.nano.2013.01.010 23434674
    [Google Scholar]
  30. EsfandR. TomaliaD.A. Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications.Drug Discov. Today20016842743610.1016/S1359‑6446(01)01757‑3 11301287
    [Google Scholar]
  31. BiswasS. DeshpandeP.P. NavarroG. DodwadkarN.S. TorchilinV.P. Lipid modified triblock PAMAM-based nanocarriers for siR-NA drug co-delivery.Biomaterials20133441289130110.1016/j.biomaterials.2012.10.024 23137395
    [Google Scholar]
  32. OttoD.P. de VilliersM.M. Poly(amidoamine) dendrimers as a pharmaceutical excipient. Are we there yet?J. Pharm. Sci.20181071758310.1016/j.xphs.2017.10.011 29045886
    [Google Scholar]
  33. KesharwaniP. BanerjeeS. GuptaU. CairulM. AminI.M. PadhyeS. PAMAM dendrimers as promising nanocarriers for RNAi ther-apeutics.Mater. Today2015181056557210.1016/j.mattod.2015.06.003
    [Google Scholar]
  34. WangY. CaoX. GuoR. ShenM. ZhangM. ZhuM. Targeted delivery of doxorubicin into cancer cells using a folic acid–dendrimer conjugate.Polym. Chem.2011281754176010.1039/c1py00179e
    [Google Scholar]
  35. ChenC.Z. CooperS.L. Interactions between dendrimer biocides and bacterial membranes.Biomaterials200223163359336810.1016/S0142‑9612(02)00036‑4 12099278
    [Google Scholar]
  36. ChenC.Z. Beck-TanN.C. DhurjatiP. van DykT.K. LaRossaR.A. CooperS.L. Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: Structure-activity studies.Biomacromolecules20001347348010.1021/bm0055495 11710139
    [Google Scholar]
  37. WinnickaK. SosnowskaK. WieczorekP. SachaP.T. TryniszewskaE. Poly(amidoamine) dendrimers increase antifungal activity of clotrimazole.Biol. Pharm. Bull.20113471129113310.1248/bpb.34.1129 21720026
    [Google Scholar]
  38. WinnickaK. WroblewskaM. WieczorekP. SachaP.T. TryniszewskaE. Hydrogel of ketoconazole and PAMAM dendrimers: Formu-lation and antifungal activity.Molecules20121744612462410.3390/molecules17044612 22513487
    [Google Scholar]
  39. JoseJ. CharyuluR.N. Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers.Int. J. Pharm. Investig.20166212312710.4103/2230‑973X.177833 27051632
    [Google Scholar]
  40. ZhuJ. XiongZ. ShenM. ShiX. Encapsulation of doxorubicin within multifunctional gadolinium-loaded dendrimer nanocomplexes for targeted theranostics of cancer cells.RSC Advances2015538302863029610.1039/C5RA01215E
    [Google Scholar]
  41. ÖztürkK. EsendağlıG. GürbüzM.U. TülüM. ÇalışS. Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers.Int. J. Pharm.20175171-215716710.1016/j.ijpharm.2016.12.009 27965135
    [Google Scholar]
  42. MajorosI.J. MycA. ThomasT. MehtaC.B. BakerJ.R. Jr PAMAM dendrimer-based multifunctional conjugate for cancer therapy: Synthesis, characterization, and functionality.Biomacromolecules20067257257910.1021/bm0506142 16471932
    [Google Scholar]
  43. ZhangL. ZhuS. QianL. PeiY. QiuY. JiangY. RGD-modified PEG-PAMAM-DOX conjugates: in vitro and in vivo studies for gli-oma.Eur. J. Pharm. Biopharm.201179223224010.1016/j.ejpb.2011.03.025 21496485
    [Google Scholar]
  44. KesharwaniP. XieL. BanerjeeS. MaoG. PadhyeS. SarkarF.H. IyerA.K. Hyaluronic acid-conjugated polyamidoamine den-drimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells.Colloids Surf. B Biointerfaces201513641342310.1016/j.colsurfb.2015.09.043 26440757
    [Google Scholar]
  45. ThanhV.M. NguyenT.H. TranT.V. NgocU.P. HoM.N. NguyenT.T. ChauY.N.T. LeV.T. TranN.Q. NguyenC.K. NguyenD.H. Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release.Mater. Sci. Eng. C20188229129810.1016/j.msec.2017.07.051 29025661
    [Google Scholar]
  46. PandeS. CrooksR.M. Analysis of poly(amidoamine) dendrimer structure by UV-vis spectroscopy.Langmuir201127159609961310.1021/la201882t 21714516
    [Google Scholar]
  47. CastagnolaM. ZuppiC. RossettiD.V. VincenzoniF. LupiA. VitaliA. MeucciE. MessanaI. Characterization of dendrimer prop-erties by capillary electrophoresis and their use as pseudostationary phases.Electrophoresis200223121769177810.1002/1522‑2683(200206)23:12<1769:AID‑ELPS1769>3.0.CO;2‑I 12116119
    [Google Scholar]
  48. SoininenA.J. KasëmiE. SchlüterA.D. IkkalaO. RuokolainenJ. MezzengaR. Self-assembly and induced circular dichroism in den-dritic supramolecules with cholesteric pendant groups.J. Am. Chem. Soc.201013231108821089010.1021/ja103754d 20681722
    [Google Scholar]
  49. AppelhansD. OertelU. MazzeoR. KomberH. HoffmannJ. WeidnerS. Dense-shell glycodendrimers: UV/Vis and electron para-magnetic resonance study of metal ion complexation.Proc. R Soc. A.2010466211714891513
    [Google Scholar]
  50. ChiuM.H. PrennerE.J. Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macro-molecules and their interactions.J. Pharm. Bioallied Sci.201131395910.4103/0975‑7406.76463 21430954
    [Google Scholar]
  51. PanZ. XuM. CheungE.Y. HarrisK.D.M. ConstableE.C. HousecroftC.E. Understanding the structural properties of a dendrimeric material directly from powder X-ray diffraction data.J. Phys. Chem. B200611024116201162310.1021/jp0624348 16800454
    [Google Scholar]
  52. GautamS. GuptaA. AgrawalS. SurekhaS. Spectroscopic characterization of dendrimers.Int. J. Pharm. Pharm. Sci.2012427780
    [Google Scholar]
  53. PorcarL. LiuY. VerduzcoR. HongK. ButlerP.D. MagidL.J. SmithG.S. ChenW.R. Structural investigation of PAMAM den-drimers in aqueous solutions using small-angle neutron scattering: Effect of generation.J. Phys. Chem. B200811247147721477810.1021/jp805297a 18950222
    [Google Scholar]
  54. MullenD.G. DesaiA. van DongenM.A. BarashM. BakerJ.R.Jr Banaszak HollM.M. Best practices for purification and characteri-zation of PAMAM dendrimer.Macromolecules201245125316532010.1021/ma300485p 23180887
    [Google Scholar]
  55. GiordanengoR. MazarinM. WuJ. PengL. CharlesL. Propagation of structural deviations of poly(amidoamine) fan-shape den-drimers (generations 0–3) characterized by MALDI and electrospray mass spectrometry.Int. J. Mass Spectrom.20072661–3627510.1016/j.ijms.2007.07.002
    [Google Scholar]
  56. BiricovaV. LaznickovaA. Dendrimers: Analytical characterization and applications.Bioorg. Chem.200937618519210.1016/j.bioorg.2009.07.006 19703699
    [Google Scholar]
  57. ZhouL. RussellD.H. ZhaoM. CrooksR.M. Characterization of poly(amidoamine) dendrimers and their complexes with Cu2+ by matrix-assisted laser desorption ionization mass spectrometry.Macromolecules2001343567357310.1021/ma001782j
    [Google Scholar]
  58. NajlahM. FreemanS. AttwoodD. D’EmanueleA. Synthesis, characterization and stability of dendrimer prodrugs.Int. J. Pharm.20063081-217518210.1016/j.ijpharm.2005.10.033 16384673
    [Google Scholar]
  59. XuT.H. LuR. QiuX.P. LiuX.L. XueP.C. TanC.H. Synthesis and characterization of carbazole-based dendrimers with porphyrin cores.Eur. J. Org. Chem.20062006174014402010.1002/ejoc.200600356
    [Google Scholar]
  60. CarrP.L. DaviesG.R. FeastW.J. StaintonN.M. WardI.M. Dielectric and mechanical characterization of aryl ester dendrimer/PET blends.Polymer (Guildf.)199637122395240110.1016/0032‑3861(96)85351‑1
    [Google Scholar]
  61. TintaruA. UngaroR. LiuX. ChenC. GiordanoL. PengL. CharlesL. Structural characterization of new defective molecules in poly(amidoamide) dendrimers by combining mass spectrometry and nuclear magnetic resonance.Anal. Chim. Acta2015853145145910.1016/j.aca.2014.10.048 25467490
    [Google Scholar]
  62. SharmaA. GautamS.P. GuptaA.K. Surface modified dendrimers: Synthesis and characterization for cancer targeted drug delivery.Bioorg. Med. Chem.201119113341334610.1016/j.bmc.2011.04.046 21570304
    [Google Scholar]
  63. PopescuM-C. FilipD. VasileC. CruzC. RueffJ.M. MarcosM. SerranoJ.L. SingurelG. Characterization by fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of PAMAM dendrimer.J. Phys. Chem. B200611029141981421110.1021/jp061311k 16854120
    [Google Scholar]
  64. LiJ. PiehlerL.T. QinD. BakerJ.R. TomaliaD.A. MeierD.J. Visualization and characterization of poly(amidoamine) dendrimers by atomic force microscopy.Langmuir200016135613561610.1021/la000035c
    [Google Scholar]
  65. ShiX. SunK. BaloghL.P. BakerJ.R. Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles.Nanotechnology200617184554456010.1088/0957‑4484/17/18/005
    [Google Scholar]
  66. XiaC. FanX. LocklinJ. AdvinculaR.C. GiesA. NonidezW. Characterization, supramolecular assembly, and nanostructures of thiophene dendrimers.J. Am. Chem. Soc.2004126288735874310.1021/ja0484404 15250726
    [Google Scholar]
  67. BaytekinB. WernerN. LuppertzF. EngeserM. BrüggemannJ. BitterS. How useful is mass spectrometry for the characterization of dendrimers?: “Fake defects” in the ESI and MALDI mass spectra of dendritic compounds.Int. J. Mass Spectrom.2006249-25013814810.1016/j.ijms.2006.01.016
    [Google Scholar]
  68. PaomephanP. AssavanigA. ChaturongakulS. CadyN.C. BergkvistM. NiamsiriN. Insight into the antibacterial property of chitosan nanoparticles against Escherichia coli and Salmonella typhimurium and their application as vegetable wash disinfectant.Food Control20188629430110.1016/j.foodcont.2017.09.021
    [Google Scholar]
  69. ShankarS. PangeniR. ParkJ.W. RhimJ.W. Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect.Mater. Sci. Eng. C20189250851710.1016/j.msec.2018.07.015 30184776
    [Google Scholar]
  70. AgnihotriS.A. MallikarjunaN.N. AminabhaviT.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery.J. Control. Release2004100152810.1016/j.jconrel.2004.08.010 15491807
    [Google Scholar]
  71. SharmaS. Enhanced antibacterial efficacy of silver nanoparticles immobilized in a chitosan nanocarrier. Int. J. Biol. Macromol.,2017104(Pt B),1740174510.1016/j.ijbiomac.2017.07.043 28736042
    [Google Scholar]
  72. AbbasiE. AvalSF. AkbarzadehA. MilaniM. NasrabadiHT; JooSW. Dendrimers: Synthesis, applications, and properties.Nanoscale Res. Lett.20149111010.1186/1556‑276X‑9‑247
    [Google Scholar]
  73. KimY. ParkE.J. NaD.H. Recent progress in dendrimer-based nanomedicine development.Arch. Pharm. Res.201841657158210.1007/s12272‑018‑1008‑4 29450862
    [Google Scholar]
  74. SwamiR. SinghI. KulhariH. JeengarM.K. KhanW. SistlaR. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: Anin vitro and in vivo evaluation.J. Nanopart. Res.201517627110.1007/s11051‑015‑3063‑9
    [Google Scholar]
  75. Márquez-MirandaV. PeñalozaJ.P. Araya-DuránI. ReyesR. VidaurreS. RomeroV. FuentesJ. CéricF. VelásquezL. González-NiloF.D. OteroC. Effect of terminal groups of dendrimers in the complexation with antisense oligonucleotides and cell uptake.Nanoscale Res. Lett.20161116610.1186/s11671‑016‑1260‑9 26847692
    [Google Scholar]
  76. VidalF. VásquezP. DíazC. NovaD. AldereteJ. GuzmánL. Mechanism of PAMAM dendrimers internalization in hippocampal neurons.Mol. Pharm.201613103395340310.1021/acs.molpharmaceut.6b00381 27556289
    [Google Scholar]
  77. ZhangF. Trent MagruderJ. LinY-A. CrawfordT.C. GrimmJ.C. SciortinoC.M. WilsonM.A. BlueM.E. KannanS. JohnstonM.V. BaumgartnerW.A. KannanR.M. Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous admin-istration in a large animal brain injury model.J. Control. Release201724917318210.1016/j.jconrel.2017.01.032 28137632
    [Google Scholar]
  78. SantosA. VeigaF. FigueirasA. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications.Materials (Basel)2019131657610.3390/ma13010065 31877717
    [Google Scholar]
  79. JingWei S.; Zhi-Chun, S.; Liao Yu, Q.; Min, Z. Nano drug delivery system based on low-generation PAMAM dendrimer loaded disulfi-ram and photosensitizer indocyanine green and application thereof.People’s Republic of China State Intellectual Property Office2018116
    [Google Scholar]
  80. WenjinX. JiaY. YanZ. JinlingX. QiZ. TianshunD. Environmental pH stimuli-responsive type tumor targeting and controlled drug release nano-carrier and preparation method of nano-carrierand preparation method of nano-carrier. China:China National Intellectual Property Administration2017110
    [Google Scholar]
  81. NieznanskiK. NieznanskaH. SurewiczW.K. SurewiczK. BandyszewskaM. Prion protein-dendrimer conjugates for use in treatment of Alzheimer disease. US20190092837, 2020
    [Google Scholar]
  82. JingweiS. ZhichunS. YuehuangW. Self-Assembled Nanoparticles Based on Low-Generation PAMAM (Polyamidoamine) Dendrimer Loaded Anti-Cancer Drugs and Application of Self-Assembled Nanoparticles in Anti-Tumor Field.ChinaChina National Intellectual Property Ad-ministration20175867
    [Google Scholar]
/content/journals/cosci/10.2174/2666779701666220907092152
Loading
/content/journals/cosci/10.2174/2666779701666220907092152
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cosmetics; covalently; Dendrimers; nanoparticles; PAMAM; toxicity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test