Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

Aim

The present study aimed to formulate and evaluate ascorbic acid and ferulic acid-containing liposomal gel for treating skin aging.

Method

In this study, the thin film hydration technique was employed to create liposomes containing phosphatidylcholine and cholesterol that were stimulated with ascorbic acid and ferulic acid. The produced liposomes were evaluated for stability, zeta potential, and size, and liposomal gel was evaluated for spreadability, viscosity, and drug release.

Results and Discussion

The optimized liposomes had a zeta potential of (-49) mV, a Polydispersity Index (PDI) of (0.488), a particle size of 1028 nm, and an entrapment efficiency of (90.20) %. On the other hand, the spreadability of liposomal gel was determined as 5.86 cm, and the percentage of drug release was recorded as 96.6%.

Conclusion

To achieve a stable liposomal formulation, it was discovered that the preparation of liposomes containing ascorbic acid and ferulic acid and then dispensing it in the form of liposomal gel was an effective method. After a thorough assessment of liposomes and liposomal gel, it was determined that the latter might be effectively employed as a topical gel to treat aging skin.

Loading

Article metrics loading...

/content/journals/cosci/10.2174/0126667797326413241219050359
2024-12-23
2025-07-13
Loading full text...

Full text loading...

References

  1. BochevaG. SlominskiR.M. SlominskiA.T. Neuroendocrine aspects of skin aging.Int. J. Mol. Sci.20192011279810.3390/ijms20112798 31181682
    [Google Scholar]
  2. LeeH. HongY. KimM. Structural and functional changes and possible molecular mechanisms in aged skin.Int. J. Mol. Sci.202122221248910.3390/ijms222212489 34830368
    [Google Scholar]
  3. ShinJ.W. KwonS.H. ChoiJ.Y. NaJ.I. HuhC.H. ChoiH.R. ParkK.C. Molecular mechanisms of dermal aging and antiaging approaches.Int. J. Mol. Sci.2019209212610.3390/ijms20092126 31036793
    [Google Scholar]
  4. SmithC. Natural antioxidants in prevention of accelerated ageing: A departure from conventional paradigms required.J. Physiol. Biochem.201874454955810.1007/s13105‑018‑0621‑5 29541947
    [Google Scholar]
  5. PetrukG. GiudiceD.R. RiganoM.M. MontiD.M. Antioxidants from plants protect against skin photoaging.Oxid. Med. Cell. Longev.20182018145493610.1155/2018/1454936
    [Google Scholar]
  6. ChenJ. LiY. ZhuQ. LiT. LuH. WeiN. HuangY. ShiR. MaX. WangX. ShengJ. Anti-skin-aging effect of epigallocatechin gallate by regulating epidermal growth factor receptor pathway on aging mouse model induced by d -Galactose.Mech. Ageing Dev.20171641710.1016/j.mad.2017.03.007 28343910
    [Google Scholar]
  7. ZhangS. DuanE. Fighting against skin aging: The way from bench to bedside.Cell Transplant.201827572973810.1177/0963689717725755 29692196
    [Google Scholar]
  8. MichalakM. Plant-derived antioxidants: Significance in skin health and the ageing process.Int. J. Mol. Sci.202223258510.3390/ijms23020585 35054770
    [Google Scholar]
  9. PieleszA. BiniaśD. BobińskiR. SarnaE. PaluchJ. WaksmańskaW. The role of topically applied l -ascorbic acid in ex-vivo examination of burn-injured human skin.Spectrochim. Acta A Mol. Biomol. Spectrosc.201718527928510.1016/j.saa.2017.05.055 28591686
    [Google Scholar]
  10. RavettiS. ClementeC. BrignoneS. HergertL. AllemandiD. PalmaS. Ascorbic acid in skin health.Cosmetics2019645810.3390/cosmetics6040058
    [Google Scholar]
  11. PullarJ. CarrA. VissersM. The roles of vitamin C in skin health.Nutrients20179886610.3390/nu9080866 28805671
    [Google Scholar]
  12. KimJ.K. ParkS.U. A recent overview on the biological and pharmacological activities of ferulic acid.EXCLI J.201918132138 30956646
    [Google Scholar]
  13. GirsangE. ListerI.N.E. GintingC.N. BethasariM. AmaliaA. WidowatiW. Comparison of antiaging and antioxidant activities of protocatechuic and ferulic acids.Mol. Cell. Biom. Sci.202042687510.21705/mcbs.v4i2.90
    [Google Scholar]
  14. LiD. RuiY. GuoS. LuanF. LiuR. ZengN. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives.Life Sci.202128411992110.1016/j.lfs.2021.119921 34481866
    [Google Scholar]
  15. RajN.D. SinghD. A critical appraisal on ferulic acid: Biological profile, biopharmaceutical challenges and nano formulations.Health Sci. Rep.2022510006310.1016/j.hsr.2022.100063
    [Google Scholar]
  16. MagarT.K. BoafoG.F. LiX. ChenZ. HeW. Liposome-based delivery of biological drugs.Chin. Chem. Lett.202233258759610.1016/j.cclet.2021.08.020
    [Google Scholar]
  17. TranV.V. MoonJ.Y. LeeY.C. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies.J. Control. Release201930011414010.1016/j.jconrel.2019.03.003 30853528
    [Google Scholar]
  18. BilalM. IqbalH.M.N. New insights on unique features and role of nanostructured materials in cosmetics.Cosmetics2020722410.3390/cosmetics7020024
    [Google Scholar]
  19. SundariP.T. AnushreeH. Novel delivery systems: Current trend in cosmetic industry.Eur. J. Pharm. Med. Res.201748617627
    [Google Scholar]
  20. HartiniP.T. HasibuanP.A. Formulation and evaluation of liposome Moringa oleifera seed oil (Moringa oleifera L.) as anti-aging.Int. J. Sci. Tech. & Manag.20223411791183
    [Google Scholar]
  21. VuM.T. LeN.T.T. PhamT.L.B. NguyenN.H. NguyenD.H. Development and characterization of soy lecithin liposome as potential drug carrier systems for codelivery of letrozole and paclitaxel.J. Nanomater.202020201910.1155/2020/8896455
    [Google Scholar]
  22. MiereF. VicasS.I. TimarA.V. GaneaM. ZdrincaM. CavaluS. FriteaL. VicasL. MuresanM. PallagA. DobjanschiL. Preparation and characterization of two different liposomal formulations with bioactive natural extract for multiple applications.Processes (Basel)20219343210.3390/pr9030432
    [Google Scholar]
  23. BhattacharjeeA. DasP.J. DeyS. NayakA.K. RoyP.K. ChakrabartiS. MarbaniangD. DasS.K. RayS. ChattopadhyayP. MazumderB. Development and optimization of besifloxacin hydrochloride loaded liposomal gel prepared by thin film hydration method using 32 full factorial design.Colloids Surf. A Physicochem. Eng. Asp.202058512407110.1016/j.colsurfa.2019.124071
    [Google Scholar]
  24. MostafaM. AlaaeldinE. AlyU.F. SarhanH.A. Optimization and characterization of thymoquinone-loaded liposomes with enhanced topical anti-inflammatory activity.AAPS PharmSciTech20181983490350010.1208/s12249‑018‑1166‑1 30218265
    [Google Scholar]
  25. SinghP. BodycombJ. TraversB. TatarkiewiczK. TraversS. MatyasG.R. BeckZ. Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology.Int. J. Pharm.201956668068610.1016/j.ijpharm.2019.06.013 31176851
    [Google Scholar]
  26. SmithM.C. CristR.M. ClogstonJ.D. McNeilS.E. Zeta potential: A case study of cationic, anionic, and neutral liposomes.Anal. Bioanal. Chem.2017409245779578710.1007/s00216‑017‑0527‑z 28762066
    [Google Scholar]
  27. GuldikenB. GibisM. BoyaciogluD. CapanogluE. WeissJ. Physical and chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during storage.Food Res. Int.201810849149710.1016/j.foodres.2018.03.071 29735084
    [Google Scholar]
  28. RajuD. JoseJ. Development and evaluation of novel topical gel of neem extract for the treatment of bacterial infections.J. Cosmet. Dermatol.20191861776178310.1111/jocd.12965 31012982
    [Google Scholar]
  29. SharmaN. VermaS. BHAGWAT, D Development of liposomal topical gel of bexarotene for effective management of cutaneous t-cell lymphoma: Formulation to preclinical assessment. İstanbul.J. Pharm. (Cairo)202353119
    [Google Scholar]
  30. S, P.; Md, D. Design, formulation, and characterization of liposomal-encapsulated gel for transdermal delivery of fluconazole.Asian J. Pharm. Clin. Res.201811841742410.22159/ajpcr.2018.v11i8.25621
    [Google Scholar]
  31. ShahH. MadniA. RahimM.A. JanN. KhanA. KhanS. JabarA. AliA. Fabrication, in vitro and ex vivo evaluation of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein.PLoS One20211610e025814110.1371/journal.pone.0258141 34665836
    [Google Scholar]
  32. MurtiY.B. HartiniY.S. HinrichsW.L.J. FrijlinkH.W. SetyaningsihD. UV-Vis spectroscopy to enable determination of the dissolution behavior of solid dispersions containing curcumin and piperine.J. Young Pharm.2018111263010.5530/jyp.2019.11.6
    [Google Scholar]
  33. MadanS. NehateC. BarmanT.K. RathoreA.S. KoulV. Design, preparation, and evaluation of liposomal gel formulations for treatment of acne: in vitro and in vivo studies.Drug Dev. Ind. Pharm.201945339540410.1080/03639045.2018.1546310 30442066
    [Google Scholar]
  34. SakaR. JainH. KommineniN. ChellaN. KhanW. Enhanced penetration and improved therapeutic efficacy of bexarotene via topical liposomal gel in imiquimod induced psoriatic plaque model in BALB/c mice.J. Drug Deliv. Sci. Technol.20205810169110.1016/j.jddst.2020.101691
    [Google Scholar]
  35. PrahadeeshN. SithambaresanM. MathiventhanU. A study on hydrogen peroxide scavenging activity and ferric reducing ability of simple coumarins.Emerg. Sci. J.20182641742710.28991/esj‑2018‑01161
    [Google Scholar]
  36. MaliS.S. KilledarS.G. Formulation and in vitro evaluation of gel for SPF determination and free radical scavenging activity of turpentine and lavender oil.Pharma Innov. J.2018738590
    [Google Scholar]
  37. SinghA. MaheshwariS. Formulation and evaluation of ferulic acid and oleic acid containing liposomal gel for skin nourishment.Intel. Phar20236510.1016/j.ipha.2023.10.014
    [Google Scholar]
/content/journals/cosci/10.2174/0126667797326413241219050359
Loading
/content/journals/cosci/10.2174/0126667797326413241219050359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test