Skip to content
2000
image of Studying the Antioxidant and Antimicrobial Activity of Lipsticks Made with Phycoerythrin Under the Influence of Different Magnetic Fields

Abstract

Background

Several studies have shown the benefits of magnetic treatment on the productivity of secondary metabolites, growth, and the state of microalgae cultures.

Objective

This study examined extracted from the cyanobacterium Nostoc sp. (30 mT and 60 mT).

Material and Methods

After cyanobacterial culture under magnetic fields of 30 mT and 60 mT, the PE was extracted and lipsticks were formulated. The primary evaluation methods used in this study are melting point, breaking point, linoleic acid peroxidation assay, force of application, stability, surface abnormalities, skin irritation, thixotropy character, dispersibility test, perfume stability, colorimetric assay, antioxidant, and microbial analysis.

Results

The 30 mT treatment showed the highest concentration, purity, dry weight, antioxidant activity, and percentage of PE extraction compared to control cultures. No significant differences were found in the melting point, stability, thixotropy character, dispersibility, or perfume stability tests. The breaking point and force of application decreased significantly during 30 days. Peroxidation assay tests revealed lipstick increased oxidation and antioxidant activity after 30 days of 30 and 60 mT treatments compared to non-PE cultures. The study found that the amount of ΔE increased significantly in cultures without PE over time, while this increase was lower in magnetic field-treated cultures. However, no signs of crystal formation, surface wrinkles, liquid secretion, itching, or skin irritation were observed in 30 days of 30 and 60 mT magnetic treatments compared to control cultures with PE. Microbial analyzes over 30 days showed a significantly lower number of bacteria under magnetic fields than control cultures. In addition, the results of counting and coliform bacteria were negative for thirty days. The antioxidant activity of PE was significantly higher in magnetic field-treated cultures. The number of Staphylococcus aureus decreased significantly in all cultures under magnetic field influence.

Conclusions

The overall results of this study showed that magnetic fields had a significant effect in many evaluation tests on the culture of cyanobacteria Nostoc sp. As a result, lipsticks made with extracted PE have more antioxidant .

Loading

Article metrics loading...

/content/journals/cosci/10.2174/0126667797320940241008213641
2024-10-21
2024-11-23
Loading full text...

Full text loading...

References

  1. Ramu Ganesan A. Kannan M. Karthick Rajan D. Pillay A.A. Shanmugam M. Sathishkumar P. Phycoerythrin: A pink pigment from red sources (rhodophyta) for a greener biorefining approach to food applications. Crit. Rev. Food Sci. Nutr. 2023 63 31 10928 10946 10.1080/10408398.2022.2081962 35648055
    [Google Scholar]
  2. Hsieh-Lo M. Castillo G. Ochoa-Becerra M.A. Mojica L. Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Res. 2019 42 101600 10.1016/j.algal.2019.101600
    [Google Scholar]
  3. Punampalam R. Khoo K.S. Sit N.W. Evaluation of antioxidant properties of phycobiliproteins and phenolic compounds extracted from Bangia atropurpurea . Malays. J. Fund. Appl. Sci. 2018 14 2 289 297 10.11113/mjfas.v14n2.1096
    [Google Scholar]
  4. Pez Jaeschke D. Rocha Teixeira I. Damasceno Ferreira Marczak L. Domeneghini Mercali G. Phycocyanin from Spirulina: A review of extraction methods and stability. Food Res. Int. 2021 143 110314 10.1016/j.foodres.2021.110314 33992333
    [Google Scholar]
  5. Kuddus M. Singh P. Thomas G. Al-Hazimi A. Recent developments in production and biotechnological applications of C-phycocyanin. BioMed Res. Int. 2013 2013 1 9 10.1155/2013/742859 24063013
    [Google Scholar]
  6. Tan H.T. Yusoff F.M. Khaw Y.S. Noor Mazli N.A.I. Nazarudin M.F. Shaharuddin N.A. Katayama T. Ahmad S.A. A review on a hidden gem: Phycoerythrin from blue-green algae. Mar. Drugs 2022 21 1 28 10.3390/md21010028 36662201
    [Google Scholar]
  7. Mourelle M. Gómez C. Legido J. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics 2017 4 4 46 10.3390/cosmetics4040046
    [Google Scholar]
  8. Lopes G. Silva M. Vasconcelos V. The pharmacological potential of cyanobacteria. Academic Press 2022
    [Google Scholar]
  9. Morone J. Alfeus A. Vasconcelos V. Martins R. Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals — A new bioactive approach. Algal Res. 2019 41 101541 10.1016/j.algal.2019.101541
    [Google Scholar]
  10. Berthon J.Y. Nachat-Kappes R. Bey M. Cadoret J.P. Renimel I. Filaire E. Marine algae as attractive source to skin care. Free Radic. Res. 2017 51 6 555 567 10.1080/10715762.2017.1355550 28770671
    [Google Scholar]
  11. Joshi S. Kumari R. Upasani V.N. Applications of algae in cosmetics: An overview. Int. J. Innov. Res. Sci. Eng. Technol. 2018 7 2 1269 10.15680/IJIRSET.2018.0702038
    [Google Scholar]
  12. Singh R. Parihar P. Singh M. Bajguz A. Kumar J. Singh S. Singh V.P. Prasad S.M. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: Current status and future prospects. Front. Microbiol. 2017 8 515 10.3389/fmicb.2017.00515 28487674
    [Google Scholar]
  13. Singh S. Kate B.N. Banerjee U.C. Bioactive compounds from cyanobacteria and microalgae: An overview. Crit. Rev. Biotechnol. 2005 25 3 73 95 10.1080/07388550500248498 16294828
    [Google Scholar]
  14. Mourelle L. Gómez C.P. Legido J.L. Legido N. Innovation in the use of microalgae in thermalism. Bol. Soc. Esp. Hidrol. Med. 2016 31 53 64 10.23853/bsehm.2017.0204
    [Google Scholar]
  15. Lisby S. Gniadecki R. Wulf H.C. UV‐induced DNA damage in human keratinocytes: Quantitation and correlation with long‐term survival. Exp. Dermatol. 2005 14 5 349 355 10.1111/j.0906‑6705.2005.00282.x 15854128
    [Google Scholar]
  16. Morone J. Lopes G. Preto M. Vasconcelos V. Martins R. Exploitation of filamentous and picoplanktonic cyanobacteria for cosmetic applications: Potential to improve skin structure and preserve dermal matrix components. Mar. Drugs 2020 18 9 486 10.3390/md18090486 32972038
    [Google Scholar]
  17. Kiki M.J. Biopigments of microbial origin and their application in the cosmetic industry. Cosmetics 2023 10 2 47 10.3390/cosmetics10020047
    [Google Scholar]
  18. Colorado Gómez V.K. Ruiz‐Sánchez J.P. Méndez‐Zavala A. Morales‐Oyervides L. Montañez J. Biotechnological production of microbial pigments: Recent findings. Handbook of Natural Colorants 2023 439 457 10.1002/9781119811749.ch20
    [Google Scholar]
  19. Yang G. Wang J. Mei Y. Luan Z. Effect of magnetic field on protein and oxygen-production of Chlorella vulgaris . Math. Phys. Fish. Sci. 2011 9 1 116 126
    [Google Scholar]
  20. Zhiyong L. Siyuan G. Lin L. Effects of magnetic-field on the nutrition of Spirulina platensis and mechanisms analysis. Shengwu Wuli Xuebao 2001 17 3 587 591
    [Google Scholar]
  21. Liu L. Jokela J. Wahlsten M. Nowruzi B. Permi P. Zhang Y.Z. Xhaard H. Fewer D.P. Sivonen K. Nostosins, trypsin inhibitors isolated from the terrestrial cyanobacterium Nostoc sp. strain FSN. J. Nat. Prod. 2014 77 8 1784 1790 10.1021/np500106w 25069058
    [Google Scholar]
  22. Gharibvand S.M. Nowruzi B. Morowvat M.H. Study the effect of colored and white LED light radiation on the biological activity of Desmonostoc alborizicum cultivated under modified BG-110 medium composition. Iran J Sci 2024 48 1 343 356 10.1007/s40995‑024‑01596‑x
    [Google Scholar]
  23. Deamici K.M. Costa J.A.V. Santos L.O. Magnetic fields as triggers of microalga growth: Evaluation of its effect on Spirulina sp. Bioresour. Technol. 2016 220 62 67 10.1016/j.biortech.2016.08.038 27566513
    [Google Scholar]
  24. Bagchi S.N. Das P.K. Banerjee S. Saggu M. Bagchi D. A bentazone-resistant mutant of cyanobacterium, Synechococcus elongatus PCC7942 adapts different strategies to counteract on bromoxynil- and salt-mediated oxidative stress. Physiol. Mol. Biol. Plants 2012 18 2 115 123 10.1007/s12298‑012‑0111‑0 23573048
    [Google Scholar]
  25. Nowruzi B. Anvar S.A.A. Ahari H. Extraction, purification and evaluation of antimicrobial and antioxidant properties of phycoerythrin from terrestrial cyanobacterium Nostoc sp. FA1. J. Microbiol. 2020 13 138 153
    [Google Scholar]
  26. Afreen S. Fatma T. Laccase production and simultaneous decolorization of synthetic dyes by cyanobacteria. Int. J. Innov. Res. Sci. Eng. Technol. 2013 2 3563 3568
    [Google Scholar]
  27. Mishra S. Mishra D.R. A novel remote sensing algorithm to quantify phycocyanin in cyanobacterial algal blooms. Environ. Res. Lett. 2014 9 11 114003 10.1088/1748‑9326/9/11/114003
    [Google Scholar]
  28. Jamdade K. Kostha A. Jain N. Dwivedi S. Malviya S. Kharia A. Formulation and evaluation of herbal lipstick using Beta vulgaris and Punica granatum extract. Int. J. Pharm. Life Sci. 2020 11 11 4 6575 6579
    [Google Scholar]
  29. Patil C. Kadam R. Bedis S. Formulation and evaluation of sugar cane wax based lipstick. Int J Trend Sci Res Dev 2019 3 827 829
    [Google Scholar]
  30. Poomanee W. Kongin K. Sriputorn K. Leelapornpisid P. Application of factorial experimental design for optimization and development of color lipstick containing antioxidant-rich Sacha inchi oil. Pak. J. Pharm. Sci. 2021 34 4 1437 1444 10.36721/PJPS.2021.34.4.REG.1437‑1444.1 34799319
    [Google Scholar]
  31. Setyawaty R. Pratama M.R. The usage of jati leaves extract (Tectona grandis Lf) as color of lipstick. Trad Med Magaz 2018 23 1 16 22 10.22146/mot.31385
    [Google Scholar]
  32. Aygun O. Aslantas O. Oner S. A survey on the microbiological quality of Carra, a traditional Turkish cheese. J. Food Eng. 2005 66 3 401 404 10.1016/j.jfoodeng.2004.04.013
    [Google Scholar]
  33. Rahman M.A. Ahmad T. Mahmud S. Barman N. Haque M. Uddin M. Isolation, identification and antibiotic sensitivity pattern of Salmonella spp. from locally isolated egg samples. Am J Pure Appl Biosci 2019 1 ajpab.0191 10.34104/ajpab.019.019111
    [Google Scholar]
  34. Sanjee S.A. Karim M.E. Microbiological quality assessment of frozen fish and fish processing materials from Bangladesh. Int. J. Food Sci. 2016 2016 1 6 10.1155/2016/8605689 27019847
    [Google Scholar]
  35. Sonani R.R. Rastogi R.P. Patel R. Madamwar D. Recent advances in production, purification and applications of phycobiliproteins. World J. Biol. Chem. 2016 7 1 100 109 10.4331/wjbc.v7.i1.100 26981199
    [Google Scholar]
  36. Gorgich M. Passos M.L.C. Mata T.M. Martins A.A. Saraiva M.L.M.F.S. Caetano N.S. Enhancing extraction and purification of phycocyanin from Arthrospira sp. with lower energy consumption. Energy Rep. 2020 6 312 318 10.1016/j.egyr.2020.11.151
    [Google Scholar]
  37. Nowruzi B. Sarvari G. Blanco S. The cosmetic application of cyanobacterial secondary metabolites. Algal Res. 2020 49 101959 10.1016/j.algal.2020.101959
    [Google Scholar]
  38. Moraes C.C. Sala L. Cerveira G.P. Kalil S.J. C-phycocyanin extraction from Spirulina platensis wet biomass. Braz. J. Chem. Eng. 2011 28 1 45 49 10.1590/S0104‑66322011000100006
    [Google Scholar]
  39. Dini I. Laneri S. The new challenge of green cosmetics: Natural food ingredients for cosmetic formulations. Molecules 2021 26 13 3921 10.3390/molecules26133921 34206931
    [Google Scholar]
  40. Amberg N. Fogarassy C. Green consumer behavior in the cosmetics market. Resources 2019 8 3 137 10.3390/resources8030137
    [Google Scholar]
  41. Setthamongkol P. Kulert W. Wanmanee S. Swami R. Kutako M. Chanthathamrongsiri N. Semangoen T. Hiransuchalert R. In vitro characterization and assessment of a potential cosmetic cream containing phycocyanin extracted from Arthrospira platensis BUUC1503 blue-green algae. J. Appl. Phycol. 2023 35 4 1685 1697 10.1007/s10811‑023‑02988‑z
    [Google Scholar]
  42. Hirano M. Ohta A. Abe K. Magnetic field effects on photosynthesis and growth of the cyanobacterium Spirulina platensis . J. Ferment. Bioeng. 1998 86 3 313 316 10.1016/S0922‑338X(98)80136‑0
    [Google Scholar]
  43. Borah D. Rout J. Nooruddin T. Application of nanotechnology in bioenergy production from algae and cyanobacteria. Modern Nanotechnol. Springer Nature 2023 267 291 10.1007/978‑3‑031‑31104‑8_12
    [Google Scholar]
  44. Small D.P. Hüner N.P.A. Wan W. Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics 2012 33 4 298 308 10.1002/bem.20706 21953117
    [Google Scholar]
  45. Li Z.Y. Guo S.Y. Li L. Cai M.Y. Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor. Bioresour. Technol. 2007 98 3 700 705 10.1016/j.biortech.2006.01.024 16581244
    [Google Scholar]
  46. Repacholi M.H. Greenebaum B. Interaction of static and extremely low frequency electric and magnetic fields with living systems: Health effects and research needs. Bioelectromagnetics 1999 20 3 133 160
    [Google Scholar]
  47. Sahebjamei H. Abdolmaleki P. Ghanati F. Effects of magnetic field on the antioxidant enzyme activities of suspension‐cultured tobacco cells. Bioelectromagnetics 2007 28 1 42 47 10.1002/bem.20262 16988990
    [Google Scholar]
  48. Green L.M. Miller A.B. Agnew D.A. Greenberg M.L. Li J. Villeneuve P.J. Tibshirani R. Childhood leukemia and personal monitoring of residential exposures to electric and magnetic fields in Ontario, Canada. Cancer Causes Control 1999 10 3 233 243 10.1023/A:1008919408855 10454069
    [Google Scholar]
  49. Shasha D. Magogo C. Dzomba P. Reversed phase HPLC-UV quantitation of BHA, BHT and TBHQ in food items sold in Bindura supermarkets, Zimbabwe. Int Res J Pure Appl Chem 2014 4 5 578 584
    [Google Scholar]
  50. Bauer L.M. Costa J.A.V. da Rosa A.P.C. Santos L.O. Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cultivations. Bioresour. Technol. 2017 244 Pt 2 1425 1432 10.1016/j.biortech.2017.06.036 28634128
    [Google Scholar]
/content/journals/cosci/10.2174/0126667797320940241008213641
Loading
/content/journals/cosci/10.2174/0126667797320940241008213641
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test