Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

Background

Sunscreens are critical products used against harmful ultraviolet (UV) radiation. However, beyond the effect of sun protection, the inorganic UV filters zinc oxide and titanium dioxide have shown antimicrobial activity.

Objective

This study aimed to evaluate the potential additional beneficial effects of mineral sunscreens containing zinc oxide and titanium dioxide as antimicrobial agents on acne-prone skin.

Methods

Transepidermal water loss, skin hydration, and skin pH of twelve volunteers were measured before and 2 h after the application of three mineral sunscreens. The antimicrobial activity of the mineral sunscreens was determined against , , and in a time-kill test.

Results and Discussion

The studied mineral sunscreens did not affect either the stratum corneum hydration or its integrity, but they increased the skin pH from 4 to 6, which could impact the skin microbiota balance. At the same time, the tested mineral sunscreens inhibited , , and .

Conclusion

This study suggests that the two UV filters can have positive effects on acne-prone skin and, thus, extend the benefits of photoprotective formulations. Nevertheless, further research is currently being conducted.

Loading

Article metrics loading...

/content/journals/cosci/10.2174/0126667797285930240306190539
2024-03-18
2025-01-18
Loading full text...

Full text loading...

References

  1. GeoffreyK. MwangiA.N. MaruS.M. Sunscreen products: Rationale for use, formulation development and regulatory considerations.Saudi Pharm. J.20192771009101810.1016/j.jsps.2019.08.00331997908
    [Google Scholar]
  2. NeryÉ.M. MartinezR.M. VelascoM.V.R. A short review of alternative ingredients and technologies of inorganic UV filters.J. Cosmet. Dermatol.20202041061106532858778
    [Google Scholar]
  3. RomanholeR.C. FavaA.L.M. TundisiL.L. MacedoL.M. SantosÉ.M. AtaideJ.A. MazzolaP.G. Unplanned absorption of sun-screen ingredients: Impact of formulation and evaluation methods.Int. J. Pharm.202059112001310.1016/j.ijpharm.2020.12001333132151
    [Google Scholar]
  4. FDA. U.S. Food and drug administration. Sunscreen drug products for over-the-counter human use. proposed rule, 21 CFR parts. 2019. Available from: https://www.google.com/search?client=firefox-b-d&q=FDA.+U.S.+Food+and+Drug+Administration.+Sunscreen+Drug+Products+for+Over-the-Counter+Human+Use.+Proposed+Rule%2C+21+CFR+Parts+ (Accessed on December 29th 2023).
  5. SopheeS.S. PrasadR.G.S.V. SrinivasJ.V. AparnaR.S.L. PhaniA.R. Antibacterial activity of TiO2 and ZnO microparticles combination on water polluting bacteria.J. Green Sci. Techno.201311202610.1166/jgst.2013.1008
    [Google Scholar]
  6. KhanS.T. Al-KhedhairyA.A. MusarratJ. ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: A review.J. Nanopart. Res.2015176276Epub ahead of print10.1007/s11051‑015‑3074‑6
    [Google Scholar]
  7. MenazeaA.A. AwwadN.S. Antibacterial activity of TiO2 doped ZnO composite synthesized via laser ablation route for antimicrobial application.J. Mater. Res. Technol.2020949434944110.1016/j.jmrt.2020.05.103
    [Google Scholar]
  8. BattistinM. DuriniE. DissetteV. BonettoA. MarcominiA. CasagrandeE. BrunettaA. ZiosiP. MolesiniS. GavioliR. NicoliF. ManfrediniS. VertuaniS. BaldisserottoA. Synthesis and characterization of new multifunctional self-boosted filters for UV protection: ZnO complex with dihydroxyphenyl benzimidazole carboxylic acid.Molecules201924244546Epub ahead of print10.3390/molecules2424454631842340
    [Google Scholar]
  9. GuptaM. MahajanV.K. MehtaK.S. Zinc therapy in dermatology: A review.Dermatol. Res. Pract.2014201470915210.1155/2014/709152
    [Google Scholar]
  10. Piquero-CasalsJ. Morgado-CarrascoD. Rozas-MuñozE. Mir-BonaféJ.F. TrullàsC. JourdanE. Piquero-MartinJ. ZouboulisC.C. KrutmannJ. Sun exposure, a relevant exposome factor in acne patients and how photoprotection can improve outcomes.J. Cosmet. Dermatol.20232261919192810.1111/jocd.1572636946555
    [Google Scholar]
  11. ZaengleinA.L. PathyA.L. SchlosserB.J. AlikhanA. BaldwinH.E. BersonD.S. BoweW.P. GraberE.M. HarperJ.C. KangS. KeriJ.E. LeydenJ.J. ReynoldsR.V. SilverbergN.B. Stein GoldL.F. TollefsonM.M. WeissJ.S. DolanN.C. SaganA.A. SternM. BoyerK.M. BhushanR. Guidelines of care for the management of acne vulgaris.J. Am. Acad. Dermatol.2016745945973.e3310.1016/j.jaad.2015.12.03726897386
    [Google Scholar]
  12. World Medical Association declaration of helsinki: Ethical principles for medical research involving human subjects.JAMA2013310202191219410.1001/jama.2013.28105324141714
    [Google Scholar]
  13. ASTM. E2325-16 standard guide for assessment of antimicrobial activity using a time-kill procedure. 2016. Available from: https://www.astm.org/e2315-16.html 10.1520/E2315‑16
  14. Brazil. National Health Surveillance Agency. Brazilian Pharmacopoeia.6th edBrasíliaNational Health Surveillance Agency2019
    [Google Scholar]
  15. AliS. YosipovitchG. Skin pH: From basic science to basic skin care.Acta Derm. Venereol.201393326126710.2340/00015555‑153123322028
    [Google Scholar]
  16. DegenA. KosecM. Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution.J. Eur. Ceram. Soc.200020666767310.1016/S0955‑2219(99)00203‑4
    [Google Scholar]
  17. LionettiN. RiganoL. The new sunscreens among formulation strategy, stability issues, changing norms, safety and efficacy evaluations.Cosmetics2017421510.3390/cosmetics4020015
    [Google Scholar]
  18. AlexanderH. BrownS. DanbyS. FlohrC. Research techniques made simple: Transepidermal water loss measurement as a research tool.J. Invest. Dermatol.20181381122952300.e110.1016/j.jid.2018.09.00130348333
    [Google Scholar]
  19. ZhangQ. MurawskyM. LaCountT. KastingG.B. LiS.K. Transepidermal water loss and skin conductance as barrier integrity tests.Toxicol. In Vitro20185112913510.1016/j.tiv.2018.04.00929698667
    [Google Scholar]
  20. YamamotoA. TakenouchiK. ItoM. Impaired water barrier function in acne vulgaris.Arch. Dermatol. Res.1995287221421810.1007/BF012623357763094
    [Google Scholar]
  21. ThiboutotD. Del RossoJ.Q. Acne vulgaris and the epidermal barrier: Is acne vulgaris associated with inherent epidermal abnormalities that cause impairment of barrier functions? Do any topical acne therapies alter the structural and/or functional integrity of the epidermal barrier?J. Clin. Aesthet. Dermatol.201362182423441236
    [Google Scholar]
  22. AnsariS.A. Skin pH and Skin Flora BarrelAO PayeM. Handbook of Cosmetic Science and Technology: Nova Iorque: Informa Healthcare2014163173
    [Google Scholar]
  23. HülpüschC. TremmelK. HammelG. BhattacharyyaM. de TomassiA. NussbaumerT. NeumannA.U. ReigerM. Traidl-HoffmannC. Skin pH–dependent Staphylococcus aureus abundance as predictor for increasing atopic dermatitis severity.Allergy202075112888289810.1111/all.1446132562575
    [Google Scholar]
  24. IyerV. RautJ. DasguptaA. Impact of pH on growth of Staphylococcus epidermidis and Staphylococcus aureus in vitro.J. Med. Microbiol.202170910.1099/jmm.0.001421
    [Google Scholar]
  25. KortingH.C. LukacsA. VogtN. UrbanJ. EhretW. RuckdeschelG. Influence of the pH-value on the growth of Staphylococcus epidermidis, Staphylococcus aureus and Propionibacterium acnes in continuous culture.Zentralbl. Hyg. Umweltmed.1992193178901503605
    [Google Scholar]
  26. DrénoB. DagnelieM.A. KhammariA. CorvecS. The skin microbiome: A new actor in inflammatory acne.Am. J. Clin. Dermatol.202021S1182410.1007/s40257‑020‑00531‑132910436
    [Google Scholar]
  27. O’NeillA.M. GalloR.L. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris.Microbiome20186117710.1186/s40168‑018‑0558‑530285861
    [Google Scholar]
  28. FournièreM. LatireT. SouakD. FeuilloleyM.G.J. BedouxG. Staphylococcus epidermidis and Cutibacterium acnes: Two major sentinels of skin microbiota and the influence of cosmetics.Microorganisms20208111752Epub ahead of print10.3390/microorganisms811175233171837
    [Google Scholar]
  29. MayslichC. GrangeP.A. DupinN. Cutibacterium acnes as an opportunistic pathogen: An update of its virulence-associated factors.Microorganisms20219230310.3390/microorganisms902030333540667
    [Google Scholar]
  30. MussiL. BabyA.R. CamargoJunior F.B.C. PadovaniG. SufiB.S. MagalhãesW.V. Propanediol (and) caprylic acid (and) xylitol as a new single topical active ingredient against acne: In vitro and in vivo efficacy assays.Molecules20212621670410.3390/molecules2621670434771112
    [Google Scholar]
  31. KumarB. PathakR. MaryP.B. JhaD. SardanaK. GautamH.K. New insights into acne pathogenesis: Exploring the role of acne-associated microbial populations.Dermatologica Sin.201634677310.1016/j.dsi.2015.12.004
    [Google Scholar]
  32. ClaudelJ.P. AuffretN. LecciaM.T. PoliF. CorvecS. DrénoB. Staphylococcus epidermidis: A potential new player in the physiopathology of acne?Dermatology2019235428729410.1159/00049985831112983
    [Google Scholar]
  33. TabriF. The association between Staphylococcus epidermidis and palmitic acid level in patients with acne vulgaris.Surg Cosmet Dermatology201911105109
    [Google Scholar]
  34. JusufN.K. PutraI.B. SariL. Differences of microbiomes found in non-inflammatory and inflammatory lesions of acne vulgaris.Clin. Cosmet. Investig. Dermatol.20201377378033122933
    [Google Scholar]
  35. DrenoB. MartinR. MoyalD. HenleyJ.B. KhammariA. SeitéS. Skin microbiome and acne vulgaris: Staphylococcus, a new actor in acne.Exp. Dermatol.201726979880310.1111/exd.1329628094874
    [Google Scholar]
  36. ZhuZ. ZengQ. WangZ. XueY. ChenT. HuY. WangY. WuY. ShenQ. JiangC. ShenC. LiuL. ZhuH. LiuQ. Skin microbiome reconstruction and lipid metabolism profile alteration reveal the treatment mechanism of Cryptotanshinone in the acne rat.Phytomedicine202210115410110.1016/j.phymed.2022.15410135472695
    [Google Scholar]
  37. FangB. YuM. ZhangW. WangF. A new alternative to cosmetics preservation and the effect of the particle size of the emulsion droplets on preservation efficacy.Int. J. Cosmet. Sci.201638549650310.1111/ics.1231726940643
    [Google Scholar]
  38. PintoD. CiardielloT. FranzoniM. PasiniF. GiulianiG. RinaldiF. Effect of commonly used cosmetic preservatives on skin resident microflora dynamics.Sci. Rep.2021111869510.1038/s41598‑021‑88072‑333888782
    [Google Scholar]
  39. Prospector. Personal care 2022. Available from: https://www.ulprospector.com/pt/la/PersonalCare (Accessed 15 October 2022).
  40. BabayevskaN. PrzysieckaŁ. IatsunskyiI. NowaczykG. JarekM. JaniszewskaE. JurgaS. ZnO size and shape effect on antibacterial activity and cytotoxicity profile.Sci. Rep.2022121814810.1038/s41598‑022‑12134‑335581357
    [Google Scholar]
  41. BaeJ.Y. ParkS.N. Evaluation of anti‐microbial activities of ZnO, citric acid and a mixture of both against Propionibacterium acnes.Int. J. Cosmet. Sci.201638655055710.1111/ics.1231826940755
    [Google Scholar]
  42. BonnetM. MassardC. VeisseireP. CamaresO. AwitorK.O. Environmental toxicity and antimicrobial efficiency of titanium dioxide nanoparticles in suspension.J. Biomater. Nanobiotechnol.20156321322410.4236/jbnb.2015.63020
    [Google Scholar]
  43. GharpureS. YadwadeR. AnkamwarB. Non-antimicrobial and non-anticancer properties of ZnO nanoparticles biosynthesized using different plant parts of bixa orellana.ACS Omega2022721914193310.1021/acsomega.1c0532435071882
    [Google Scholar]
  44. RaghebN. BorgH. Antimicrobial effect of titanium oxide (Tio2) nano particles in completely edentulous patients. A randomized clinical trial.Advan. Dental J.20213417318410.21608/adjc.2021.91184.1105
    [Google Scholar]
  45. Aumeeruddy-ElalfiZ. Gurib-FakimA. MahomoodallyM.F. Chemical composition, antimicrobial and antibiotic potentiating activity of essential oils from 10 tropical medicinal plants from Mauritius.J. Herb. Med.201662889510.1016/j.hermed.2016.02.002
    [Google Scholar]
  46. BoeiraC.P. PiovesanN. FloresD.C.B. SoquettaM.B. LucasB.N. HeckR.T. AlvesJ.S. CampagnolP.C.B. dos SantosD. FloresE.M.M. da RosaC.S. TerraN.N. Phytochemical characterization and antimicrobial activity of Cymbopogon citratus extract for application as natural antioxidant in fresh sausage.Food Chem.202031912655310.1016/j.foodchem.2020.12655332197214
    [Google Scholar]
  47. AlmuhayawiM.S. Al JaouniS.K. AlmuhayawiS.M. SelimS. Abdel-MawgoudM. Elevated CO2 improves the nutritive value, antibacterial, anti-inflammatory, antioxidant and hypocholestecolemic activities of lemongrass sprouts.Food Chem.202135712973010.1016/j.foodchem.2021.12973033989926
    [Google Scholar]
  48. GasparA.L. GasparA.B. ContiniL.R.F. SilvaM.F. ChagasE.G.L. BahúJ.O. ConchaV.O.C. CarvalhoR.A. SeverinoP. SoutoE.B. LopesP.S. YoshidaC.M.P. Lemongrass (Cymbopogon citratus)-incorporated chitosan bioactive films for potential skincare applications.Int. J. Pharm.2022628122301Epub ahead of print10.1016/j.ijpharm.2022.12230136270554
    [Google Scholar]
  49. Regulation (EC) No. 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products (Recast). Available online: https://ec.europa.eu/health/sites/health/files/endocrine_disruptors/docs/cosmetic_1223_2009_ regulation_en.pdf (accessed 10 October 2022).
  50. SirelkhatimA. MahmudS. SeeniA. KausN.H.M. AnnL.C. BakhoriS.K.M. HasanH. MohamadD. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism.Nano-Micro Lett.20157321924210.1007/s40820‑015‑0040‑x30464967
    [Google Scholar]
  51. KrishnamoorthyR. AthinarayananJ. PeriyasamyV.S. AlshuniaberM.A. AlshammariG. HakeemM.J. AhmedM.A. AlshatwiA.A. Antibacterial mechanisms of zinc oxide nanoparticle against bacterial food pathogens resistant to beta-lactam antibiotics.Molecules2022278248910.3390/molecules2708248935458685
    [Google Scholar]
  52. AnnL.C. MahmudS. BakhoriS.K.M. SirelkhatimA. MohamadD. HasanH. SeeniA. RahmanR.A. Effect of surface modification and UVA photoactivation on antibacterial bioactivity of zinc oxide powder.Appl. Surf. Sci.201429240541210.1016/j.apsusc.2013.11.152
    [Google Scholar]
  53. Azizi-LalabadiM. EhsaniA. DivbandB. Alizadeh-SaniM. Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic.Sci. Rep.2019911743910.1038/s41598‑019‑54025‑031767932
    [Google Scholar]
  54. De DicastilloC.L. CorreaM.G. MartínezF.B. Antimicrobial effect of titanium dioxide nanoparticles.Antimicrobial resistance a one health perspective. MareșM. LimS.H.E. LaiK-S. LondonIntechOpen2020
    [Google Scholar]
  55. FilipeP. SilvaJ.N. SilvaR. Cirne de CastroJ.L. Marques GomesM. AlvesL.C. SantusR. PinheiroT. Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption.Skin Pharmacol. Physiol.200922526627510.1159/00023555419690452
    [Google Scholar]
  56. SadriehN. WokovichA.M. GopeeN.V. ZhengJ. HainesD. ParmiterD. SiitonenP.H. CozartC.R. PatriA.K. McNeilS.E. HowardP.C. DoubW.H. BuhseL.F. Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles.Toxicol. Sci.2010115115616610.1093/toxsci/kfq04120156837
    [Google Scholar]
  57. Leite-SilvaV.R. LamerM.L. SanchezW.Y. LiuD.C. SanchezW.H. MorrowI. MartinD. SilvaH.D.T. ProwT.W. GriceJ.E. RobertsM.S. The effect of formulation on the penetration of coated and uncoated zinc oxide nanoparticles into the viable epidermis of human skin in vivo.Eur. J. Pharm. Biopharm.201384229730810.1016/j.ejpb.2013.01.02023454052
    [Google Scholar]
  58. Leite-SilvaV.R. LiuD.C. SanchezW.Y. StudierH. MohammedY.H. HolmesA. BeckerW. GriceJ.E. BensonH.A.E. RobertsM.S. Effect of flexing and massage on in vivo human skin penetration and toxicity of zinc oxide nanoparticles.Nanomedicine201611101193120510.2217/nnm‑2016‑001027102240
    [Google Scholar]
  59. SenzuiM. TamuraT. MiuraK. IkarashiY. WatanabeY. FujiiM. Study on penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro.J. Toxicol. Sci.201035110711310.2131/jts.35.10720118631
    [Google Scholar]
  60. MohammedY.H. HolmesA. HaridassI.N. SanchezW.Y. StudierH. GriceJ.E. BensonH.A.E. RobertsM.S. Support for the safe use of zinc oxide nanoparticle sunscreens: Lack of skin penetration or cellular toxicity after repeated application in volunteers.J. Invest. Dermatol.2019139230831510.1016/j.jid.2018.08.02430448212
    [Google Scholar]
  61. LíškováA. LetašiováS. JantováS. BrezováV. KandarovaH. Evaluation of phototoxic and cytotoxic potential of TiO2 nanosheets in a 3D reconstructed human skin model.Altern. Anim. Exp.202037344145032113185
    [Google Scholar]
  62. MartinsA.M. MartoJ.M. A sustainable life cycle for cosmetics: From design and development to post-use phase.Sustain. Chem. Pharm.20233510117810.1016/j.scp.2023.101178
    [Google Scholar]
  63. LozanoC. GivensJ. StienD. Matallana-SurgetS. LebaronP. Bioaccumulation and toxicological effects of UV-filters on marine species.Handb Environ Chem. Tovar-SánchezA. Sánchez-QuilesD. BlascoJ. Springer20208513010.1007/698_2019_442
    [Google Scholar]
  64. XiaB. ChenB. SunX. QuK. MaF. DuM. Interaction of TiO 2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization.Sci. Total Environ.201550852553310.1016/j.scitotenv.2014.11.06625483108
    [Google Scholar]
  65. PengX. PalmaS. FisherN.S. WongS.S. Effect of morphology of ZnO nanostructures on their toxicity to marine algae.Aquat. Toxicol.20111023-418619610.1016/j.aquatox.2011.01.01421356181
    [Google Scholar]
  66. HaniganD. TruongL. SchoepfJ. NosakaT. MulchandaniA. TanguayR.L. WesterhoffP. Trade-offs in ecosystem impacts from nanomaterial versus organic chemical ultraviolet filters in sunscreens.Water Res.201813928129010.1016/j.watres.2018.03.06229656193
    [Google Scholar]
/content/journals/cosci/10.2174/0126667797285930240306190539
Loading
/content/journals/cosci/10.2174/0126667797285930240306190539
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test