- Home
- A-Z Publications
- Current Organic Synthesis
- Previous Issues
- Volume 21, Issue 5, 2024
Current Organic Synthesis - Volume 21, Issue 5, 2024
Volume 21, Issue 5, 2024
-
-
Synthesis of Phentermine and its Derivatives
Authors: Khushbu Upadhyaya, Shruti Shukla, Bharti P. Meena and Jaya DwivediIn recent years, a growing global concern has been obesity. Patients with obesity are at major risk for developing a number of diseases. These diseases may significantly impact patient’s daily lives and increase the mortality rate. Over a year, medication for obesity has undergone substantial changes. An amphetamine-like prescription drug called Phentermine (Adipex-P, Lomaira) is used to suppress appetite. In the last few years, Phentermine and its derivatives have attracted much attention due to their use in weight reduction; by reducing appetite or prolonging the feeling of fullness, it can aid in weight reduction. So, reviewing the synthesis of Phentermine and its derivatives becomes imperative. Therefore, various synthetic routes for Phentermine (from benzaldehyde, isopropyl phenyl ketone, dimethyl benzyl carbinol) and its derivatives synthesis, involving ortho-palladation, are also reviewed here comprehensively.
-
-
-
A Bird's Eye Review of Recent Reports on 1,3,4-oxadiazoles' Anti-inflammatory Insights Perspectives
Authors: Tarun Chaudhary and Prabhat K. UpadhyayAnti-inflammatory agents suppress inflammatory mediators such as prostaglandins, prostacyclins, cytokines, thromboxane, histamine, bradykinins, COX-I and COX-II, 5-LOX, and other substances. These inflammatory chemicals create inflammatory responses when tissue is injured by trauma, bacteria, heat, toxins, or other factors. These inflammatory reactions may result in fluid flow from the blood vessels into the tissues, resulting in swelling. When the therapeutic importance of these clinically beneficial medications in treating inflammation was recognized, it spurred the invention of even more powerful and important molecules. Oxadiazole derivatives are exceptionally potent NSAIDs, and they are widely used. Comprehensive biochemical, structure-activity-relationship and pharmacological investigations have demonstrated that these 1,3,4-oxadiazole compounds exhibit anti-inflammatory properties. This review article outlines the synthesis scheme for 1,3,4-oxadiazole used in treating inflammation.
-
-
-
Iodoxybenzoic Acid (IBX) in Organic Synthesis: A Septennial Review
Authors: Ravi Varala, Vittal Seema, Mohammed M. Alam, Narsimhaswamy Dubasi and Rama Devi VummadiThis study reviews the oxidative applications of 2-iodoxybenzoic acid (IBX) in organic synthesis, focusing on C-H functionalization, hetero-hetero bond formations, ring cleavage reactions, dehydrogenation, heterocyclic ring formations, and some miscellaneous reactions in a comprehensive and critical way. It compiles the literature starting from mid-2015 to date.
-
-
-
The Golden Spice for Life: Turmeric with the Pharmacological Benefits of Curcuminoids Components, Including Curcumin, Bisdemethoxycurcumin, and Demethoxycurcumins
Authors: Mohamad H. Shahrajabian and Wenli SunBackground: Turmeric (Curcuma longa L.), belonging to the Zingiberaceae family, is a perennial rhizomatous plant of tropical and subtropical regions. The three major chemical components responsible for the biological activities of turmeric are curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Methods: The literature search included review articles, analytical studies, randomized control experiments, and observations, which have been gathered from various sources, such as Scopus, Google Scholar, PubMed, and ScienceDirect. A review of the literature was carried out using the keywords: turmeric, traditional Chinese medicine, traditional Iranian medicine, traditional Indian medicine, curcumin, curcuminoids, pharmaceutical benefits, turmerone, demethoxycurcumin, and bisdemethoxycurcumin. The main components of the rhizome of the leaf are α-turmerone, β-turmerone, and arturmerone. Results: The notable health benefits of turmeric are antioxidant activity, gastrointestinal effects, anticancer effects, cardiovascular and antidiabetic effects, antimicrobial activity, photoprotector activity, hepatoprotective and renoprotective effects, and appropriate for the treatment of Alzheimer's disease and inflammatory and edematic disorders. Discussion: Curcuminoids are phenolic compounds usually used as pigment spices with many health benefits, such as antiviral, antitumour, anti-HIV, anti-inflammatory, antiparasitic, anticancer, and antifungal effects. Curcumin, bisdemethoxycurcumin, and demethoxycurcumin are the major active and stable bioactive constituents of curcuminoids. Curcumin, which is a hydroponic polyphenol, and the main coloring agent in the rhizomes of turmeric, has anti-inflammatory, antioxidant, anti-cancer, and anticarcinogenic activities, as well as beneficial effects for infectious diseases and Alzheimer's disease. Bisdemethoxycurcumin possesses antioxidant, anti-cancer, and anti-metastasis activities. Demethoxycurcumin, which is another major component, has anti-inflammatory, antiproliferative, and anti-cancer activities and is the appropriate candidate for the treatment of Alzheimer's disease. Conclusion: The goal of this review is to highlight the health benefits of turmeric in both traditional and modern pharmaceutical sciences by considering the important roles of curcuminoids and other major chemical constituents of turmeric.
-
-
-
Novel Penicillin Derivatives Against Selected Multiple-drug Resistant Bacterial Strains: Design, Synthesis, Structural Analysis, In Silico and In Vitro Studies
Introduction: The rising numbers of multiple drug-resistant (MDR) pathogens and the consequent antibacterial therapy failure that resulted in severe medical conditions push to illustrate new molecules with extended activity against the resistant strains. In this manner, chemical derivatization of known antibiotics is proposed to save efforts in drug discovery, and penicillins serve as an ideal in this regard. Methods: Seven synthesized 6-aminopenicillanic acid-imine derivatives (2a-g) were structure elucidated using FT-IR, 1H NMR, 13C NMR, and MS spectroscopy. In silico molecular docking and ADMET studies were made. The analyzed compounds obeyed Lipinski’s rule of five and showed promising in vitro bactericidal potential when assayed against E. coli, E. cloacae, P. aeruginosa, S. aureus, and A. baumannii. MDR strains using disc diffusion and microplate dilution techniques. Results: The MIC values were 8 to 32 μg/mL with more potency than ampicillin, explained by better membrane penetration and more ligand-protein binding capacity. The 2g entity was active against E. coli. This study was designed to find new active penicillin derivatives against MDR pathogens. Conclusion: The products showed antibacterial activity against selected MDR species and good PHK, PHD properties, and low predicted toxicity, offering them as future candidates that require further preclinical assays.
-
-
-
Organocatalytic Synthesis of (Hetero)arylidene Malononitriles Using a More Sustainable, Greener, and Scalable Strategy
Authors: Suzaimi Johari, Mohd Rafie Johan and Nader Ghaffari KhalighAim and Objective: The establishment of a green and sustainable Knoevenagel condensation reaction in organic chemistry is still crucial. This work aimed to provide a newly developed metal-free and halogen-free catalytic methodology for the synthesis of CS and (hetero-) arylidene malononitriles in the laboratory and industrial scale. The Knoevenagel condensation reaction of various carbonyl groups with malononitrile was investigated in ethanol, an ecofriendly medium, in the presence of seven nitrogen-based organocatalysts. Materials and Methods: A comparative study was conducted using two as-obtained and four commercially available nitrogen-based organocatalysts in Knoevenagel condensation reactions. The synthesis of CS gas (2-chlorobenzylidene malononitrile) using a closed catalytic system was optimized based on their efficiency and greener approach. Results: The conversion of 100% and excellent yields were obtained in a short time. The products could be crystallized directly from the reaction mixture. After separating pure products, the residue solution was employed directly in the next run without any concentration, activation, purification, or separation. Furthermore, the synthesis of 2-chlorobenzylidenemahmonitrile (CS) was carried out on a large scale using imidazole as a selected nitrogen-based catalyst, afforded crystalline products with 95 ± 2% yield in five consecutive runs. Conclusion: Energy efficiency, cost saving, greener conditions, using only 5 mol% of organocatalyst, high recyclability of catalyst, prevention of waste, recycling extractant by a rotary evaporator for non-crystallized products, demonstrated the potential commercial production of CS using imidazole in ethanol as an efficient and highly recyclable catalytic system.
-
Volumes & issues
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)