Skip to content
2000
Volume 11, Issue 4
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

TiCl is a widely utilized reagent in organic synthesis, often functioning through Lewis’s acid-promoted transformations. This review explores the potential for TiCl to catalyse various examples, adhering to the classic catalyst definition and allowing for the use of sub-stoichiometric quantities of the catalyst relative to the substrate. The use of metal catalysts in organic synthesis has witnessed a surge in interest due to their ability to facilitate a wide range of chemical reactions. This review article highlights the significance of titanium metal catalysts comparison with other metal catalysts like Pd (NO), IrO, Au/FeO, SnCl, and AlCl. Among these catalysts, titanium tetrachloride (TiCl) has gained considerable popularity for its cost-effectiveness, eco-friendliness, enhancing reaction efficiency, and ability to accelerate reactions while reducing reaction times. This comparison helps in determining the most suitable catalyst for different chemical processes, considering efficiency, safety, and economic factors. TiCl operates as a non-consumable catalyst, allowing for the use of sub-stoichiometric quantities relative to the substrate.

This review discusses TiCl's applications, efficiency, and mechanisms in organic synthesis. It distinguishes itself by presenting new applications and comparative efficiencies of TiCl, delving into detailed reaction mechanisms, and discussing its environmental, economic, and safety aspects. TiCl's role in pivotal chemical reactions, such as Friedel-Crafts acylation and alkylation, epoxidation, cyclization, Mannich reactions, Suzuki-Miyaura reactions, Pechmann condensation, Knoevenagel condensation, anti-Markovnikov hydration, pinacol coupling, and Diels-Alder reactions. These reactions have led to the synthesis of biologically active compounds like zolmitriptan, ropinirole, risperidone, and rivastigmine. TiCl-catalyzed reactions are characterized by their mild conditions, high efficiency, and selectivity, making them an attractive choice for modern organic cyclic, acyclic, and heterocyclic synthesis.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372288854240129052155
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. ComandèA. GrecoM. BelsitoE.L. LiguoriA. LeggioA. A titanium tetrachloride-based effective methodology for the synthesis of dipeptides.RSC Advances2019938221372214210.1039/C9RA04058G 35518841
    [Google Scholar]
  2. ManeP. ShindeB. MundadaP. GawadeV. KaraleB. BurungaleA. Sodium acetate/MWI: A green protocol for the synthesis of tetrahydrobenzo(α)xanthen-11-ones with biological screening.Res. Chem. Intermed.202046123124110.1007/s11164‑019‑03945‑7
    [Google Scholar]
  3. ArianpourF. JahangiriM. AbediS. VafaeeF. YousifQ.A. Salavati-NiasariM. In-situ polymerization of silica/polyethylene using bisupported Ziegler-Natta catalyst of nanosilica/BOM/TiCl4/TEAL: Study of thermo-mechanical properties system.Inorg. Chem. Commun.202214310972610.1016/j.inoche.2022.109726
    [Google Scholar]
  4. ManßenM. SchaferL.L. Titanium catalysis for the synthesis of fine chemicals – development and trends.Chem. Soc. Rev.202049196947699410.1039/D0CS00229A 32852007
    [Google Scholar]
  5. ZahnouneR. AsserneF. OurhrissN. Ouled AitounaA. BarhoumiA. HakmaouiY. BelghitiM.E. AbourichaS. El ajlaoui, R.; Zeroual, A. Theoretical survey of Diels-Alder between acrylic acid and isoprene catalyzed by the titanium tetrachloride and titanium tertafluoride.J. Mol. Struct.2022126913363010.1016/j.molstruc.2022.133630
    [Google Scholar]
  6. JiaoN. Nitrogenation Strategy for the Synthesis of N-containing Compounds.Springer201710.1007/978‑981‑10‑2813‑7
    [Google Scholar]
  7. YanT.H. AnanthanB. ChangS.H. A new entry of highly selective and nucleophilic BrH 2 C‐ and ClH 2 C‐titanium complexes for carbonyl coupling.Eur. J. Org. Chem.20192019477878710.1002/ejoc.201801438
    [Google Scholar]
  8. KhodaeiM.M. NazariE. Synthesis of diarylmethanes via a Friedel–Crafts benzylation using arenes and benzyl alcohols in the presence of triphenylphosphine ditriflate.Tetrahedron Lett.201253385131513510.1016/j.tetlet.2012.07.051
    [Google Scholar]
  9. MukaiyamaT. Titanium tetrachloride in organic synthesis.Angew. Chem. Int. Ed. Engl.1977161281782610.1002/anie.197708171
    [Google Scholar]
  10. LiuH. YangW. ZhengS. HeY. WangG. QinH. ZhuF. JiangX. ShenJ. GongX. Stereoselective synthesis of 2-deoxy-2-disubstituted ribonolactones through a TiCl4-mediated Evans-Aldol reaction.Tetrahedron Lett.20229515372810.1016/j.tetlet.2022.153728
    [Google Scholar]
  11. LiM. XiaD. YangY. DuX. DongG. JiangA. FanR. Doping of (In 2 (phen) 3 Cl 6)·CH 3 CN·2H 2 O indium‐based metal–organic framework into hole transport layer for enhancing perovskite solar cell efficiencies.Adv. Energy Mater.2018810170205210.1002/aenm.201702052
    [Google Scholar]
  12. XiangM. ZhouC. YangX.L. ChenB. TungC.H. WuL.Z. Visible light-catalyzed benzylic C–H bond chlorination by a combination of organic dye (Acr+-Mes) and N-chlorosuccinimide.J. Org. Chem.202085149080908710.1021/acs.joc.0c01000 32434320
    [Google Scholar]
  13. MoloneyJ MoloneyM. Nucleophilic aliphatic substitution. organic reaction mechanisms 2017: An annual survey covering the literature dated january to december 2017.Org. Chem.202031734110.1002/9781119426295.ch7
    [Google Scholar]
  14. MagauerT. RodeA. WurstK. A general entry to ganoderma meroterpenoids: Synthesis of lingzhiol via photoredox catalysis.Organic Chemistry2022
    [Google Scholar]
  15. LanY. Computational Methods in Organometallic Catalysis: From Elementary Reactions to Mechanisms.John Wiley & Sons202110.1002/9783527346028
    [Google Scholar]
  16. HunnurR. KambleR. DorababuA. Sunil KumarB. BathulaC. TiCl4: An efficient catalyst for one-pot synthesis of 1,2-dihydro-1-aryl-naphtho-(1,2-e)(1,3)oxazin-3-one derivatives and their drug score analysis.Arab. J. Chem.201710S1760S176410.1016/j.arabjc.2013.06.028
    [Google Scholar]
  17. KashiwaN. The discovery and progress of MgCl 2 ‐supported TiCl4 catalysts.J. Polym. Sci. A Polym. Chem.20044211810.1002/pola.10962
    [Google Scholar]
  18. RahmatpourA. MohammadianS. Polystyrene-supported TiCl4 as a novel, efficient and reusable polymeric Lewis acid catalyst for the chemoselective synthesis and deprotection of 1,1-diacetates under eco-friendly conditions.C. R. Chim.2013161091291910.1016/j.crci.2013.01.012
    [Google Scholar]
  19. BordbarH. YousefiA.A. AbediniH. Production of titanium tetrachloride (TiCl4) from titanium ores: A review.Polyolefins J.201742149173
    [Google Scholar]
  20. QuirkR.P. PickelD.L.G. Polymerization: Elastomer Synthesis. Science and Technology of Rubber.Elsevier200529104
    [Google Scholar]
  21. ChoudharyK. BiswasR.G. MannaA. SinghV.K. Kinetic resolution of electron-deficient bromohydrins via copper(II)-catalyzed C–C bond cleavage.J. Org. Chem.20238816120411205310.1021/acs.joc.3c01368 37533192
    [Google Scholar]
  22. PongchanT. TumawongP. PhiwkliangW. SamingpraiS. PraserthdamP. JongsomjitB. The effect of different prepared TiCl4-MgCl2 catalysts on the behavior of gas-phase ethylene/1-hexene copolymerization.S. Afr. J. Chem. Eng.202346566410.1016/j.sajce.2023.07.012
    [Google Scholar]
  23. BaekJ. NamK. ParkJ. ChaJ. Adsorption selectivity of TiCl4 precursor on Pt surfaces for atomic layer deposition via density functional theory.Appl. Surf. Sci.202260615469510.1016/j.apsusc.2022.154695
    [Google Scholar]
  24. MOHAMED, AH.; MASURIER, N. MASURIER N. Recent advances in Aza Friedel-Crafts reaction: Strategies for achiral and stereoselective synthesis.Org. Chem. Front.20231018471866
    [Google Scholar]
  25. ImaneB.K. RegadiaA. AliB. BoualemL.M. AhceneH. AbedelkaderN. synthesis of novel system spiro-heterocyclic by diels-alder reaction catalysed with TiCl4 For (4+ 2) cycloaddion.J. Pharm. Negat. Results202335693576
    [Google Scholar]
  26. RahmatpourA. EeimenR. GoodarziN. Titanium tetrachloride incorporated crosslinked polystyrene copolymer as an efficient and recyclable polymeric Lewis acid catalyst for the synthesis of B -amino carbonyl compounds at room temperature.Synth. Commun.2019492111610.1080/00397911.2019.1650379
    [Google Scholar]
  27. Karimi ZarchiM.A. BehboodiK. MirjaliliB.F. Synthesis and characterization of a new polymeric catalyst and used for the synthesis of imidazole derivatives.Res. Chem. Intermed.202147124929494210.1007/s11164‑021‑04577‑6
    [Google Scholar]
  28. NisaR.U. MariaM. WasimF. MahmoodT. LudwigR. AyubK. Mechanistic insight of TiCl 4 catalyzed formal (3 + 3) cyclization of 1,3-bis(silyl enol ethers) with 1,3-dielectrophiles.RSC Advances20155114943049431410.1039/C5RA19238B
    [Google Scholar]
  29. PatelC. SunojR.B. TiCl4-promoted Baylis-Hillman reaction: Mechanistic rationale toward product distribution and stereoselectivity.J. Org. Chem.201075235936710.1021/jo902123x 20000733
    [Google Scholar]
  30. TaylorP. Nucleophilic attack at the carbonyl group.Mechanism and Synthesis.The Royal Society of Chemistry20032155
    [Google Scholar]
  31. e, T.; Xing, Z.; Yang, S. Efficient removal of VOCl3 from crude TiCl4 by organic reagent: Reaction mechanism, kinetics and thermodynamics.Hydrometallurgy202019610542410.1016/j.hydromet.2020.105424
    [Google Scholar]
  32. RamachandranP.V. AlawaedA.A. HamannH.J. TiCl 4 -catalyzed hydroboration of ketones with ammonia borane.J. Org. Chem.20228719132591326910.1021/acs.joc.2c01744 36094411
    [Google Scholar]
  33. FringuelliF. PizzoF. VaccaroL. Lewis-acid catalyzed organic reactions in water. The case of AlCl(3), TiCl4, and SnCl4 believed to be unusable in aqueous medium.J. Org. Chem.200166134719472210.1021/jo010373y 11421799
    [Google Scholar]
  34. Rahiminezhad-SoltaniM. SaberyanK. SimchiA. New insight into reaction mechanisms of TiCl4 for the synthesis of TiO2 nanoparticles in H2O-assisted atmospheric-pressure CVS process.Mater. Sci. Eng. B202126411495810.1016/j.mseb.2020.114958
    [Google Scholar]
  35. SoganiN.K. BansalR. SinhaP. Enantioselective hetero-diels-alder reaction of aromatic aldehydes catalyzed by ((R)-1, 1´-Bi-2-naphthoxy) titanium dichloride: Experimental and theoretical results.Curr. Catal.201651253410.2174/2211544705666151229193044
    [Google Scholar]
  36. Titanium tetrachloride - Wikipedia.Available from: https://en.wikipedia.org/wiki/Titanium_tetrachloride
  37. GhoshA.K. XuC.X. KulkarniS.S. WinkD. TiCl4-promoted multicomponent reaction: A new entry to functionalized α-amino acids.Org. Lett.20057171010.1021/ol048302j 15624964
    [Google Scholar]
  38. AhmedN. PatheG.K. JheetaS. SnCl4 or TiCl4: Highly efficient catalysts for the detetrahydropyranylation and demethoxymethylation of phenolic ethers and sequential one-pot asymmetric synthesis of 3-aryl-2-hydroxy-2,3-dihydroindan-1-ones from chalcone epoxides.RSC Advances2015577630956310310.1039/C5RA10499H
    [Google Scholar]
  39. RuanZ. ZhuL. ZhengK. HongR. Reinventing the wheel for enabling the synthesis of hinckdentine A.Tetrahedron Lett.20216715288010.1016/j.tetlet.2021.152880
    [Google Scholar]
  40. RoyS. Prins-friedel-crafts cyclization: Synthesis of diversely functionalized six-membered oxacycles.Curr. Org. Chem.202125563565110.2174/1385272825666210114105020
    [Google Scholar]
  41. PajkertR. KolomeitsevA.A. MilewskaM. RöschenthalerG.V. KoroniakH. TiCl4 and grignard reagent-promoted ring-opening reactions of various epoxides: Synthesis of γ-hydroxy-α,α-difluoromethylenephosphonates.Tetrahedron Lett.200849426046604910.1016/j.tetlet.2008.07.146
    [Google Scholar]
  42. OkabeT.H. TakedaO. Fundamentals of thermochemical reduction of TiCl4.Extractive Metallurgy of Titanium.Elsevier2020659510.1016/B978‑0‑12‑817200‑1.00005‑3
    [Google Scholar]
  43. ZientalD. Czarczynska-GoslinskaB. MlynarczykD.T. Glowacka-SobottaA. StaniszB. GoslinskiT. SobottaL. Titanium dioxide nanoparticles: Prospects and applications in medicine.Nanomaterials202010238710.3390/nano10020387 32102185
    [Google Scholar]
  44. LiW. DongC. WangX. WangJ. YangY. POSS@TiCl4 nanoparticles: A minimalism styled Ziegler-Natta catalytic system.J. Catal.202342138439210.1016/j.jcat.2023.03.037
    [Google Scholar]
  45. VineethV.N. UnniG.E. SrikrishnarkaP. NandanS. NairA.S. Surface modification of electrospun nanofibers of TiO2 in TiCl4 treatment for cactus-like TiO2 nanostructures.Mater. Today Proc.2020331351135510.1016/j.matpr.2020.04.237
    [Google Scholar]
  46. AlbrightR. Cleanup of chemical and explosive munitions: Location, identification and environmental remediation.William Andrew2011
    [Google Scholar]
  47. RIANT, O. Development of new copper-catalyzed cross-coupling reactions.Catholic University of Louvain2024
    [Google Scholar]
  48. NikoohemmatM.A. MazaheriH. JoshaghaniA.H. JoudakiE. Development of a novel super-active ziegler-natta polyethylene catalyst: Study on structure, performance and application.Int. J. Eng.2024371142410.5829/IJE.2024.37.01A.02
    [Google Scholar]
  49. KeskiväliL. SeppänenT. PorriP. PääkkönenE. KetojaJ.A. Atomic layer deposited TiO2 on a foam-formed cellulose fibre network – Effect on hydrophobicity and physical properties.BioResources20231847923794210.15376/biores.18.4.7923‑7942
    [Google Scholar]
  50. KimS ParasuramanV SherazM AzizarGAB HongJW LeeWR Photocatalytic self-cleaning eco-friendly paint: A unique approach for efficient indoor air pollutant removal and surface disinfection.202310.2139/ssrn.4570556
    [Google Scholar]
  51. BhattiT.M. YasminE. KumarA. Akshai; Goldman, AS. Historical perspective and mechanistic aspects of c–h bond functionalization.Transition‐metal‐catalyzed c‐h functionalization of heterocycles2023160
    [Google Scholar]
  52. LiF-B. Chemical reactivity and addition pattern on C60 and C70.Handbook of Fullerene Science and Technology.Springer2022273312
    [Google Scholar]
  53. BrigattiS. A comparative study over differently produced titanium dioxide photocatalyst.Materials Engineering and Nanotechnology2022
    [Google Scholar]
  54. ClarkJ.H. JardineA. MatharuA.S. StevensC.V. Greener Organic Transformations.Royal Society of Chemistry202210.1039/9781837670895
    [Google Scholar]
  55. AlSalkaY. Photocatalytic water splitting for solar hydrogen production and simultaneous decontamination of organic pollutants.2020
    [Google Scholar]
  56. FuchsP.L. CharetteA.B. RovisT. BodeJ.W. Essential reagents for organic synthesis.John Wiley & Sons2016
    [Google Scholar]
  57. LevchukI. Titanium dioxide based nanomaterials for photocatalytic water treatment.Advanced Water Treat2016156
    [Google Scholar]
  58. KeetB.J. Techno-economic evaluation of demilitarized TiCl4 recycling processes.South AfricaNorth-West University2019
    [Google Scholar]
  59. MahlambiM.M. NgilaC.J. MambaB.B. Recent developments in environmental photocatalytic degradation of organic pollutants: The case of titanium dioxide nanoparticles—a review.J. Nanomater.2015201512910.1155/2015/790173
    [Google Scholar]
  60. FangZ.Z. FroesF. ZhangY. Extractive metallurgy of titanium.Conventional and recent advances in extraction and production of titanium metal2019
    [Google Scholar]
  61. ThomasM. BąkJ. KrólikowskaJ. Efficiency of titanium salts as alternative coagulants in water and wastewater treatment: Short review.Desalination Water Treat.202020826127210.5004/dwt.2020.26689
    [Google Scholar]
  62. RazaG. Titanium dioxide nanomaterials, synthesis, stability and mobility in natural and synthetic porous media.University of Birmingham2017
    [Google Scholar]
  63. KapiasT. GriffithsR. Accidental releases of titanium tetrachloride (TiCl) in the context of major hazards?spill behaviour using REACTPOOL.J. Hazard. Mater.20051191-3415210.1016/j.jhazmat.2004.12.001 15752847
    [Google Scholar]
  64. GhoshS. BanerjeeS. KothaS. HalderS. SreenivasacharyN. ARKIVOC Volume 2002 part (vii): Commemorative issue in honor of Prof. Satinde V.Kessar on the occasion of his 70th anniversary2002
    [Google Scholar]
  65. CaiubyC.A.D. de JesusM.P. BurtolosoA.C.B. α-imino iridium carbenes from imidoyl sulfoxonium ylides: Application in the one-step synthesis of indoles.J. Org. Chem.202085117433744510.1021/acs.joc.0c00833 32342687
    [Google Scholar]
  66. Bi Fatemeh MirjaliliB. BamoniriA. ZamaniL. Nano-TiCl4/SiO2: An efficient and reusable catalyst for the synthesis of tetrahydrobenzo (a) xanthenes-11-ones.Lett. Org. Chem.20129533834310.2174/157017812801264700
    [Google Scholar]
  67. JonesS. SelitsianosD. A simple and effective method for phosphoryl transfer using TiCl4 catalysis.Org. Lett.20024213671367310.1021/ol026618q 12375915
    [Google Scholar]
  68. RahmatpourA. SajjadinezhadS.M. Cross‐linked poly(N ‐vinylpyrrolidone)‐titanium tetrachloride complex: A novel stable solid TiCl 4 equivalent as a recyclable polymeric Lewis acid catalyst for regioselective ring‐opening alcoholysis of epoxides.Appl. Organomet. Chem.20213511e638510.1002/aoc.6385
    [Google Scholar]
  69. Dehghani AshkzariA. SadeghiB. ZavarS. TiCl 4/nano sawdust as a biocatalyst for the synthesis of Ethyl 2-Amino-5-Oxo-4 H, 5 H -Pyrano(4,3- b)Pyran-3-carboxylates.Polycycl. Aromat. Compd.202040495495910.1080/10406638.2018.1517100
    [Google Scholar]
  70. ZhangQ. LuoJ. WangB. XiaoX. GanZ. TangQ. Titanium tetrachloride promoted cyclodehydration of aryloxyketones: Facile synthesis of benzofurans and naphthofurans with high regioselectivity.Tetrahedron Lett.201960191337134010.1016/j.tetlet.2019.04.020
    [Google Scholar]
  71. RossiR. BellinaF. LessiM. ManziniC. MarianettiG.A. PeregoL. Recent applications of phosphane-based palladium catalysts in Suzuki-Miyaura reactions involved in total syntheses of natural products.Curr. Org. Chem.201519141302140910.2174/1385272819666150506230050
    [Google Scholar]
  72. HooshmandS.E. HeidariB. SedghiR. VarmaR.S. Recent advances in the suzuki–miyaura cross-coupling reaction using efficient catalysts in eco-friendly media.Green Chem.201921338140510.1039/C8GC02860E
    [Google Scholar]
  73. ShiZ. XiaoQ. YinD. Synthesis of tetrahydroisoquinolines through TiCl4-mediated cyclization and Et3SiH reduction.Chin. Chem. Lett.202031372973210.1016/j.cclet.2019.09.023
    [Google Scholar]
  74. LiJ. PengY. SongG. Mannich reaction catalyzed by carboxyl-functionalized ionic liquid in aqueous media.Catal. Lett.20051023-415916210.1007/s10562‑005‑5849‑3
    [Google Scholar]
  75. RahmatpourA. EmenR. AminiG. Cross-linked polystyrene/titanium tetrachloride as a tightly bound complex catalyzed the modified Mannich reaction for the synthesis of piperidin-4-ones.J. Organomet. Chem.2019892243310.1016/j.jorganchem.2019.04.004
    [Google Scholar]
  76. KabalkaG.W. JuY. WuZ. A new titanium tetrachloride mediated annulation of α-aryl-substituted carbonyl compounds with alkynes: A simple and highly efficient method for the regioselective synthesis of polysubstituted naphthalene derivatives.J. Org. Chem.200368207915791710.1021/jo034330o 14510580
    [Google Scholar]
  77. ValizadehH. ShockraviA. An efficient procedure for the synthesis of coumarin derivatives using TiCl4 as catalyst under solvent-free conditions.Tetrahedron Lett.200546203501350310.1016/j.tetlet.2005.03.124
    [Google Scholar]
  78. AlheetyK.A. JamelN.M. AhmedB.J. Synthesis of coumarin by Pechman reaction- a review.J. Pharm. Sci. Res.201911933443347
    [Google Scholar]
  79. PeriasamyM. New synthetic methods using the TiCl4-NR3 reagent system.ARKIVOC20022002715116610.3998/ark.5550190.0003.717
    [Google Scholar]
  80. PeriasamyM. JayakumarK.N. BharathiP. Simple and efficient methods of synthesis of 3,3-diarylcyclobutanone and 3,3-diarylcyclobutylamine derivatives using the TiCl4/R3N reagent system.J. Org. Chem.200570145420542510.1021/jo0504215 15989322
    [Google Scholar]
  81. AckermannL. KasparL.T. TiCl4-catalyzed indirect anti-Markovnikov hydration of alkynes: Application to the synthesis of benzo(b)furans.J. Org. Chem.200772166149615310.1021/jo070887i 17629343
    [Google Scholar]
  82. EscorihuelaJ. LledósA. UjaqueG. Anti-Markovnikov intermolecular hydroamination of alkenes and alkynes: A mechanistic view.Chem. Rev.2023123159139920310.1021/acs.chemrev.2c00482 37406078
    [Google Scholar]
  83. AbyarE. SadeghiB. MossleminM. Nano-kaolin-TiCl4 as a new, green and effective nano-catalyst for one-pot synthesis of tetrahydrobenzo (B) pyrans.Izv. Him.2018502932
    [Google Scholar]
  84. TsuritaniT. ItoS. ShinokuboH. OshimaK. TiCl4-n-Bu4 NI as a reducing reagent: Pinacol coupling and enolate formation from α-haloketones.J. Org. Chem.200065165066506810.1021/jo0004254 10956498
    [Google Scholar]
  85. AlyA.A. Triple self-condensation of fused cycloalkanonylparacyclophanes promoted by titanium tetrachloride and triethylamine.Tetrahedron Lett.200546344344610.1016/j.tetlet.2004.11.100
    [Google Scholar]
  86. LabidiA. Yacin-AliA. Total enantioselective synthesis of a norbornene derivative via lewis acid catalyzed asymmetric diels-alder reaction using the oppolzer’s camphorsultam as a chiral auxilary.Organic Chemistry2023
    [Google Scholar]
  87. FuQ. WangY. NanF. Construction of the hexacyclic core of dispirocochlearoids A—C via a diels−alder reaction.Chin. J. Chem.202240131566157010.1002/cjoc.202200100
    [Google Scholar]
  88. SunZ. HuS. HuoY. WangZ. Titanium tetrachloride-mediated synthesis of N-aryl-substituted azacycles from cyclic ethers.RSC Advances2017784363436710.1039/C6RA27325D
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372288854240129052155
Loading
/content/journals/cocat/10.2174/0122133372288854240129052155
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test