Skip to content
2000
Volume 11, Issue 4
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Background

Assessing the efficacy of remdesivir for COVID-19 infection holds historical significance. Understanding its effectiveness from previous pandemic instances can enable us to gain insights into its efficacy, informing our strategies for responding to future outbreaks or variants.

Objective

Gaining an insight into the historical efficacy of remdesivir can offer valuable data for evaluating the advancement of COVID-19 treatments and the development of medical expertise in handling the disease.

Methods

The historical data regarding the effectiveness of remdesivir can enrich the pool of knowledge and evidence accessible for public health planning and decision-making. Understanding whether remdesivir was efficacious in previous instances may aid in comprehending its real-world impact on patient outcomes at those times. Such insights are crucial for evaluating treatment efficacy and refining strategies based on past experiences.

Results

In the late treatment of severe COVID-19 cases, which are particularly challenging, remdesivir has demonstrated a 6% improvement.

Conclusion

The 6% enhanced effect of remdesivir is not substantial, considering that it is an unweighted average of works with varying degrees of importance and reliability. Additionally, there are instances where conflicts of interest may have impacted the results. It is also possible that the observed improvement could be attributed to better patient care in certain environments.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372290992240409084133
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. WHO WHO. WHO recommends against the use of Remdesivir in COVID-19 patients.2020Available from: www.who.int/news-room/feature-stories/detail/who-recommends-against-the-use-of-Remdesivir-in-covid-19-patients(Accessed January 28, 2020).
  2. BMJ.com. WHO guideline development group advises against use of remdesivir for covid-19.2020Available from: www.bmj.com/company/newsroom/who-guideline-development-group-advises-against-use-of-Remdesivir-for-covid-19/ (Accessed January 28, 2020).
  3. Our World in Data. Coronavirus explorer.2023Available from: http://www.ourworldindata.org (Accessed March 14, 2023).
  4. WangM. CaoR. ZhangL. YangX. LiuJ. XuM. ShiZ. HuZ. ZhongW. XiaoG. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.Cell Res.202030326927110.1038/s41422‑020‑0282‑0 32020029
    [Google Scholar]
  5. ChoyK.T. WongA.Y.L. KaewpreedeeP. SiaS.F. ChenD. HuiK.P.Y. ChuD.K.W. ChanM.C.W. CheungP.P.H. HuangX. PeirisM. YenH.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro.Antiviral Res.202017810478610.1016/j.antiviral.2020.104786 32251767
    [Google Scholar]
  6. Sciencemag.org. WHO launches global megatrial of the four most promising coronavirus treatments.2020Available from: www.sciencemag.org/news/2020/03/who-launches-global-megatrial-four-most-promising-coronavirus-treatments (Accessed January 28, 2020).
  7. MehraM.R. RuschitzkaF. PatelA.N. Retraction—Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: A multinational registry analysis.Lancet202039510240182010.1016/S0140‑6736(20)31324‑6 32511943
    [Google Scholar]
  8. Nuffield department of population health. RECOVERY trial.2020Available from: www.recoverytrial.net/ (Accessed January 28, 2020).
  9. Kingdom of Saudi Arabia ministry of health.2021Available from: www.moh.gov.sa/Ministry/MediaCenter/Publications/Documents/MOH-therapeutic-protocol-for-COVID-19.pdf(Accessed January 28, 2021).
  10. United Arab Emirates ministry of health and prevention.2021Available from: www.dha.gov.ae/en/HealthRegulation/Documents/National_Guidelines_of_COVID_19_1st_June_2020.pdf (Accessed January 28, 2021).
  11. Abu Dhabi Public Health Center. COVID-19 guideline for healthcare professionals.2021Available from: doh.gov.ae/-/media/7BD7B077D8F846B48A70C5872902DD1C.ashx (Accessed January 28, 2021).
  12. c19early.org. Global Covid-19 studies.Available from: c19early.org (Accessed January 28, 2023).2023
  13. c19ivm.org. Ivermectin for COVID-19: Real-time meta-analysis of 95 studies.2023Available from: c19ivm.org/meta.html (Accessed March 14, 2023).
  14. SheahanT.P. SimsA.C. GrahamR.L. MenacheryV.D. GralinskiL.E. CaseJ.B. LeistS.R. PyrcK. FengJ.Y. TrantchevaI. BannisterR. ParkY. BabusisD. ClarkeM.O. MackmanR.L. SpahnJ.E. PalmiottiC.A. SiegelD. RayA.S. CihlarT. JordanR. DenisonM.R. BaricR.S. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses.Sci. Transl. Med.20179396eaal365310.1126/scitranslmed.aal3653 28659436
    [Google Scholar]
  15. GordonC.J. TchesnokovE.P. WoolnerE. PerryJ.K. FengJ.Y. PorterD.P. GötteM. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency.J. Biol. Chem.2020295206785679710.1074/jbc.RA120.013679 32284326
    [Google Scholar]
  16. EastmanR.T. RothJ.S. BrimacombeK.R. SimeonovA. ShenM. PatnaikS. HallM.D. Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19.ACS Cent. Sci.20206567268310.1021/acscentsci.0c00489 32483554
    [Google Scholar]
  17. LiG. De ClercqE. Therapeutic options for the 2019 novel coronavirus (2019-nCoV).Nat. Rev. Drug Discov.202019314915010.1038/d41573‑020‑00016‑0 32127666
    [Google Scholar]
  18. KokicG. HillenH.S. TegunovD. DienemannC. SeitzF. SchmitzovaJ. FarnungL. SiewertA. HöbartnerC. CramerP. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir.Nat. Commun.202112127910.1038/s41467‑020‑20542‑0 33436624
    [Google Scholar]
  19. SahaA. SharmaA.R. BhattacharyaM. SharmaG. LeeS.S. ChakrabortyC. Probable molecular mechanism of Remdesivir for the treatment of COVID-19: Need to know more.Arch. Med. Res.202051658558610.1016/j.arcmed.2020.05.001 32439198
    [Google Scholar]
  20. ShenY. EadesW. YanB. Remdesivir potently inhibits carboxylesterase‐2 through covalent modifications: Signifying strong drug‐drug interactions.Fundam. Clin. Pharmacol.202135243243410.1111/fcp.12643 33369768
    [Google Scholar]
  21. JeffreysL.N. PenningtonS.H. DugganJ. CaygillC.H. LopemanR.C. BreenA.F. JinksJ.B. ArdreyA. DonnellanS. PattersonE.I. HughesG.L. HongD.W. O’NeillP.M. AljayyoussiG. OwenA. WardS.A. BiaginiG.A. Remdesivir–ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2.Int. J. Antimicrob. Agents202259310654210.1016/j.ijantimicag.2022.106542 35093538
    [Google Scholar]
  22. de WitE. FeldmannF. CroninJ. JordanR. OkumuraA. ThomasT. ScottD. CihlarT. FeldmannH. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection.Proc. Natl. Acad. Sci.2020117126771677610.1073/pnas.1922083117 32054787
    [Google Scholar]
  23. MunsterV.J. FeldmannF. WilliamsonB.N. van DoremalenN. Pérez-PérezL. SchulzJ. Meade-WhiteK. OkumuraA. CallisonJ. BrumbaughB. AvanzatoV.A. RosenkeR. HanleyP.W. SaturdayG. ScottD. FischerE.R. de WitE. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2.Nature2020585782426827210.1038/s41586‑020‑2324‑7 32396922
    [Google Scholar]
  24. WilliamsonB.N. FeldmannF. SchwarzB. Meade-WhiteK. PorterD.P. SchulzJ. van DoremalenN. LeightonI. YindaC.K. Pérez-PérezL. OkumuraA. LovaglioJ. HanleyP.W. SaturdayG. BosioC.M. AnzickS. BarbianK. CihlarT. MartensC. ScottD.P. MunsterV.J. de WitE. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2.Nature2020585782427327610.1038/s41586‑020‑2423‑5 32516797
    [Google Scholar]
  25. WangY. ZhangD. DuG. DuR. ZhaoJ. JinY. FuS. GaoL. ChengZ. LuQ. HuY. LuoG. WangK. LuY. LiH. WangS. RuanS. YangC. MeiC. WangY. DingD. WuF. TangX. YeX. YeY. LiuB. YangJ. YinW. WangA. FanG. ZhouF. LiuZ. GuX. XuJ. ShangL. ZhangY. CaoL. GuoT. WanY. QinH. JiangY. JakiT. HaydenF.G. HorbyP.W. CaoB. WangC. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial.Lancet2020395102361569157810.1016/S0140‑6736(20)31022‑9 32423584
    [Google Scholar]
  26. FlisiakR. Zarębska-MichalukD. Berkan-KawińskaA. Tudrujek-ZdunekM. RogalskaM. PiekarskaA. Remdesivir-based therapy improved recovery of patients with COVID-19 in the SARSTer multicentre, real-world study.medRxiv2020
    [Google Scholar]
  27. El-SolhA.A. MeduriU.G. LawsonY. CarterM. MergenhagenK.A. Clinical course and outcome of COVID-19 acute respiratory distress syndrome: Data from a national repository.J. Intensive Care Med.202136666467210.1177/0885066621994476 33685275
    [Google Scholar]
  28. BeigelJ.H. TomashekK.M. DoddL.E. MehtaA.K. ZingmanB.S. KalilA.C. HohmannE. ChuH.Y. LuetkemeyerA. KlineS. Lopez de CastillaD. FinbergR.W. DierbergK. TapsonV. HsiehL. PattersonT.F. ParedesR. SweeneyD.A. ShortW.R. TouloumiG. LyeD.C. OhmagariN. OhM. Ruiz-PalaciosG.M. BenfieldT. FätkenheuerG. KortepeterM.G. AtmarR.L. CreechC.B. LundgrenJ. BabikerA.G. PettS. NeatonJ.D. BurgessT.H. BonnettT. GreenM. MakowskiM. OsinusiA. NayakS. LaneH.C. Remdesivir for the treatment of Covid-19—preliminary report.N. Engl. J. Med.2020383191813182610.1056/NEJMoa2007764 32445440
    [Google Scholar]
  29. SpinnerC.D. GottliebR.L. CrinerG.J. Arribas LópezJ.R. CattelanA.M. Soriano ViladomiuA. OgbuaguO. MalhotraP. MullaneK.M. CastagnaA. ChaiL.Y.A. RoestenbergM. TsangO.T.Y. BernasconiE. Le TurnierP. ChangS.C. SenGuptaD. HylandR.H. OsinusiA.O. CaoH. BlairC. WangH. GaggarA. BrainardD.M. McPhailM.J. BhaganiS. AhnM.Y. SanyalA.J. HuhnG. MartyF.M. Effect of Remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: A randomized clinical trial.JAMA2020324111048105710.1001/jama.2020.16349 32821939
    [Google Scholar]
  30. ZhuY. TengZ. YangL. XuS. LiuJ. TengY. Efficacy and safety of Remdesivir for covid-19 treatment: An analysis of randomized, double-blind, placebo-controlled trials.medRxiv202010.1101/2020.06.22.20136531
    [Google Scholar]
  31. GaribaldiB.T. WangK. RobinsonM.L. ZegerS.L. RocheK.B. WangM.C. Effectiveness of Remdesivir with and without dexamethasone in hospitalized patients with COVID-19.medRxiv202010.1101/2020.11.19.20234153
    [Google Scholar]
  32. GoldmanJ.D. LyeD.C.B. HuiD.S. MarksK.M. BrunoR. MontejanoR. SpinnerC.D. GalliM. AhnM.Y. NahassR.G. ChenY.S. SenGuptaD. HylandR.H. OsinusiA.O. CaoH. BlairC. WeiX. GaggarA. BrainardD.M. TownerW.J. MuñozJ. MullaneK.M. MartyF.M. TashimaK.T. DiazG. SubramanianA. Remdesivir for 5 or 10 days in patients with severe Covid-19.N. Engl. J. Med.2020383191827183710.1056/NEJMoa2015301 32459919
    [Google Scholar]
  33. LinH.X.J. ChoS. Meyyur AravamudanV. SandaH.Y. PalrajR. MoltonJ.S. VenkatachalamI. Remdesivir in coronavirus disease 2019 (COVID-19) treatment: A review of evidence.Infection202149340141010.1007/s15010‑020‑01557‑7 33389708
    [Google Scholar]
  34. RosenbergK. Remdesivir in the treatment of COVID-19.Am. J. Nurs.202112115555 33350698
    [Google Scholar]
  35. GreinJ. OhmagariN. ShinD. DiazG. AspergesE. CastagnaA. FeldtT. GreenG. GreenM.L. LescureF.X. NicastriE. OdaR. YoK. Quiros-RoldanE. StudemeisterA. RedinskiJ. AhmedS. BernettJ. ChelliahD. ChenD. ChiharaS. CohenS.H. CunninghamJ. D’Arminio MonforteA. IsmailS. KatoH. LapadulaG. L’HerE. MaenoT. MajumderS. MassariM. Mora-RilloM. MutohY. NguyenD. VerweijE. ZoufalyA. OsinusiA.O. DeZureA. ZhaoY. ZhongL. ChokkalingamA. ElboudwarejE. TelepL. TimbsL. HenneI. SellersS. CaoH. TanS.K. WinterbourneL. DesaiP. MeraR. GaggarA. MyersR.P. BrainardD.M. ChildsR. FlaniganT. Compassionate use of Remdesivir for patients with severe Covid-19.N. Engl. J. Med.2020382242327233610.1056/NEJMoa2007016 32275812
    [Google Scholar]
  36. UllahN. Ahmad KhanK. IqbalJ. RanaA. Bin YounisB. AsifM. Zeeshan Khan ChacharA. shan, F. Efficacy of remdesivir in covid-19 patients; multicenter study in Lahore.Int. J. Sci.2020911313410.18483/ijSci.2417
    [Google Scholar]
  37. DubertM. VisseauxB. IserniaV. BouadmaL. DeconinckL. PatrierJ. WickyP.H. Le PluartD. KramerL. RiouxC. Le HingratQ. Houhou-FidouhN. YazdanpanahY. GhosnJ. LescureF.X. Case report study of the first five COVID-19 patients treated with remdesivir in France.Int. J. Infect. Dis.20209829029310.1016/j.ijid.2020.06.093 32619764
    [Google Scholar]
  38. LevienT.L. BakerD.E. Remdesivir.Hosp. Pharm.202358542043010.1177/0018578721999804 37711410
    [Google Scholar]
  39. GarcíaP.J. Corruption in global health: The open secret.Lancet2019394102142119212410.1016/S0140‑6736(19)32527‑9 31785827
    [Google Scholar]
  40. c19early.org. Remdesivir for COVID-19 47 studies from 788 scientists 134,563 patients in 18 countries.2023Available from: c19early.org/s (accessed March 14, 2023).
  41. c19early.org. Remdesivir for COVID-19 66 studies from 1,024 scientists 184,108 patients in 22 countries.2024Available from: c19early.org/s (accessed February 16, 2024).
  42. GérardA.O. LaurainA. FresseA. ParassolN. MuzzoneM. RocherF. EsnaultV.L.M. DriciM.D. Remdesivir and acute renal failure: A potential safety signal from disproportionality analysis of the WHO safety database.Clin. Pharmacol. Ther.202110941021102410.1002/cpt.2145 33340409
    [Google Scholar]
  43. ZhouY. LiJ. WangL. ZhuX. ZhangM. ZhengJ. Acute kidney injury and drugs prescribed for COVID-19 in diabetes patients: A real-world disproportionality analysis.Front. Pharmacol.20221383367910.3389/fphar.2022.833679 35370750
    [Google Scholar]
  44. BakheitA.H. DarwishH. DarwishI.A. Al-GhusnA.I. Remdesivir.Profiles Drug Subst. Excip. Relat. Methodol.2023487110810.1016/bs.podrm.2022.11.003 37061276
    [Google Scholar]
  45. DebS. ReevesA.A. HopeflR. BejuscaR. ADME and pharmacokinetic properties of remdesivir: Its drug interaction potential.Pharmaceuticals202114765510.3390/ph14070655 34358081
    [Google Scholar]
  46. CardozaS. ShrivashM.K. RivaL. ChatterjeeA.K. MandalA. TandonV. Multistep synthesis of analogues of remdesivir: Incorporating heterocycles at the C-1′ position.J. Org. Chem.202388139105912210.1021/acs.joc.3c00754 37276453
    [Google Scholar]
  47. GötteM. Remdesivir for the treatment of Covid-19: the value of biochemical studies.Curr. Opin. Virol.202149818510.1016/j.coviro.2021.04.014 34052732
    [Google Scholar]
  48. JemthA.S. ScalettiE.R. HomanE. StenmarkP. HelledayT. MichelM. Nudix hydrolase 18 catalyzes the hydrolysis of active triphosphate metabolites of the antivirals remdesivir, ribavirin, and molnupiravir.J. Biol. Chem.2022298810216910.1016/j.jbc.2022.102169 35732208
    [Google Scholar]
  49. Al ZoubiW. PutriR.A.K. AbukhadraM.R. KoY.G. Recent experimental and theoretical advances in the design and science of high-entropy alloy nanoparticles.Nano Energy202311010836210.1016/j.nanoen.2023.108362
    [Google Scholar]
  50. PutriR.A.K. NashrahN. HanD.I. Al ZoubiW. KoY.G. Chemical incorporation of Mn3O4 into TiO2 coating by benzotriazole working as electron donor: Electrochemical and catalytic performance.Compos., Part B Eng.202223210960910.1016/j.compositesb.2021.109609
    [Google Scholar]
  51. KareemM.J. Al-HamdaniA.A.S. JirjeesV.Y. KhanM.E. AllafA.W. Al ZoubiW. Preparation, spectroscopic study of Schiff base derived from dopamine and metal Ni(II), Pd(II), and Pt(IV) complexes, and activity determination as antioxidants.J. Phys. Org. Chem.2021343e415610.1002/poc.4156
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372290992240409084133
Loading

  • Article Type:
    Review Article
Keyword(s): ARDS; COVID-19; ICU care; Remdesivir; severe ARDS; virology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test