Skip to content
2000
Volume 11, Issue 4
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

The main emphasis of green chemistry is to reduce environmental pollution. Its main goal is to adopt a cost-effective and harmless strategy for human health and the environment. The green synthetic routes have succeeded in adopting solvent-free conditions as an effective tool for sustainability. Heterocycles are organic compounds that are widely distributed by nature. Many of them possess medicinal and pharmacological properties, as this heterocyclic moiety is found in many drugs. The solvent-free strategies for the Synthesis of bioactive heterocycles are, nowadays, regarded as an important objective. Solvent-free reactions are eco-friendly, cost-effective, and an environmentally benign route in organic transformation methods because of their efficiency, reduced reaction time, and high yields, thereby saving energy. This mini-review focuses on the environmentally benign solvent-free Synthesis of heterocycles and their potential pharmacological applications.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372300414240403035407
2024-12-01
2025-01-28
Loading full text...

Full text loading...

References

  1. CrabtreeR.H. An organometallic future in green and energy chemistry?Organometallics2011301171910.1021/om1009439
    [Google Scholar]
  2. FoleyP. Kermanshahi pour, A.; Beach, E.S.; Zimmerman, J.B. Derivation and synthesis of renewable surfactants.Chem. Soc. Rev.20124141499151810.1039/C1CS15217C 22006024
    [Google Scholar]
  3. ClarkJ.H. LuqueR. MatharuA.S. Green chemistry, biofuels, and biorefinery.Annu. Rev. Chem. Biomol. Eng.20123118320710.1146/annurev‑chembioeng‑062011‑081014 22468603
    [Google Scholar]
  4. LinthorstJ.A. An overview: Origins and development of green chemistry.Found. Chem.2010121556810.1007/s10698‑009‑9079‑4
    [Google Scholar]
  5. BaronM. Towards a greener pharmacy by more eco design.Waste Biomass Valoriz.20123139540710.1007/s12649‑012‑9146‑2
    [Google Scholar]
  6. HendersonR.K. Jiménez-GonzálezC. ConstableD.J.C. AlstonS.R. InglisG.G.A. FisherG. SherwoodJ. BinksS.P. CurzonsA.D. Expanding GSK’s solvent selection guide – embedding sustainability into solvent selection starting at medicinal chemistry.Green Chem.201113485486210.1039/c0gc00918k
    [Google Scholar]
  7. KumarA. GuptaG. SrivastavaS. Functional ionic liquid mediated synthesis (FILMS) of dihydrothiophenes and tacrine derivatives.Green Chem.20111392459246310.1039/c1gc15410a
    [Google Scholar]
  8. WilbonP.A. ChuF. TangC. Progress in renewable polymers from natural terpenes, terpenoids, and rosin.Macromol. Rapid Commun.201334183710.1002/marc.201200513 23065943
    [Google Scholar]
  9. RaynaudJ. WuJ.Y. RitterT. Iron-catalyzed polymerization of isoprene and other 1,3-dienes.Angew. Chem. Int. Ed.20125147118051180810.1002/anie.201205152 23081805
    [Google Scholar]
  10. MoseleyJ.D. KappeC.O. A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis.Green Chem.201113479480610.1039/c0gc00823k
    [Google Scholar]
  11. BazureauJ.P. PaquinL. CarriéD. L’Helgoual’chJ.M. GuihéneufS. CoulibalyK.W. BurgyG. KomatyS. LimantonE. Microwaves in Organic Synthesis.3rd edHoboken, New JerseyWiley & Sons201210.1002/9783527651313.ch16
    [Google Scholar]
  12. ZhangJ. MattaM.E. HillmyerM.A. Synthesis of sequence-specific vinyl copolymers by Regioselective ROMP of multiply substituted cyclooctenes.ACS Macro Lett.20121121383138710.1021/mz300535r 35607111
    [Google Scholar]
  13. MahatoA.K. SahooB.M. BanikB.K. MohantaB.C. Microwave-assisted synthesis: Paradigm of green chemistry.J. Indian Chem. Soc.2018951327133910.5281/zenodo.5652579
    [Google Scholar]
  14. BaghbanzadehM. PilgerC. KappeC.O. Rapid nickel-catalyzed Suzuki-Miyaura cross-couplings of aryl carbamates and sulfamates utilizing microwave heating.J. Org. Chem.20117651507151010.1021/jo1024464 21250707
    [Google Scholar]
  15. BeachE.S. WeeksB.R. SternR. AnastasP.T. Plastics additives and green chemistry.Pure Appl. Chem.20138581611162410.1351/PAC‑CON‑12‑08‑08
    [Google Scholar]
  16. MenduP. PragathiJ. GyanaK.C. Synthesis, spectral characterization, molecular modelling and biological activity of first row transition metal complexes with schiff base ligand derived from chromone- 3-carbaldehyde and o-aminobenzoic acid.J. Chem. Pharm. Res.201134602613
    [Google Scholar]
  17. VrdoljakV. ĐilovićI. RubčićM. Kraljević PavelićS. KraljM. Matković-ČalogovićD. PiantanidaI. NovakP. RožmanA. CindrićM. Synthesis and characterisation of thiosemicarbazonato molybdenum(VI) complexes and their in vitro antitumor activity.Eur. J. Med. Chem.2010451384810.1016/j.ejmech.2009.09.021 19815314
    [Google Scholar]
  18. SakthilathaD. RajavelR. The template synthesis, spectral and antibacterial investigation of new N2O2 Donor Schiff Base Cu(II), Ni(II), Co(II), Mn(II) and VO (IV). Complexes Derived from 2-hydroxy acetophenone with 4-chloro-2,6-diaminopyrimidine.J. Chem. Pharm. Res.2013515763
    [Google Scholar]
  19. AdnanD. Synthesis and characterization of schiff bases derived from acetylacetone and their theoretical study.Int. J. Chemtech Res.20135204211
    [Google Scholar]
  20. MhaldarS.N. MandrekarK.S. GawdeM.K. ShetR.V. TilveS.G. Solventless Mechanosynthesis Of Bis(Indolyl).Methanes. Int. J. Rapid Commun. Synth. Org. Chem.20194919410110.1080/00397911.2018.1542732
    [Google Scholar]
  21. ParameswaranP. MajikM. PraveenP. Bis(indolyl)methane Alkaloids: Isolation, bioactivity, and syntheses.Synthesis201547131827183710.1055/s‑0034‑1380415
    [Google Scholar]
  22. AlinezhadH. HaghH.A. Synthesis of bis–Indolylmethanes, tris–Indolylmethanes and 3, 3′- Diindolyl oxindole derivatives using cellulose sulfuric acid as the biodegradable solid acid catalyst under heterogeneous condition iran.J. Org. Chem.20102383389
    [Google Scholar]
  23. AziziN. GholibeghloE. ManocheriZ. Green procedure for the synthesis of bis(indolyl)methanes in water.Sci. Iran.201219357457810.1016/j.scient.2011.11.043
    [Google Scholar]
  24. MonaH.S.T. (TiO2) catalysed expedient solventless and mild synthesis of Bis (Indolyl)methanes.Acta Chim. Slov.200754354359
    [Google Scholar]
  25. VijayakumarB. ShakthiN.D. Ind. J. Adv. Chem. Sci.20131221227
    [Google Scholar]
  26. MoL.P. MaZ.C. ZhangZ.H. CuBr 2 ‐Catalyzed Synthesis of Bis(indolyl)methanes.Synth. Commun.200535151997200410.1081/SCC‑200066653
    [Google Scholar]
  27. ZhangZ.H. YinL. WangY.M. An efficient and practical approach for the synthesis of bis (Indolyl) Methanes Catalyzed by Zirconium Tetrachloride.Synthesis20051219491954
    [Google Scholar]
  28. BandgarandB.P. ShaikhK.A.J. Organic reactions in aqueous media. InF3 catalysed synthesis of bis. methanes in water under mild conditions.ChemInform20043535
    [Google Scholar]
  29. MiX. LuoS. HeJ. ChengJ-P. Dy(OTf)3 in ionic liquid: An efficient catalytic system for reactions of indole with aldehydes/ketones or imines.Tetrahedron Lett.200445234567457010.1016/j.tetlet.2004.04.039
    [Google Scholar]
  30. KhalighN.G. MihankhahT. JohanM.R. ChingJ.J. Two novel binuclear sulfonic-functionalized ionic liquids: Influence of anion and carbon-spacer on catalytic efficiency for one-pot synthesis of bis(indolyl)methanes.J. Mol. Liq.201825926027310.1016/j.molliq.2018.03.044
    [Google Scholar]
  31. RenY.M. XuM.D. WangX. PEG1000-Based dicationic acidic ionic liquid/solvent-free conditions: An efficient catalytic system for the synthesis of Bis(Indolyl)methanes.Catalysts201771030010.3390/catal7100300
    [Google Scholar]
  32. AziziN. ManocheriZ. Eutectic salts promote green synthesis of bis(indolyl) methanes.Res. Chem. Intermed.20123871495150010.1007/s11164‑011‑0479‑4
    [Google Scholar]
  33. BaftiB. KhabazzadehH. Dimethylurea/citric acid as a highly efficient deep eutectic solvent for the multi-component reactions.J. Chem. Sci.2014126388188710.1007/s12039‑014‑0624‑x
    [Google Scholar]
  34. YadavU.N. ShankarlingG.S. Room temperature ionic liquid choline chloride–oxalic acid: A versatile catalyst for acid-catalyzed transformation in organic reactions.J. Mol. Liq.201419113714110.1016/j.molliq.2013.11.036
    [Google Scholar]
  35. SeyediN. KhabazzadehH. SaeedniaS. ZnCl 2/urea as a deep eutectic solvent for the preparation of bis(indolyl)methanes under ultrasonic conditions.Synth. React. Inorg. Met.-Org. Nano-Met. Chem.201545101501150510.1080/15533174.2013.862828
    [Google Scholar]
  36. MukherjeeN. ChatterjeeT. RanuB.C. Reaction under ball-milling: Solvent-, ligand-, and metal-free synthesis of unsymmetrical diaryl chalcogenides.J. Org. Chem.20137821111101111410.1021/jo402071b 24116379
    [Google Scholar]
  37. DhumaskarK.L. TilveS.G. Synthesis of bis (indolyl)methanes under catalyst-free and solvent-free conditions.Green Chem. Lett. Rev.20125335340210.1080/17518253.2011.637967
    [Google Scholar]
  38. KeriR.S. SasidharB.S. NagarajaB.M. SantosM.A. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents.Eur. J. Med. Chem.201510025726910.1016/j.ejmech.2015.06.017 26112067
    [Google Scholar]
  39. StefanachiA. LeonettiF. PisaniL. CattoM. CarottiA. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds.Molecules201823225028310.3390/molecules23020250 29382051
    [Google Scholar]
  40. SinghT.P. SinghO.M. Bioactive Heterocycles: Synthesis and Biological Evaluation; Ameta, K.L.; Pawar, R.P. DombA.J. Hauppauge, New YorkNova Science Publishers2012
    [Google Scholar]
  41. MatosL.H.S. MassonF.T. SimeoniL.A. Homem-de-MelloM. Biological activity of dihydropyrimidinone (DHPM) derivatives: A systematic review.Eur. J. Med. Chem.20181431779178910.1016/j.ejmech.2017.10.073 29133039
    [Google Scholar]
  42. VekariyaR.H. PatelH.D. Recent advances in the synthesis of coumarin derivatives via knoevenagel condensation: A review.Synth. Commun.201444192756278810.1080/00397911.2014.926374
    [Google Scholar]
  43. MedinaF.G. MarreroJ.G. Macías-AlonsoM. GonzálezM.C. Córdova-GuerreroI. Teissier GarcíaA.G. Osegueda-RoblesS. Coumarin heterocyclic derivatives: Chemical synthesis and biological activity.Nat. Prod. Rep.201532101472150710.1039/C4NP00162A 26151411
    [Google Scholar]
  44. Calcio GaudinoE. TagliapietraS. MartinaK. PalmisanoG. CravottoG. Recent advances and perspectives in the synthesis of bioactive coumarins.RSC Advances2016652463944640510.1039/C6RA07071J
    [Google Scholar]
  45. BiginelliP. Aldehyde – Urea derivatives of aceto- and oxaloacetic acids.Gazz. Chim. Ital.189323360416
    [Google Scholar]
  46. KaurR. ChaudharyS. KumarK. GuptaM.K. RawalR.K. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review.Eur. J. Med. Chem.201713210813410.1016/j.ejmech.2017.03.025 28342939
    [Google Scholar]
  47. RathwaS.K. VasavaM.S. BhoiM.N. BoradM.A. PatelH.D. Recent advances in the synthesis of C-5-substituted analogs of 3,4-dihydropyrimidin-2-ones: A review.Synth. Commun.201848996399410.1080/00397911.2017.1423503
    [Google Scholar]
  48. ChanuL.V. SinghT.P. DeviL.R. SinghO.M. Synthesis of bioactive heterocycles using reusable heterogeneous catalyst HClO4 –SiO2 under solvent-free conditions.Green Chem. Lett. Rev.201811335236010.1080/17518253.2018.1510991
    [Google Scholar]
  49. SinghT.P. BhattarcharyaS. SinghO.M. Indium/TFA-catalyzed synthesis of tetracyclic[6,5,5,6]indole ring, via a tandem cycloannulation of β-oxodithioester with tryptamine.Org. Lett.20131581974197710.1021/ol400644m 23573995
    [Google Scholar]
  50. DeviK.A. ChanuL.G. ChanuI.H. SinghO.M. ChemInform Abstract: One-pot synthesis of 1H-Naphtho[2,1-b]pyran derivatives under solvent-free conditions.Lett. Org. Chem.20141110743747
    [Google Scholar]
  51. ChanuI.H. DeviL.R. KhumanthemN. SinghN.I. KumarD. SinghO.M. Synthesis of functionalized benzo[f]2H-chromenes and evaluation of their antimicrobial activities.Russ. J. Bioorganic Chem.201743217718510.1134/S1068162017020054
    [Google Scholar]
  52. LakhanR. SinghO.P. SinghJ. Studies on 4 (3H)-Quinazolinone derivatives as antimalarials.J. Indian Chem. Soc.198764316318
    [Google Scholar]
  53. ZhangL. GaoZ. PengC. BinZ.Y. ZhaoD. WuJ. XuQ. LiJ.X. Ultrasound-promoted synthesis and immunosuppressive activity of novel quinazoline derivatives.Mol. Divers.201216357959010.1007/s11030‑012‑9390‑1 22890961
    [Google Scholar]
  54. RoopanS.M. BharathiA. PrabhakarnA. Abdul RahumanA. VelayuthamK. RajakumarG. PadmajaR.D. LekshmiM. MadhumithaG. Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract.Spectrochim. Acta A Mol. Biomol. Spectrosc.201298869010.1016/j.saa.2012.08.055 22983203
    [Google Scholar]
  55. Hosseini-SarvariM. SafaryE. JarrahpourA. HeiranR. Synthesis of N-formylated β-lactams using nano-sulfated TiO2 as catalyst under solvent-free conditions.C. R. Chim.20121511-1298098710.1016/j.crci.2012.09.014
    [Google Scholar]
  56. SuT.T. Drug screening in Drosophila; why, when, and when not?Wiley Interdiscip. Rev. Dev. Biol.201986e34610.1002/wdev.346 31056843
    [Google Scholar]
  57. ListA. KurtinS. RoeD.J. BureshA. MahadevanD. FuchsD. RimszaL. HeatonR. KnightR. ZeldisJ.B. Efficacy of lenalidomide in myelodysplastic syndromes.N. Engl. J. Med.2005352654955710.1056/NEJMoa041668 15703420
    [Google Scholar]
  58. WitzigT.E. VoseJ.M. ZinzaniP.L. ReederC.B. BucksteinR. PolikoffJ.A. BouabdallahR. HaiounC. TillyH. GuoP. PietronigroD. Ervin-HaynesA.L. CzuczmanM.S. An international phase II trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin’s lymphoma.Ann. Oncol.20112271622162710.1093/annonc/mdq626 21228334
    [Google Scholar]
  59. McCarthyP.L. OwzarK. HofmeisterC.C. HurdD.D. HassounH. RichardsonP.G. GiraltS. StadtmauerE.A. WeisdorfD.J. VijR. MorebJ.S. CallanderN.S. Van BesienK. GentileT. IsolaL. MaziarzR.T. GabrielD.A. BasheyA. LandauH. MartinT. QazilbashM.H. LevitanD. McCluneB. SchlossmanR. HarsV. PostiglioneJ. JiangC. BennettE. BarryS. BresslerL. KellyM. SeilerM. RosenbaumC. HariP. PasquiniM.C. HorowitzM.M. SheaT.C. DevineS.M. AndersonK.C. LinkerC. Lenalidomide after stem-cell transplantation for multiple myeloma.N. Engl. J. Med.2012366191770178110.1056/NEJMoa1114083 22571201
    [Google Scholar]
  60. GeorgeW.M. DavidI.S. Shen-ChuC.R. Substituted 2-(2,6-dioxopiperidin-3-yl)-phthalimides and 1-oxoisoindolines and method of reducing TNFα levels. WO Patent 1998054170A11998
  61. ChauletC. CroixC. AlagilleD. NormandS. DelwailA. FavotL. LecronJ.C. Viaud-MassuardM.C. Design, synthesis and biological evaluation of new thalidomide analogues as TNF-α and IL-6 production inhibitors.Bioorg. Med. Chem. Lett.20112131019102210.1016/j.bmcl.2010.12.031 21215621
    [Google Scholar]
  62. PonomaryovY. KrasikovaV. LebedevA. ChernyakD. VarachevaL. ChernobroviyA. Scalable and green process for the synthesis of anticancer drug lenalidomide.Chem. Heterocycl. Compd.201551213313810.1007/s10593‑015‑1670‑0
    [Google Scholar]
  63. HuS. YuanL. YanH. LiZ. Design, synthesis and biological evaluation of Lenalidomide derivatives as tumor angiogenesis inhibitor.Bioorg. Med. Chem. Lett.201727174075408110.1016/j.bmcl.2017.07.046 28757066
    [Google Scholar]
  64. WangH. XieZ. LuB. ZhongK. LuJ. LiuJ. One-pot method to construct isoindolinones and its application to the synthesis of DWP205109 and intermediate of Lenalidomide.Tetrahedron Lett.20217415315210.1016/j.tetlet.2021.153152
    [Google Scholar]
  65. ThirunarayananG. DineshkumarN. RajarajanM. Solid Acidic Bentonite/FeCl3 Catalysed Solvent-Free Cyclization Of Some Aryl Enones: Synthesis And Assessment Of Antimicrobial Potentials Of Some Aryl Pyrazolines India.World Sci. News20191171428
    [Google Scholar]
  66. PopovA.B. MacanA.M. JakopecS. PrpićH. HrkaćA.H. PavelićS.K. Raić-MalićS. Green solvent-free synthesis of new N -heterocycle-L-ascorbic acid hybrids and their antiproliferative evaluation.Future Med. Chem.202214161187120210.4155/fmc‑2022‑0047 35791783
    [Google Scholar]
  67. PouramiriB. RabieiK. MeshkatalsadatM.H. RashidiM. Saccharin based ionic liquid: Novel and recyclable catalyst for eco-friendly mechanosynthesis of Biginelli and Hantzcsh heterocycles under solvent-free conditions.J. Mol. Struct.2023129213601310.1016/j.molstruc.2023.136013
    [Google Scholar]
  68. DeyN. MandalA. JanaR. BeraA. AzadS.A. GiriS. IkbalM. SamantaS. IkbalM. SamantaS. Recent developments in the solvent-free synthesis of heterocycles.New J. Chem.20234728130351307910.1039/D3NJ01991H
    [Google Scholar]
  69. JonnalagaddaS.B. BanerjeeB. Solvent-Free Synthesis: Bioactive Heterocycles.Berlin, GermanyDe Gruyter202410.1515/9783110985467
    [Google Scholar]
  70. PriyadarshanA. TripathiG. SinghK.A. RajkhowaS. KumarA. TiwariK.V. Solvent-free approaches towards the synthesis of therapeutically important heterocycles.Curr. Green Chem.202311212714710.2174/2213346110666230915163034
    [Google Scholar]
  71. PatilP. AnsariA. TauroS.J. NadarS. Green recipes for pyrimidine.Curr. Org. Synth.202320667870510.2174/1570179420666220930154257 36200260
    [Google Scholar]
  72. ShahD. BambharoliyaT. PatelD. PatelK. PatelN. NaganiA. BhavsarV. MahavarA. PatelA. Sustainable synthesis of Phenazines: A review of green approaches.Curr. Org. Chem.202327131143116310.2174/0113852728257006230921091216
    [Google Scholar]
  73. KamannaK. AmaregoudaY. Water Mediated green method synthesis of bioactive heterocyclic reported between 2012-2021 accelerated by microwave irradiation: A decennary update.Curr. Organocatal.202310316017910.2174/2213337210666230626105521
    [Google Scholar]
  74. SahooB.M. KumarB.V.V.R. PandaK.C. SrutiJ. TiwariA. PatraS. Green and Sustainable technology: Efficient strategy for the synthesis of biologically active pyrimidine derivatives.Curr. Organocatal.202291344510.2174/2213337208666211006143134
    [Google Scholar]
  75. SwamiS. ShrivastavaR. SharmaN. AgarwalaA. VermaV.P. SinghA.P. An ultrasound-assisted solvent and catalyst-free synthesis of structurally diverse pyrazole centered 1,5-disubstituted tetrazoles via one-pot four-component reaction.Lett. Org. Chem.202219979580210.2174/1570178619666211220094516
    [Google Scholar]
  76. PatelA. ShahJ. PatelK. PatelK. PatelH. DobariaD. ShahU. PatelM. ChokshiA. PatelS. ParekhN. Ultrasound-assisted one-pot synthesis of tetrahydro pyrimidine derivatives through biginelli condensation: A catalyst free green chemistry approach.Lett. Org. Chem.202118910.2174/1570178617999201105162851
    [Google Scholar]
  77. WaghY.B. TayadeY.A. MahulikarP.P. DalalD.S. Citric acid promoted green synthesis of bioactive heterocycles.Curr. Green Chem.2023101739110.2174/2213346110666230102120527
    [Google Scholar]
  78. El FaroukiK. KacemM. DibM. OuchettoH. HafidA. KhouiliM. A review on the recent progress of Layered Double Hydroxides (LDHs)- based catalysts for heterocyclic synthesis.Curr. Organocatal.20231074975610.2174/0122133372264682231019101634
    [Google Scholar]
  79. BanerjeeB. Green synthesis of bioactive heterocycles-Part 1A.Curr. Green Chem.20229312412610.2174/221334610903230102122357
    [Google Scholar]
  80. BrahmachariG. Green chemistry-inspired synthetic methodologies for organic molecules of biological relevance.Curr. Green Chem.2024112858610.2174/221334611102240116093922
    [Google Scholar]
  81. BrahmachariG. KarmakarI. MandalM. MandalB. Ultrasound-assisted catalyst-free knoevenagel condensation of carbonyl compounds with C – H Acids in water.Curr. Green Chem.202411221022010.2174/0122133461268098231004072803
    [Google Scholar]
  82. AliI. BhatiaR. Green and eco-friendly synthetic strategies for quinoxaline derivatives.Curr. Green Chem.2024111374910.2174/2213346110666230724123450
    [Google Scholar]
  83. PatelK. PatelH. ShahD. PatelD. SavaliyaN. BambharoliyaT. ShahA. MahavarA. PatelA. Unlocking the Potential: A comprehensive review for the synthesis of benzofuran derivatives.Curr. Green Chem.2024111123610.2174/0122133461272081231102061911
    [Google Scholar]
  84. MargeticD. Mechanochemical and Microwave Multistep Organic Reactions.Curr. Green Chem.202411217219310.2174/2213346110666230830125317
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372300414240403035407
Loading
/content/journals/cocat/10.2174/0122133372300414240403035407
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test