Skip to content
2000
Volume 11, Issue 4
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Nanoparticles have emerged as highly promising catalysts due to their unique physical and chemical properties arising from their small size and high surface area–to–volume ratio. This review delves into the diverse applications of nanoparticles as catalysts in various chemical reactions. A key advantage lies in their substantial surface area–to–volume ratio, facilitation, enhanced accessibility of reactants, and heightened interaction with the catalyst surface. This distinctive characteristic results in improved catalytic activity and efficiency. Additionally, size-dependent properties, such as surface plasmon resonance and quantum confinement effects, offer opportunities for tailoring catalytic behavior. Despite their immense potential, challenges such as synthesis, stability, toxicity, aggregation, and recyclability require attention. Future research should prioritize scalable and sustainable synthesis methods, improve catalyst stability under harsh conditions, and ensure safe handling and disposal. This review provides an overview of the role of nanoparticles as catalysts and highlights their significance in various fields, highlighting their exceptional performance, versatility, and environmental benefits.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372285610231227094959
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. TalapinD.V. ShevchenkoE.V. Introduction: Nanoparticle chemistry.Chem. Rev.201611618103431034510.1021/acs.chemrev.6b00566 27677520
    [Google Scholar]
  2. BasuS. GhoshM. BhuniaR.K. GangulyJ. BanikB.K. Polysaccharides from Dolichos biflorus Linn and Trachyspermum ammi Linn seeds: Isolation, characterization and remarkable antimicrobial activity.Chem. Cent. J.201711111810.1186/s13065‑017‑0349‑2 29159657
    [Google Scholar]
  3. BasuS. MajiP. GangulyJ. Biosynthesis, characterisation and antimicrobial activity of silver and gold nanoparticles by Dolichos biflorus Linn seed extract.J. Exp. Nanosci.201611866066810.1080/17458080.2015.1112042
    [Google Scholar]
  4. BasuS. MajiP. GangulyJ. Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis.Appl. Nanosci.2016611510.1007/s13204‑015‑0407‑9
    [Google Scholar]
  5. SomorjaiG.A. BorodkoY.G. Research in nanosciences – Great opportunity for catalysis science.Catal. Lett.2001761/21510.1023/A:1016711323302
    [Google Scholar]
  6. HervésP. Pérez-LorenzoM. Liz-MarzánL.M. DzubiellaJ. LuY. BallauffM. Catalysis by metallic nanoparticles in aqueous solution: Model reactions.Chem. Soc. Rev.201241175577558710.1039/c2cs35029g 22648281
    [Google Scholar]
  7. ErtlG. Wilhelm Ostwald: Founder of physical chemistry and Nobel laureate 1909.Angew. Chem. Int. Ed.200948366600660610.1002/anie.200901193 19536798
    [Google Scholar]
  8. FecheteI. Paul sabatier – The father of the chemical theory of catalysis.C. R. Chim.20161911-121374138110.1016/j.crci.2016.08.006
    [Google Scholar]
  9. HarutaM. KobayashiT. SanoH. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0•Ž.Chem. Lett.1987162405408
    [Google Scholar]
  10. CormaA. From microporous to mesoporous molecular sieve materials and their use in catalysis.Chem. Rev.19979762373242010.1021/cr960406n 11848903
    [Google Scholar]
  11. JinR. The impacts of nanotechnology on catalysis by precious metal nanoparticles.Nanotechnol. Rev.201212012315610.1515/ntrev‑2011‑0003
    [Google Scholar]
  12. Gómez-LópezP. Puente-SantiagoA. Castro-BeltránA. do NascimentoS.L.A. BaluA.M. LuqueR. Alvarado-BeltránC.G. Nanomaterials and catalysis for green chemistry.Curr. Opin. Green Sustain. Chem.202024485510.1016/j.cogsc.2020.03.001
    [Google Scholar]
  13. NarayanN. MeiyazhaganA. VajtaiR. Metal nanoparticles as green catalysts.Materials20191221360210.3390/ma12213602
    [Google Scholar]
  14. SomorjaiG.A. RiouxR.M. High technology catalysts towards 100% selectivity.Catal. Today20051003-420121510.1016/j.cattod.2004.07.059
    [Google Scholar]
  15. ZhangQ. UchakerE. CandelariaS.L. CaoG. Nanomaterials for energy conversion and storage.Chem. Soc. Rev.20134273127317110.1039/c3cs00009e 23455759
    [Google Scholar]
  16. BaninU. WaiskopfN. HammarströmL. BoschlooG. FreitagM. JohanssonE.M.J. SáJ. TianH. JohnstonM.B. HerzL.M. MilotR.L. KanatzidisM.G. KeW. SpanopoulosI. KohlstedtK.L. SchatzG.C. LewisN. MeyerT. NozikA.J. BeardM.C. ArmstrongF. MegarityC.F. SchmuttenmaerC.A. BatistaV.S. BrudvigG.W. Nanotechnology for catalysis and solar energy conversion.Nanotechnology202032404200310.1088/1361‑6528/abbce8
    [Google Scholar]
  17. ChenT.W. AnushyaG. ChenS.M. KalimuthuP. MariyappanV. GajendranP. RamachandranR. Recent advances in nanoscale based electrocatalysts for metal-air battery, fuel cell and water-splitting applications: An overview.Materials202215245810.3390/ma15020458
    [Google Scholar]
  18. NingthoujamR. SinghY.D. BabuP.J. TirkeyA. PradhanS. SarmaM. Nanocatalyst in remediating environmental pollutants.Chem. Phy. Impact2022410006410.1016/j.chphi.2022.100064
    [Google Scholar]
  19. ChadhaU. SelvarajS.K. AshokanH. HariharanS.P. Mathew PaulV. VenkataranganV. ParamasivamV. Complex nanomaterials in catalysis for chemically significant applications: From synthesis and hydrocarbon processing to renewable energy applications.Advances in Materials Science and Engineering.Hindawi Limited202210.1155/2022/1552334
    [Google Scholar]
  20. PirachaS. SaleemS. BasharatG. AnjumA. YaseenZ. Nanoparticle: Role in chemical industries, potential sources and chemical catalysis applications.Sch. Int. J. Chem. Mater. Sci.202144404510.36348/sijcms.2021.v04i04.006
    [Google Scholar]
  21. SomwanshiS.B. SomvanshiS.B. KharatP.B. Nanocatalyst: A brief review on synthesis to applications.J. Phys. Conf. Ser.2020164401204610.1088/1742‑6596/1644/1/012046
    [Google Scholar]
  22. RaoC.N.R. KulkarniG.U. ThomasP.J. EdwardsP.P. Metal nanoparticles and their assemblies.Chem. Soc. Rev.200029273510.1039/a904518j
    [Google Scholar]
  23. BasuS. SamantaH.S. GangulyJ. Green synthesis and swelling behavior of Ag-nanocomposite semi-IPN hydrogels and their drug delivery using Dolichos biflorus Linn.Soft Mater.201816171910.1080/1539445X.2017.1368559
    [Google Scholar]
  24. HanJ. ZhaoD. LiD. WangX. JinZ. ZhaoK. Polymer-based nanomaterials and applications for vaccines and drugs.Polymers20181013110.3390/polym10010031
    [Google Scholar]
  25. HouD. XieC. HuangK. ZhuC. The production and characteristics of solid lipid nanoparticles (SLNs).Biomaterials200324101781178510.1016/S0142‑9612(02)00578‑1 12593960
    [Google Scholar]
  26. KatzE. WillnerI. WangJ. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles.ElectroanalysisWiley-VCH Verlag2004194410.1002/elan.200302930
    [Google Scholar]
  27. RayS.C. SahaA. JanaN.R. SarkarR. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application.J. Phys. Chem. C200911343185461855110.1021/jp905912n
    [Google Scholar]
  28. YangH. WangH. WenC. BaiS. WeiP. XuB. XuY. LiangC. ZhangY. ZhangG. WenH. ZhangL. Effects of iron oxide nanoparticles as T2-MRI contrast agents on reproductive system in male mice.J. Nanobiotechnology20222019810.1186/s12951‑022‑01291‑2 35236363
    [Google Scholar]
  29. Fernández-BarahonaI. Muñoz-HernandoM. Ruiz-CabelloJ. HerranzF. PellicoJ. Iron oxide nanoparticles: An alternative for positive contrast in magnetic resonance imaging.Inorganics2020842810.3390/inorganics8040028
    [Google Scholar]
  30. ShenZ. WuA. ChenX. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging.Mol. Pharm.20171451352136410.1021/acs.molpharmaceut.6b00839
    [Google Scholar]
  31. OberdickS.D. JordanovaK.V. LundstromJ.T. ParigiG. PoormanM.E. ZabowG. KeenanK.E. Iron oxide nanoparticles as positive T1 contrast agents for low-field magnetic resonance imaging at 64 mT.Sci. Rep.20231311152010.1038/s41598‑023‑38222‑6 37460669
    [Google Scholar]
  32. AbedA. DerakhshanM. KarimiM. ShiraziniaM. Mahjoubin-TehranM. HomayonfalM. HamblinM.R. MirzaeiS.A. SoleimanpourH. DehghaniS. DehkordiF.F. MirzaeiH. Platinum nanoparticles in biomedicine: Preparation, anti-cancer activity, and drug delivery vehicles.Front. Pharmacol.20221379780410.3389/fphar.2022.797804
    [Google Scholar]
  33. BlochK. PardesiK. SatrianoC. GhoshS. Bacteriogenic platinum nanoparticles for application in nanomedicine.Front Chem.2021962434410.3389/fchem.2021.624344 33763405
    [Google Scholar]
  34. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials2020107140310.3390/nano10071403
    [Google Scholar]
  35. XiaW. TaoZ. ZhuB. ZhangW. LiuC. ChenS. SongM. Targeted delivery of drugs and genes using polymer nanocarriers for cancer therapy.Int. J. Mol. Sci.20212217911810.3390/ijms22179118 34502028
    [Google Scholar]
  36. TenchovR. BirdR. CurtzeA.E. ZhouQ. Lipid nanoparticles from liposomes to MRNA vaccine delivery, a landscape of research diversity and advancement.ACS Nano20211511169821701510.1021/acsnano.1c04996
    [Google Scholar]
  37. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑8
    [Google Scholar]
  38. MateaC. MocanT. TabaranF. PopT. MosteanuO. PuiaC. IancuC. MocanL. Quantum dots in imaging, drug delivery and sensor applications.Int. J. Nanomedicine2017125421543110.2147/IJN.S138624 28814860
    [Google Scholar]
  39. WagnerA.M. KnipeJ.M. OriveG. PeppasN.A. Quantum dots in biomedical applications.Acta Biomater.201994446310.1016/j.actbio.2019.05.022
    [Google Scholar]
  40. AlsheheriS.Z. Nanocomposites containing titanium dioxide for environmental remediation.Designed Monomers and Polymers.Taylor and Francis Ltd.2021224510.1080/15685551.2021.1876322
    [Google Scholar]
  41. IrshadM.A. NawazR. RehmanM.Z. AdreesM. RizwanM. AliS. AhmadS. TasleemS. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review.Ecotoxicol. Environ. Saf.202121211197810.1016/j.ecoenv.2021.111978 33561774
    [Google Scholar]
  42. NoureddineA. Maestas-OlguinA. TangL. Corman-HijarJ.I. OlewineM. KrawchuckJ.A. Tsala EbodeJ. EdehC. DangC. NegreteO.A. WattJ. HowardT. CokerE.N. GuoJ. BrinkerC.J. Future of mesoporous silica nanoparticles in nanomedicine: Protocol for reproducible synthesis, characterization, lipid coating, and loading of therapeutics (chemotherapeutic, proteins, siRNA and mRNA).ACS Nano20231717163081632510.1021/acsnano.3c07621 37643407
    [Google Scholar]
  43. LinV.S.Y. Multifunctional mesoporous silica nanoparticles for biomedical applications.Signal Transduct. Target. Ther.20088143510.1038/s41392‑023‑01654‑7
    [Google Scholar]
  44. Dulińska-LitewkaJ. ŁazarczykA. HałubiecP. SzafrańskiO. KarnasK. KarewiczA. Superparamagnetic iron oxide nanoparticles-current and prospective medical applications.Materials201912461710.3390/ma12040617
    [Google Scholar]
  45. NelsonN. PortJ. PandeyM. Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via multiple imaging modalities and modifications to reduce cytotoxicity: An educational review.J. Nanotheranostics20201110513510.3390/jnt1010008
    [Google Scholar]
  46. SperanzaG. Carbon nanomaterials: Synthesis, functionalization and sensing applications.Nanomaterials202111496710.3390/nano11040967
    [Google Scholar]
  47. LiJ. ChengY. GuM. YangZ. ZhanL. DuZ. Sensing and stimulation applications of carbon nanomaterials in implantable brain-computer interface.Int. J. Mol. Sci.2023246518210.3390/ijms24065182
    [Google Scholar]
  48. AliA. RahimianK.S.S. AlshehriA.H. ArockiarajanA. Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures – A review.J. Mater. Res. Technol.2023246495652110.1016/j.jmrt.2023.04.072
    [Google Scholar]
  49. SinhaK. Mechanics of Nonplanar Interfaces in Flip-Chip Interconnects.PhD Thesis, University of Maryland, College Park, Maryland2012
    [Google Scholar]
  50. SinhaK. FarleyD. KahnertT. SolaresS.D. DasguptaA. CaersJ.F.J. ZhaoX.J. Influence of fabrication parameters on bond strength of adhesively bonded flip-chip interconnects.J. Adhes. Sci. Technol.201428121167119110.1080/01694243.2014.891349
    [Google Scholar]
  51. CaoL. SahuS. AnilkumarP. BunkerC.E. XuJ. FernandoK.A.S. WangP. GuliantsE.A. TackettK.N.II SunY.P. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond.J. Am. Chem. Soc.2011133134754475710.1021/ja200804h 21401091
    [Google Scholar]
  52. ArvidssonR. HansenS.F. Environmental and health risks of nanorobots: An early review.Environ. Sci. Nano20207102875288610.1039/D0EN00570C
    [Google Scholar]
  53. HagarováI. NemčekL. Application of metallic nanoparticles and their hybrids as innovative sorbents for separation and pre-concentration of trace elements by dispersive micro-solid phase extraction: A minireview.Front Chem.2021967275510.3389/fchem.2021.672755
    [Google Scholar]
  54. HemalathaK. MadhumithaG. KajbafvalaA. AnupamaN. SompalleR. Mohana RoopanS. Function of nanocatalyst in chemistry of organic compounds revolution: An overview.J. Nanomater.2013201312310.1155/2013/341015
    [Google Scholar]
  55. NarayananR. Synthesis of green nanocatalysts and industrially important green reactions.Green Chem. Lett. Rev.20125470772510.1080/17518253.2012.700955
    [Google Scholar]
  56. DamodharanJ. Nanomaterials in medicine - An overview.Materials Today: ProceedingsElsevier20203738338510.1016/j.matpr.2020.05.380
    [Google Scholar]
  57. GlaserJ.A. Green chemistry with nanocatalysts.Clean Technol. Environ. Policy20121451352010.1007/s10098‑012‑0507‑0
    [Google Scholar]
  58. VelusamyK. DevanandJ. Senthil KumarP. SoundarajanK. SivasubramanianV. SindhuJ. VoD.V.N. A review on nano-catalysts and biochar-based catalysts for biofuel production.Fuel202130612163210.1016/j.fuel.2021.121632
    [Google Scholar]
  59. LinH. WeiK. YinZ. SunS. Nanocatalysts in electrosynthesis.iScience2021243102172
    [Google Scholar]
  60. NarasimhanM. ChandrasekaranM. GovindasamyS. AravamudhanA. Heterogeneous nanocatalysts for sustainable biodiesel production: A review.J. Environ. Chem. Eng.20219110487610.1016/j.jece.2020.104876
    [Google Scholar]
  61. ChaturvediS. DaveP.N. ShahN.K. Applications of nano-catalyst in new era.J. Saudi Chem. Soc.201216330732510.1016/j.jscs.2011.01.015
    [Google Scholar]
  62. RoyA. ElzakiA. TirthV. KajoakS. OsmanH. AlgahtaniA. IslamS. FaizoN.L. KhandakerM.U. IslamM.N. EmranT. Biological synthesis of nanocatalysts and their applications.Catalysts20211112149410.3390/catal11121494
    [Google Scholar]
  63. FiorioJ.L. GotheM.L. KohlrauschE.C. ZardoM.L. TanakaA.A. de LimaR.B. da SilvaA.G.M. GarciaM.A.S. VidinhaP. MachadoG. Nanoengineering of catalysts for enhanced hydrogen production.Hydrogen20223221825410.3390/hydrogen3020014
    [Google Scholar]
  64. ZhangL. WangQ. LiL. BanisM.N. LiJ. AdairK. SunY. LiR. ZhaoZ.J. GuM. SunX. Single atom surface engineering: A new strategy to boost electrochemical activities of Pt catalysts.Nano Energy20229310681310.1016/j.nanoen.2021.106813
    [Google Scholar]
  65. GuoS. ZhangQ. WangS. Emerging small science on nanomaterials for energy storage and catalysis.Small Sci.2021110210010110.1002/smsc.202100101
    [Google Scholar]
  66. KuspanovZ. BakbolatB. BaimenovA. IssadykovA. YeleuovM. DaulbayevC. Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications.Sci. Total Environ.202388516391410.1016/j.scitotenv.2023.163914
    [Google Scholar]
  67. GuoS. LiX. LiJ. WeiB. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems.Nat. Commun.2021121134310.1038/s41467‑021‑21526‑4 33637719
    [Google Scholar]
  68. TahirM.B. SohaibM. SagirM. RafiqueM. Role of nanotechnology in photocatalysis.Encyclopedia of Smart Materials.Elsevier202157858910.1016/B978‑0‑12‑815732‑9.00006‑1
    [Google Scholar]
  69. DeyS. MehtaN.S. Automobile pollution control using catalysis.Resour. Environ. Sustain.2020210000610.1016/j.resenv.2020.100006
    [Google Scholar]
  70. AmbalkarA.A. KawadeU.V. SethiY.A. KanadeS.C. KulkarniM.V. AdhyapakP.V. KaleB.B. A nanostructured SnO 2/Ni/CNT composite as an anode for Li ion batteries.RSC Advances20211132195311954010.1039/D1RA01678D 35479220
    [Google Scholar]
  71. Sousa-CastilloA. Mariño-LópezA. PuértolasB. Correa-DuarteM.A. Nanostructured heterogeneous catalysts for bioorthogonal reactions.Angew. Chem.20236210e20221542710.1002/anie.202215427
    [Google Scholar]
  72. TsudaT. ShengM. IshikawaH. YamazoeS. YamasakiJ. HirayamaM. YamaguchiS. MizugakiT. MitsudomeT. Iron phosphide nanocrystals as an air-stable heterogeneous catalyst for liquid-phase nitrile hydrogenation.Nat. Commun.2023141595910.1038/s41467‑023‑41627‑6 37770434
    [Google Scholar]
  73. FangX. WeiP. WangL. WangX. ChenB. HeQ. YueQ. ZhangJ. ZhaoW. WangJ. LuG. ZhangH. HuangW. HuangX. LiH. Transforming monolayer transition-metal dichalcogenide nanosheets into one-dimensional nanoscrolls with high photosensitivity.ACS Appl. Mater. Interfaces20181015130111301810.1021/acsami.8b01856 29600705
    [Google Scholar]
  74. AghababaiB.A. JabbariH. Nanomaterials for environmental applications.Results Eng.20221510046710.1016/j.rineng.2022.100467
    [Google Scholar]
  75. BhardwajB. SinghP. KumarA. KumarS. BudhwarV. Eco-friendly greener synthesis of nanoparticles.Advanced Pharmaceutical Bulletin.Tabriz University of Medical Sciences202056657610.34172/apb.2020.067
    [Google Scholar]
  76. VigneshP. JayaseelanV. PugazhendiranP. PrakashM.S. SudhakarK. Nature-inspired nano-additives for biofuel application - A review.Chem. Eng. J. Adv.20221210036010.1016/j.ceja.2022.100360
    [Google Scholar]
  77. KumarN. ChauhanN.S. Nano-biocatalysts: Potential biotechnological applications.Indian J. Microbiol.202161444144810.1007/s12088‑021‑00975‑x
    [Google Scholar]
  78. MinopoliA. AcunzoA. DellaV.B. VelottaR. Nanostructured surfaces as plasmonic biosensors: A review.Adv. Mater. Interfaces20221035210113310.1002/admi.202101133
    [Google Scholar]
  79. SharmaD. HussainC.M. Smart nanomaterials in pharmaceutical analysis.Arab. J. Chem.20201313319334310.1016/j.arabjc.2018.11.007
    [Google Scholar]
  80. YangF. DengD. PanX. FuQ. BaoX. Understanding nano effects in catalysis.Natl. Sci. Rev.20152218320110.1093/nsr/nwv024
    [Google Scholar]
  81. HodgesB.C. CatesE.L. KimJ.H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials.Nat. Nanotechnol.201813864265010.1038/s41565‑018‑0216‑x 30082806
    [Google Scholar]
  82. RamanathanA. Toxicity of nanoparticles_ challenges and opportunities.Appl. Microsc.20194910.1007/s42649‑019‑0004‑6
    [Google Scholar]
  83. ZhangF. Grand challenges for nanoscience and nanotechnology in energy and health.Front Chem.201758010.3389/fchem.2017.00080 29164100
    [Google Scholar]
  84. MendesB.B. ConniotJ. AvitalA. YaoD. JiangX. ZhouX. Sharf-PaukerN. XiaoY. AdirO. LiangH. ShiJ. SchroederA. CondeJ. Nanodelivery of nucleic acids.Nat. Rev. Methods Primers202222410.1038/s43586‑022‑00104‑y
    [Google Scholar]
  85. ChernyshevV.M. AstakhovA.V. ChikunovI.E. TyurinR.V. EreminD.B. RannyG.S. KhrustalevV.N. AnanikovV.P. Pd and Pt catalyst poisoning in the study of reaction mechanisms: What does the mercury test mean for catalysis?ACS Catal.2019942984299510.1021/acscatal.8b03683
    [Google Scholar]
  86. ChungD.Y. KimH. ChungY.H. LeeM.J. YooS.J. BokareA.D. ChoiW. SungY.E. Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell.Sci. Rep.201441745010.1038/srep07450 25502744
    [Google Scholar]
  87. RayP.C. YuH. FuP.P. Toxicity and environmental risks of nanomaterials: Challenges and future needs.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.200927113510.1080/10590500802708267 19204862
    [Google Scholar]
  88. KumahE.A. FopaR.D. HaratiS. BoaduP. ZohooriF.V. PakT. Human and environmental impacts of nanoparticles: A scoping review of the current literature.BMC Public Health2023231105910.1186/s12889‑023‑15958‑4 37268899
    [Google Scholar]
  89. ĐorđevićS. GonzalezM.M. Conejos-SánchezI. CarreiraB. PozziS. AcúrcioR.C. Satchi-FainaroR. FlorindoH.F. VicentM.J. Current hurdles to the translation of nanomedicines from bench to the clinic.Drug Deliv. Transl. Res.202212350052510.1007/s13346‑021‑01024‑2
    [Google Scholar]
  90. AlbalawiF. HusseinM.Z. FakuraziS. MasarudinM.J. Engineered nanomaterials: The challenges and opportunities for nanomedicines.Int. J. Nanomedicine20211616118410.2147/IJN.S288236
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372285610231227094959
Loading
/content/journals/cocat/10.2174/0122133372285610231227094959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test