Skip to content
2000
Volume 11, Issue 4
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Introduction

Dihydropyrimidinone (DHPM) is a very useful moiety with a wide range of applications. Synthesis of this moiety with environmentally friendly methods is the demand of the era.

Methods

In recent research, the optimisation of curd as a biocatalyst has been studied. It has been reported that it can be used directly in the multicomponent Biginelli synthesis of ethyl 6-methyl-2-oxo-4-benzyl-1,2,3,4-tetrahydropyrimidine-5-carboxylates under mild reaction conditions.

Results

The chemical structures of synthesized compounds were characterized by physicochemical and analytical methods (1H NMR, IR and LC-MS methods) and it was found that curd is suitable for a vast variety of aromatic aldehydes to obtain the corresponding DHPMs.

Conclusion

This new eco-friendly approach can be implemented to synthesize DHPMs for different applications.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372294408240305111712
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. Al-MullaA. Der Pharma Chem20179141147
    [Google Scholar]
  2. AroraP. AroraV. LambaH.S. WadhwaD. Importance of heterocyclic chemistry: a review.Int. J. Pharma Sci.2012329472954
    [Google Scholar]
  3. Alvarez-BuillaJ. BarluengaJ. Modern heterocyclic chemistry.New YorkWiley201110.1002/9783527637737
    [Google Scholar]
  4. JampilekJ. Heterocycles in medicinal chemistry.Molecules201924213839384210.3390/molecules24213839 31731387
    [Google Scholar]
  5. BuntrockR.E. Review of heterocyclic chemistry, 5th Edition. J. Chem. Educ.201289111349135010.1021/ed300616t
    [Google Scholar]
  6. TaylorA.P. RobinsonR.P. FobianY.M. BlakemoreD.C. JonesL.H. FadeyiO. Modern advances in heterocyclic chemistry in drug discovery.Org. Biomol. Chem.201614286611663710.1039/C6OB00936K 27282396
    [Google Scholar]
  7. CabreleC. ReiserO. The modern face of synthetic heterocyclic chemistry.J. Org. Chem.20168121101091012510.1021/acs.joc.6b02034 27680573
    [Google Scholar]
  8. SapraR. PatelD. MeshramD. A mini review: recent developments of heterocyclic chemistry in some drug discovery scaffolds synthesis.J. Med. Chem. Sci202037178
    [Google Scholar]
  9. de la TorreB.G. AlbericioF. The pharmaceutical industry in 2020. An analysis of FDA drug approvals from the perspective of molecules.Molecules2021263162710.3390/molecules26030627
    [Google Scholar]
  10. ChallenerC. Advances in heterocyclic chemistry for API synthesis.Pharm. Technol.20153911
    [Google Scholar]
  11. QadirT. AminA. SharmaP.K. JeelaniI. AbeH. A review on medicinally important heterocyclic compounds.Open Med. Chem. J.2022161e18741045220228010.2174/18741045‑v16‑e2202280
    [Google Scholar]
  12. HenaryM. KanandaC. RotoloL. SavinoB. OwensE.A. CravottoG. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry.RSC Advances20201024141701419710.1039/D0RA01378A 35498463
    [Google Scholar]
  13. ChughV. PandeyG. RautelaR. MohanC. Heterocyclic compounds containing thiazole ring as important material in medicinal chemistry.Mater. Today Proc.20226947848110.1016/j.matpr.2022.09.150
    [Google Scholar]
  14. LiuJ.C. NarvaS. ZhouK. ZhangW. A review on the antitumor activity of various nitrogenous-based heterocyclic compounds as NSCLC inhibitors.Mini Rev. Med. Chem.201919181517153010.2174/1389557519666190312152358 30864519
    [Google Scholar]
  15. ChughA. KumarA. VermaA. KumarS. KumarP. A review of antimalarial activity of two or three nitrogen atoms containing heterocyclic compounds.Med. Chem. Res.20202917231750
    [Google Scholar]
  16. DasmahapatraU. ChandaK. Synthetic approaches to potent heterocyclic inhibitors of tuberculosis: A decade review.Front. Pharmacol.202213102121610.3389/fphar.2022.1021216
    [Google Scholar]
  17. YanM. MaS. Recent advances in the research of heterocyclic compounds as antitubercular agents.ChemMedChem20127122063207510.1002/cmdc.201200339 23042656
    [Google Scholar]
  18. GobisK. FoksH. BojanowskiK. Augustynowicz-KopećE. NapiórkowskaA. Synthesis of novel 3-cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds and their evaluation for tuberculostatic activity.Bioorg. Med. Chem.201220113714410.1016/j.bmc.2011.11.020 22153872
    [Google Scholar]
  19. MohammadA. MohdI. Abida. Antimicrobial activities of various thiazine based heterocyclic compounds: a mini-review.Mini Rev. Org. Chem.20221916617210.2174/1570193X18666210629102447
    [Google Scholar]
  20. DesaiN.C. BhattN.B. JoshiS.B. JadejaK.A. KhedkarV.M. Synthesis, antimicrobial activity and 3D‐QSAR study of hybrid oxazine clubbed pyridine scaffolds.ChemistrySelect20194257541755010.1002/slct.201901391
    [Google Scholar]
  21. SayedM. Kamal El-DeanA.M. AhmedM. HassanienR. Synthesis of some heterocyclic compounds derived from indole as antimicrobial agents.Synth. Commun.201848441342110.1080/00397911.2017.1403627
    [Google Scholar]
  22. OzdemirS.B. CebeciY.U. BayrakH. MermerA. CeylanS. DemirbasA. KaraogluS.A. DemirbasN. Heterocycl. Commun.201723435410.1515/hc‑2016‑0125
    [Google Scholar]
  23. FoksH. BalewskiL. GobisK. Dabrowska-SzponarM. WisniewskaK. Studies on pyrazine derivatives LII: Antibacterial and antifungal activity of nitrogen heterocyclic compounds obtained by pyrazinamidrazone usage.Heteroatom Chem.2012231495810.1002/hc.20751
    [Google Scholar]
  24. BhandareR.R. MunikrishnappaC.S. Suresh KumarG.V. KonidalaS.K. SigalapalliD.K. VaishnavY. ChinnamS. YasinH. Al-karmalawyA.A. ShaikA.B. Multistep synthesis and screening of heterocyclic tetrads containing furan, pyrazoline, thiazole and triazole (or oxadiazole) as antimicrobial and anticancer agents.J. Saudi Chem. Soc.2022263110144710.1016/j.jscs.2022.101447
    [Google Scholar]
  25. DesaiN.C. JoshiS.B. JadejaK.A. A one‐pot multicomponent Biginelli reaction for the preparation of novel pyrimidinthione derivatives as antimicrobial agents.J. Heterocycl. Chem.202057279179510.1002/jhet.3821
    [Google Scholar]
  26. ChaurasiaH. SinghV.K. MishraR. RaiP.K. ChoureK. PandeyA. Molecular modelling, DFT, molecular dynamics simulations, synthesis and antimicrobial potential studies of heterocyclic nucleoside mimetics.J. Mol. Struct.202213407110.1016/j.molstruc.2022.134071
    [Google Scholar]
  27. GroverG. NathR. BhatiaR. AkhtarM.J. Synthetic and therapeutic perspectives of nitrogen containing heterocycles as anti-convulsants.Bioorg. Med. Chem.2020281511558510.1016/j.bmc.2020.115585 32631563
    [Google Scholar]
  28. AlhamzaniA.G. YousefT.A. Abou-KrishaM.M. RaghuM.S. Yogesh KumarK. PrashanthM.K. JeonB.H. Design, synthesis, molecular docking and pharmacological evaluation of novel triazine-based triazole derivatives as potential anticonvulsant agents.Bioorg. Med. Chem. Lett.20227712904210.1016/j.bmcl.2022.129042 36332884
    [Google Scholar]
  29. ZaraH. AliR. NimaR. Anti-cancer nitrogen-containing heterocyclic compounds.Curr. Org. Chem.2018222256227910.2174/1385272822666181008142138
    [Google Scholar]
  30. BsharatI. AbdallaL. SawaftaA. Abu-ReidahI.M. Al-NuriM.A. Synthesis, characterization, antibacterial and anticancer activities of some heterocyclic imine compounds.J. Mol. Struct.2023128913578910.1016/j.molstruc.2023.135789
    [Google Scholar]
  31. SchroederA.C. BardosT.J. ChengY.C. Synthesis and antiviral activity of 1-(2-deoxy-.beta.-D-ribofuranosyl)-5-(methylmercapto)-2-pyrimidinone.J. Med. Chem.198124110911210.1021/jm00133a022 6259353
    [Google Scholar]
  32. RashadA.E. ShamroukhA.H. YousifN.M. SalamaM.A. AliH.S. AliM.M. MahmoudA.E. El-ShahatM. New pyrimidinone and fused pyrimidinone derivatives as potential anticancer chemotherapeutics.Arch. Pharm.2012345972973810.1002/ardp.201200119 22674829
    [Google Scholar]
  33. DeA. SarkarS. MajeeA. Recent advances on heterocyclic compounds with antiviral properties.Chem. Heterocycl. Compd.202157441041610.1007/s10593‑021‑02917‑3
    [Google Scholar]
  34. MermerA. KelesT. SirinY. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review.Bioorg. Chem.202111410507610.1016/j.bioorg.2021.105076 34157555
    [Google Scholar]
  35. CherukupalliS. HampannavarG.A. ChinnamS. ChandrasekaranB. SayyadN. KayambaF. Reddy AletiR. KarpoormathR. An appraisal on synthetic and pharmaceutical perspectives of pyrazolo[4,3-d]pyrimidine scaffold.Bioorg. Med. Chem.201826230933910.1016/j.bmc.2017.10.012 29273417
    [Google Scholar]
  36. SinghK. SinghK. WanB. FranzblauS. ChibaleK. BalzariniJ. Facile transformation of Biginelli pyrimidin-2(1H)-ones to pyrimidines. In vitro evaluation as inhibitors of Mycobacterium tuberculosis and modulators of cytostatic activity.Eur. J. Med. Chem.20114662290229410.1016/j.ejmech.2011.03.010 21450375
    [Google Scholar]
  37. PrasadT. MahapatraA. SharmaT. SahooC.R. PadhyR.N. Dihydropyrimidinones as potent anticancer agents: Insight into the structure–activity relationship.Arch. Pharm.20233566220066410.1002/ardp.202200664 36942985
    [Google Scholar]
  38. KhanM.S. NawazM.A. JalilS. RashidF. HameedA. AsariA. MohamadH. RehmanA.U. IftikharM. IqbalJ. al-RashidaM. Deep eutectic solvent mediated synthesis of 3,4-dihydropyrimidin-2(1H)-ones and evaluation of biological activities targeting neurodegenerative disorders.Bioorg. Chem.2022118110545710.1016/j.bioorg.2021.105457
    [Google Scholar]
  39. DashA.K. NayakD. HussainN. MintooM.J. BanoS. KatochA. MondheD.M. GoswamiA. MukherjeeD. Synthesis and investigation of the role of benzopyran dihydropyrimidinone hybrids in cell proliferation, migration and tumor growth.Anticancer. Agents Med. Chem.201919227628810.2174/1871520618666180903101422 30179143
    [Google Scholar]
  40. LingY. HaoZ.Y. LiangD. ZhangC.L. LiuY.F. WangY. The expanding role of pyridine and dihydropyridine scaffolds in drug design.Drug Des. Devel. Ther.2021154289433810.2147/DDDT.S329547 34675489
    [Google Scholar]
  41. Drugbank online.Available from: https://go.drugbank.com/drugs/DB00249 (Accessed on 19 October, 2023).
  42. LongleyD.B. HarkinD.P. JohnstonP.G. 5-Fluorouracil: Mechanisms of action and clinical strategies.Nat. Rev. Cancer20033533033810.1038/nrc1074 12724731
    [Google Scholar]
  43. Aminophylline. Available from: https://go.drugbank.com/drugs/DB01223 (Accessed on 19 October 2023).
  44. Emivirine.Available from: https://go.drugbank.com/drugs/DB08188 (Accessed on 19 October 2023).
  45. Riboflavin.Available from: https://go.drugbank.com/drugs/DB00140 (Accessed on 19 October 2023).
/content/journals/cocat/10.2174/0122133372294408240305111712
Loading
/content/journals/cocat/10.2174/0122133372294408240305111712
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test