Skip to content
2000
Volume 10, Issue 1
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Carbon nanotubes, as their name implies, are nanotubes made of carbon. Carbon nanotubes, liposomes, dendrimers, quantum dots, nanogels, and others are carbon nanoparticles. CNTs are synthesized using a variety of processes, including laser ablation, chemical vapor deposition, and arc discharge. Each method affects the nanotubes' final structure, diameter, and chirality, which affects their qualities and future applications. Furthermore, CNT functionalization and doping allow for changes in surface characteristics, compatibility with various materials, and improving performance in multiple applications. Carbon nanotubes are used in drug delivery systems to transport drugs from one place to another to achieve therapeutic effects. Carbon nanotubes have a wide variety of applications like those used in gene therapy, the treatment of cancer, diagnosis, tissue regeneration or engineering, . Moreover, CNTs (carbon nanotubes) have been recently revealed as promising antioxidants. They have great results in medicine and pharmacy. Its simple structure, high thermal and electronic conductivity, and nanometer size attract. Carbon nanotubes can deliver proteins, bioactive peptides, drugs, and nucleic acids to organs and cells. CNTs have a thin graphene sheet, which classifies them and changes their functions. This manuscript covers carbon nanotube history, classification, and applications.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615255751231009041021
2023-10-16
2025-01-15
Loading full text...

Full text loading...

References

  1. RadushkevichL.V. LukyanovichV.M. On the structure of carbon formed during the thermal decomposition of carbon monoxide on an iron contact.J. Phys. Chem.1952268895
    [Google Scholar]
  2. CouvreurP. Nanoparticles in drug delivery: Past, present and future.Adv. Drug Deliv. Rev.2013651212310.1016/j.addr.2012.04.01022580334
    [Google Scholar]
  3. IijimaS. IchihashiT. Single-shell carbon nanotubes of 1-nm diameter.Nature19933636430603605
    [Google Scholar]
  4. BiancoA. KostarelosK. PratoM. Applications of carbon nanotubes in drug delivery.Curr. Opin. Chem. Biol.20059667467910.1016/j.cbpa.2005.10.00516233988
    [Google Scholar]
  5. KaurR. VattaP. KaurM. Carbon nanotubes: A review article.Int. J. Res. Appl. Sci. Eng. Technol.2018645075507910.22214/ijraset.2018.4827
    [Google Scholar]
  6. MenezesB.R.C. RodriguesK.F. FonsecaB.C.S. RibasR.G. MontanheiroT.L.A. ThimG.P. Recent advances in the use of carbon nanotubes as smart biomaterials.J. Mater. Chem. B Mater. Biol. Med.2019791343136010.1039/C8TB02419G32255006
    [Google Scholar]
  7. BegS. RizwanM. SheikhA.M. HasnainM.S. AnwerK. KohliK. Advancement in carbon nanotubes: Basics, biomedical applications and toxicity.J. Pharm. Pharmacol.201163214116310.1111/j.2042‑7158.2010.01167.x21235578
    [Google Scholar]
  8. DresselhausM.S. DresselhausG. CharlierJ.C. HernandezE. Electronic, thermal and mechanical properties of carbon nanotubes. Philosophical transactions of the royal society of London. Series A: Mathematical, Phys.Eng. Sci.1823362182320652098
    [Google Scholar]
  9. PhamV.P. JangH.S. WhangD. ChoiJ.Y. Direct growth of graphene on rigid and flexible substrates: Progress, applications, and challenges.Chem. Soc. Rev.201746206276630010.1039/C7CS00224F28857098
    [Google Scholar]
  10. FalakiF. Sample preparation techniques for gas chromatography.In: Gas Chromatography-Derivatization, Sample Preparation, Application.LondonIntechOpen201910.5772/intechopen.84259
    [Google Scholar]
  11. GuldiD.M. MartinN. Carbon nanotubes and related structures: Synthesis, characterization, functionalization, and applications.Hoboken, New JerseyWiley201010.1002/9783527629930
    [Google Scholar]
  12. HarisP.J. HirschA. BackesC. Carbon Nanotubes Science: Synthesis, Properties and Applications.GermanyCambridge University Press2009102
    [Google Scholar]
  13. Tabatabaei MirakabadF.S. Nejati-KoshkiK. AkbarzadehA. PLGA-based nanoparticles as cancer drug delivery systems.Asian Pac. J. Cancer Prev.201415251753510.7314/APJCP.2014.15.2.51724568455
    [Google Scholar]
  14. SinnottS.B. AndrewsR. Carbon nanotubes: Synthesis, properties, and applications.Crit. Rev. Solid State Mater. Sci.200126314524910.1080/20014091104189
    [Google Scholar]
  15. ZhangW. ZhangZ. ZhangY. The application of carbon nanotubes in target drug delivery systems for cancer therapies.Nanoscale Res. Lett.20116155510.1186/1556‑276X‑6‑55521995320
    [Google Scholar]
  16. KirkpatrickD.L. WeissM. NaumovA. BartholomeuszG. WeismanR.B. GlikoO. Carbon nanotubes: Solution for the therapeutic delivery of siRNA?Materials 201251227830110.3390/ma502027828817045
    [Google Scholar]
  17. LuoE. SongG. LiY. ShiP. HuJ. LinY. The toxicity and pharmacokinetics of carbon nanotubes as an effective drug carrier.Curr. Drug Metab.201314887989010.2174/13892002113140011024016108
    [Google Scholar]
  18. LambertiM. ZappavignaS. SannoloN. PortoS. CaragliaM. Advantages and risks of nanotechnologies in cancer patients and occupationally exposed workers.Expert Opin. Drug Deliv.20141171087110110.1517/17425247.2014.91356824773227
    [Google Scholar]
  19. MadaniS.Y. MandelA. SeifalianA.M. A concise review of carbon nanotube’s toxicology.Nano Rev.2013412152110.3402/nano.v4i0.2152124319547
    [Google Scholar]
  20. EatemadiA. DaraeeH. KarimkhanlooH. Carbon nanotubes: Properties, synthesis, purification, and medical applications.Nanoscale Res. Lett.20149139310.1186/1556‑276X‑9‑39325170330
    [Google Scholar]
  21. KumarS.P. PrathibhaD. ShankarN.G. ParthibarajanR. MastyagiriL. ShankarM. Pharmaceutical application of carbon nanotube-mediated drug delivery system.Int J Pharm Sci Nanotechnol2012516851696
    [Google Scholar]
  22. AqelA. El-NourK.M.M.A. AmmarR.A.A. Al-WarthanA. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation.Arab. J. Chem.20125112310.1016/j.arabjc.2010.08.022
    [Google Scholar]
  23. BianZ. WangR.J. WangW.H. ZhangT. InoueA. Carbon‐nanotube‐reinforced Zr‐based bulk metallic glass composites and their properties.Adv. Funct. Mater.2004141556310.1002/adfm.200304422
    [Google Scholar]
  24. LayC.L. LiuJ. LiuY. Functionalized carbon nanotubes for anticancer drug delivery.Expert Rev. Med. Devices20118556156610.1586/erd.11.3422026621
    [Google Scholar]
  25. LiuZ. TabakmanS. WelsherK. DaiH. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery.Nano Res.2009228512010.1007/s12274‑009‑9009‑820174481
    [Google Scholar]
  26. MehraN.K. JainK. JainN.K. Pharmaceutical and biomedical applications of surface engineered carbon nanotubes.Drug Discov. Today201520675075910.1016/j.drudis.2015.01.00625601411
    [Google Scholar]
  27. MarquisF.D. Fully integrated hybrid polymeric carbon nanotube composites.Materials Science Forum. Zurich-Uetikon, Switzerland: Trans Tech Publications Ltd. 20034378588
    [Google Scholar]
  28. RaoC.N. MüllerA. CheethamA.K. The chemistry of nanomaterials: Synthesis, properties and applications.Hoboken, New JerseyJohn Wiley & Sons2006
    [Google Scholar]
  29. CalvertP. A recipe for strength.Nature1999399673321021110.1038/20326
    [Google Scholar]
  30. ChenJ. ChenS. ZhaoX. KuznetsovaL.V. WongS.S. OjimaI. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery.J. Am. Chem. Soc.200813049167781678510.1021/ja805570f19554734
    [Google Scholar]
  31. ZhuZ. SongW. BurugapalliK. MoussyF. LiY.L. ZhongX.H. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor.Nanotechnology2010211616550110.1088/0957‑4484/21/16/16550120348597
    [Google Scholar]
  32. ZhuZ. Garcia-GancedoL. FlewittA.J. MoussyF. LiY. MilneW.I. Design of carbon nanotube fiber microelectrode for glucose biosensing.J. Chem. Technol. Biotechnol.201287225626210.1002/jctb.2708
    [Google Scholar]
  33. ZhangL. WebsterT.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration.Nano Today200941668010.1016/j.nantod.2008.10.014
    [Google Scholar]
  34. AbarrategiA. GutiérrezM.C. Moreno-VicenteC. Multiwall carbon nanotube scaffolds for tissue engineering purposes.Biomaterials20082919410210.1016/j.biomaterials.2007.09.02117928048
    [Google Scholar]
  35. PaniniN.V. MessinaG.A. SalinasE. FernándezH. RabaJ. Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples.Biosens. Bioelectron.20082371145115110.1016/j.bios.2007.11.00318162392
    [Google Scholar]
  36. ZhangX. MengL. LuQ. FeiZ. DysonP.J. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes.Biomaterials200930306041604710.1016/j.biomaterials.2009.07.02519643474
    [Google Scholar]
  37. EbrahimnezhadZ. ZarghamiN. KeyhaniM. Inhibition of hTERT gene expression by silibinin-loaded PLGA-PEG-Fe3O4 in T47D breast cancer cell line.Bioimpacts201332677423878789
    [Google Scholar]
  38. DharS. LiuZ. ThomaleJ. DaiH. LippardS.J. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device.J. Am. Chem. Soc.200813034114671147610.1021/ja803036e18661990
    [Google Scholar]
  39. AbbasiE. MilaniM. Fekri AvalS. Silver nanoparticles: Synthesis methods, bio-applications and properties.Crit. Rev. Microbiol.201642217318024937409
    [Google Scholar]
  40. KimH. LeeJ. KahngS.J. Direct observation of localized defect states in semiconductor nanotube junctions.Phys. Rev. Lett.2003902121610721611410.1103/PhysRevLett.90.21610712786571
    [Google Scholar]
  41. AtashbarM.Z. BejcekB. SingamaneniS. SantucciS. Carbon nanotube based biosensors.SENSORS, 2004 IEEE. Vienna, Austria. 2004.24-27 Oct;10.1109/ICSENS.2004.1426354
    [Google Scholar]
  42. IguchiS. KudoH. SaitoT. A flexible and wearable biosensor for tear glucose measurement.Biomed. Microdevices20079460360910.1007/s10544‑007‑9073‑317520370
    [Google Scholar]
  43. AnzarN. HasanR. TyagiM. YadavN. NarangJ. Carbon nanotube - A review on Synthesis, Properties and plethora of applications in the field of biomedical science.Sensors International2020110000310.1016/j.sintl.2020.100003
    [Google Scholar]
  44. Recent Developments in Carbon NanotubesAvailable from: https://www.azonano.com/article.aspx?ArticleID=5518
  45. WangJ. DeoR.P. PoulinP. MangeyM. Carbon nanotube fiber microelectrodes.J. Am. Chem. Soc.200312548147061470710.1021/ja037737j14640636
    [Google Scholar]
  46. WebsterD.M. SundaramP. ByrneM.E. Injectable nanomaterials for drug delivery: Carriers, targeting moieties, and therapeutics.Eur. J. Pharm. Biopharm.201384112010.1016/j.ejpb.2012.12.00923313176
    [Google Scholar]
  47. ChakarvartyG. Nanoparticles & nanotechnology: Clinical, toxicological, social, regulatory & other aspects of nanotechnology.J. Drug Deliv. Ther.20133413814110.22270/jddt.v3i4.541
    [Google Scholar]
  48. YadavS.K. KhanZ.A. MishraB. BahadurS. KumarA. YadavB. The toxic side of nanotechnology: An insight into hazards to health and the ecosystem.Micro Nanosyst.2022141213310.2174/1876402913666210412160329
    [Google Scholar]
  49. BahadurS. JhaM.K. Emerging nanoformulations for drug targeting to brain through intranasal delivery: A comprehensive review.J. Drug Deliv. Sci. Technol.20227810393210.1016/j.jddst.2022.103932
    [Google Scholar]
  50. BahadurS. SachanN. HarwanshR.K. DeshmukhR. Nanoparticlized system: Promising approach for the management of Alzheimer’s disease through intranasal delivery.Curr. Pharm. Des.202026121331134410.2174/138161282666620031113165832160843
    [Google Scholar]
  51. SalaveS. RanaD. VitoreJ. JainA. Functionalized carbon nanotubes for cell tracking. In: Functionalized Carbon Nanotubes for Biomedical Applications.Hoboken, New JerseyWiley202331933810.1002/9781119905080.ch13
    [Google Scholar]
  52. ThongchomC. Roodgar SaffariP. Roudgar SaffariP. Dynamic response of fluid-conveying hybrid smart carbon nanotubes considering slip boundary conditions under a moving nanoparticle.Mech. Adv. Mater. Structures2022301121352148
    [Google Scholar]
  53. Abu OwidaH. TurabN.M. Al-NabulsiJ. Carbon nanomaterials advancements for biomedical applications.Bull Electron Eng Inform202312289190110.11591/eei.v12i2.4310
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615255751231009041021
Loading
/content/journals/cnm/10.2174/0124054615255751231009041021
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test