Skip to content
2000
Volume 10, Issue 1
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Camouflage nanoparticles (CNPs) have emerged as a promising paradigm in the realm of disease therapy, offering a distinctive set of properties and versatile applications. These nanoparticles, characterized by their size, typically falling within the range of 1 to 100 nm, hold significant promise for the realms of targeted drug delivery, diagnostics, and imaging. Diverse categories of camouflage nanoparticles, encompassing liposomes, polymeric nanoparticles, and dendrimers, have been under intensive scrutiny for their potential to combat a spectrum of diseases, including neurological disorders, cardiovascular ailments, genetic anomalies, and cancer. These nanoparticles exhibit the remarkable ability to surmount biological barriers, including the formidable blood-brain barrier, thereby facilitating the precise delivery of therapeutic agents to specific cells or tissues. This precision augments drug efficacy while simultaneously mitigating systemic side effects. Nevertheless, challenges persist in the refinement of nanoparticle design, the assurance of long-term safety, and the pursuit of scalability and cost-effectiveness. Looking ahead, future prospects encompass expanding the purview of disease-specific applications, advancing cutting-edge imaging modalities, crafting multifunctional nanoparticles, and seamlessly integrating nascent technologies. With relentless dedication to research and innovation, CNPs hold the potential to metamorphose the landscape of disease therapy, ushering in a new era marked by heightened drug efficacy, diminished side effects, and the realization of personalized medicine paradigms. This review aims to illuminate the burgeoning arena of CNPs in disease therapy, casting a spotlight on their latent potential as a conduit for targeted drug delivery. Through an exploration of their unique attributes, applications, and extant challenges, this review seeks to galvanize further research and development within this propitious domain, ultimately striving to revolutionize disease therapy by aligning it with the tenets of enhanced efficacy, attenuated side effects, and the realization of personalized medicine aspirations.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615273067231011110436
2023-10-25
2025-01-15
Loading full text...

Full text loading...

References

  1. CaldasM. SantosA.C. VeigaF. RebeloR. ReisR.L. CorreloV.M. Melanin nanoparticles as a promising tool for biomedical applications – a review.Acta Biomater.2020105264310.1016/j.actbio.2020.01.04432014585
    [Google Scholar]
  2. Hojjati-NajafabadiA. AygunA. TiriR.N.E. Bacillus thuringiensis based ruthenium/nickel Co-doped zinc as a green nanocatalyst: enhanced photocatalytic activity, mechanism, and efficient H2 production from sodium borohydride methanolysis.Ind. Eng. Chem. Res.202362114655466410.1021/acs.iecr.2c03833
    [Google Scholar]
  3. AlrushaidN. KhanF.A. Al-SuhaimiE.A. ElaissariA. Nanotechnology in cancer diagnosis and treatment.Pharmaceutics2023153102510.3390/pharmaceutics1503102536986885
    [Google Scholar]
  4. Hojjati-NajafabadiA. Nasr EsfahaniP. DavarF. AminabhaviT.M. VasseghianY. Adsorptive removal of malachite green using novel GO@ZnO-NiFe2O4-αAl2O3 nanocomposites.Chem. Eng. J.202347114448510.1016/j.cej.2023.144485
    [Google Scholar]
  5. RahmanM.M. IslamM.R. AkashS. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance.Biomed. Pharmacother.202215311330510.1016/j.biopha.2022.11330535717779
    [Google Scholar]
  6. AnithaG. Deep learning for the encounter of inorganic nanomaterial for efficient photochemical hydrogen production.Int. J. Hydrogen Energy2023
    [Google Scholar]
  7. ChandrakalaV. ArunaV. AngajalaG. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems.Emergent Materials2022561593161510.1007/s42247‑021‑00335‑x35005431
    [Google Scholar]
  8. LuoY. YangH. ZhouY.F. HuB. Dual and multi-targeted nanoparticles for site-specific brain drug delivery.J. Control. Release202031719521510.1016/j.jconrel.2019.11.03731794799
    [Google Scholar]
  9. ShresthaB. TangL. RomeroG. Nanoparticles‐mediated combination therapies for cancer treatment.Adv. Ther.2019211190007610.1002/adtp.201900076
    [Google Scholar]
  10. FangR.H. GaoW. ZhangL. Targeting drugs to tumours using cell membrane-coated nanoparticles.Nat. Rev. Clin. Oncol.2023201334810.1038/s41571‑022‑00699‑x36307534
    [Google Scholar]
  11. HanX. AluA. LiuH. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy.Bioact. Mater.202217294810.1016/j.bioactmat.2022.01.01135386442
    [Google Scholar]
  12. TazwarM.F. Inorganic Nanofiller-Incorporated Polymeric Nanocomposites for Biomedical Applications.CRC Press202310.1201/9781003279389‑6
    [Google Scholar]
  13. YangJ. ZhangX. LiuC. Biologically modified nanoparticles as theranostic bionanomaterials.Prog. Mater. Sci.202111810076810.1016/j.pmatsci.2020.100768
    [Google Scholar]
  14. ShettyK. BhandariA. YadavK.S. Nanoparticles incorporated in nanofibers using electrospinning: A novel nano-in-nano delivery system.J. Control. Release202235042143410.1016/j.jconrel.2022.08.03536002053
    [Google Scholar]
  15. WangS. LiuR. FuY. KaoW.J. Release mechanisms and applications of drug delivery systems for extended-release.Expert Opin. Drug Deliv.20201791289130410.1080/17425247.2020.178854132619149
    [Google Scholar]
  16. YooJ. ParkC. YiG. LeeD. KooH. Active targeting strategies using biological ligands for nanoparticle drug delivery systems.Cancers 201911564010.3390/cancers1105064031072061
    [Google Scholar]
  17. CookA.B. ClemonsT.D. Bottom‐up versus top‐down strategies for morphology control in polymer‐based biomedical materials.Adv. NanoBiomed Res.202221210008710.1002/anbr.202100087
    [Google Scholar]
  18. SharifiE. BighamA. YousefiaslS. Mesoporous bioactive glasses in cancer diagnosis and therapy: Stimuli‐responsive, toxicity, immunogenicity, and clinical translation.Adv. Sci.202292210267810.1002/advs.20210267834796680
    [Google Scholar]
  19. ShegokarR. NakachM. Large-scale manufacturing of nanoparticles—An industrial outlook. In: Drug Delivery Aspects.Elsevier2020577710.1016/B978‑0‑12‑821222‑6.00004‑X
    [Google Scholar]
  20. TiwariA. PandaS.K. ShawS.K. Experimental characterization optimizing the alignment parameter for GNP epoxy base nanocomposite via a weak DC magnetic field.Polym. Adv. Technol.202334103164318210.1002/pat.6137
    [Google Scholar]
  21. AlaviM. Conventional and novel methods for the preparation of micro and nanoliposomes.Micro Nano Bio Aspects2022111829
    [Google Scholar]
  22. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  23. NkangaC.I. General perception of liposomes: Formation, manufacturing and applications.In: Liposomes. intechopen2019
    [Google Scholar]
  24. GhaferiM. RazaA. KoohiM. Impact of PEGylated liposomal doxorubicin and carboplatin combination on glioblastoma.Pharmaceutics20221410218310.3390/pharmaceutics1410218336297618
    [Google Scholar]
  25. ArnettL.P. LiuJ. ZhangY. Biotinylated lipid-coated NaLnF 4 nanoparticles: Demonstrating the use of lanthanide nanoparticle-based reporters in suspension and imaging mass cytometry.Langmuir20223882525253710.1021/acs.langmuir.1c0300235167296
    [Google Scholar]
  26. DuttaB. BarickK.C. HassanP.A. Recent advances in active targeting of nanomaterials for anticancer drug delivery.Adv. Colloid Interface Sci.202129610250910.1016/j.cis.2021.10250934455211
    [Google Scholar]
  27. KhaliliL. DehghanG. SheibaniN. KhataeeA. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges.Int. J. Biol. Macromol.202221316619410.1016/j.ijbiomac.2022.05.15635644315
    [Google Scholar]
  28. TitusD. SamuelE.J.J. RoopanS.M. Nanoparticle characterization techniques.In: Green synthesis, characterization and applications of nanoparticles.Elsevier201930331910.1016/B978‑0‑08‑102579‑6.00012‑5
    [Google Scholar]
  29. ModenaM.M. RühleB. BurgT.P. WuttkeS. Nanoparticle characterization: what to measure?Adv. Mater.20193132190155610.1002/adma.20190155631148285
    [Google Scholar]
  30. YuanC.S. TengZ. YangS. Reshaping hypoxia and silencing CD73 via biomimetic gelatin nanotherapeutics to boost immunotherapy.J. Control. Release202235125527110.1016/j.jconrel.2022.09.02936165836
    [Google Scholar]
  31. ThakuriaA. KatariaB. GuptaD. Nanoparticle-based methodologies for targeted drug delivery—an insight.J. Nanopart. Res.20212348710.1007/s11051‑021‑05190‑9
    [Google Scholar]
  32. WangL. LaiR. ZhangL. ZengM. FuL. Emerging liquid metal biomaterials: From design to application.Adv. Mater.20223437220195610.1002/adma.20220195635545821
    [Google Scholar]
  33. LynchM.J. GobboO.L. Advances in non-animal testing approaches towards accelerated clinical translation of novel nanotheranostic therapeutics for central nervous system disorders.Nanomaterials20211110263210.3390/nano1110263234685073
    [Google Scholar]
  34. Ferreira-FariaI. YousefiaslS. Macário-SoaresA. Stem cell membrane-coated abiotic nanomaterials for biomedical applications.J. Control. Release202235117419710.1016/j.jconrel.2022.09.01236103910
    [Google Scholar]
  35. BagheriB. SurwaseS.S. LeeS.S. Carbon-based nanostructures for cancer therapy and drug delivery applications.J. Mater. Chem. B Mater. Biol. Med.202210489944996710.1039/D2TB01741E36415922
    [Google Scholar]
  36. MachtakovaM. Thérien-AubinH. LandfesterK. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents.Chem. Soc. Rev.202251112815210.1039/D1CS00686J34762084
    [Google Scholar]
  37. JiangX. WuL. ZhangM. Biomembrane nanostructures: Multifunctional platform to enhance tumor chemoimmunotherapy via effective drug delivery.J. Control. Release202336151053310.1016/j.jconrel.2023.08.00237567505
    [Google Scholar]
  38. PrabhakarPK Revolutionizing herbal medicine: Exploring nano drug delivery systems. Sumat Med J202363
    [Google Scholar]
  39. YaoX. QiC. SunC. HuoF. JiangX. Poly(ethylene glycol) alternatives in biomedical applications.Nano Today20234810173810.1016/j.nantod.2022.101738
    [Google Scholar]
  40. LeeN.H. YouS. TaghizadehA. TaghizadehM. KimH.S. Cell membrane-cloaked nanotherapeutics for targeted drug delivery.Int. J. Mol. Sci.2022234222310.3390/ijms2304222335216342
    [Google Scholar]
  41. KohoutV.R. WardzalaC.L. KramerJ.R. Synthesis and biomedical applications of mucin mimic materials.Adv. Drug Deliv. Rev.202219111454010.1016/j.addr.2022.11454036228896
    [Google Scholar]
  42. FamS.Y. CheeC.F. YongC.Y. HoK.L. MariatulqabtiahA.R. TanW.S. Stealth coating of nanoparticles in drug-delivery systems.Nanomaterials202010478710.3390/nano1004078732325941
    [Google Scholar]
  43. AziziM. Jahanban-EsfahlanR. SamadianH. Multifunctional nanostructures: Intelligent design to overcome biological barriers.Mater. Today Bio20232010067210.1016/j.mtbio.2023.10067237273793
    [Google Scholar]
  44. ZhengC. ZhangJ. ChanH.F. Engineering nano‐therapeutics to boost adoptive cell therapy for cancer treatment.Small Methods202155200119110.1002/smtd.20200119134928094
    [Google Scholar]
  45. DiJ. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo.Asian J Pharm Sci2021164444458
    [Google Scholar]
  46. WaniT.U. RazaS.N. KhanN.A. Nanoparticle opsonization: Forces involved and protection by long chain polymers.Polym. Bull.20207773865388910.1007/s00289‑019‑02924‑7
    [Google Scholar]
  47. PalmieriV. CaraccioloG. Tuning the immune system by nanoparticle–biomolecular corona.Nanoscale Adv.20224163300330810.1039/D2NA00290F36131704
    [Google Scholar]
  48. YangC. FengJ. LiuZ. Lubricant-entrenched slippery surface-based nanocarriers to avoid macrophage uptake and improve drug utilization.J. Adv. Res.202348617410.1016/j.jare.2022.08.01536041690
    [Google Scholar]
  49. GautamM. GuptaB. SoeZ.C. Stealth polymer-coated graphene oxide decorated mesoporous titania nanoplatforms for in vivo chemo-photodynamic cancer therapy.Pharm. Res.202037816210.1007/s11095‑020‑02900‑132749542
    [Google Scholar]
  50. JanN. MadniA. KhanS. Biomimetic cell membrane‐coated poly(lactic‐CO ‐glycolic acid) nanoparticles for biomedical applications.Bioeng. Transl. Med.202382e1044110.1002/btm2.1044136925703
    [Google Scholar]
  51. ShrefflerJ.W. PullanJ.E. DaileyK.M. MallikS. BrooksA.E. Overcoming hurdles in nanoparticle clinical translation: The influence of experimental design and surface modification.Int. J. Mol. Sci.20192023605610.3390/ijms2023605631801303
    [Google Scholar]
  52. PachecoC. BaiãoA. DingT. CuiW. SarmentoB. Recent advances in long-acting drug delivery systems for anticancer drug.Adv. Drug Deliv. Rev.202319411472410.1016/j.addr.2023.11472436746307
    [Google Scholar]
  53. BoraN.S. Nanotechnology in preventive and emergency healthcare. In: Nanotechnology.CRC Press201922127210.1201/9781351111874‑9
    [Google Scholar]
  54. DilliardS.A. SiegwartD.J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs.Nat. Rev. Mater.20238428230010.1038/s41578‑022‑00529‑736691401
    [Google Scholar]
  55. PalS. de la FuenteI.F. SawantS.S. CannataJ.N. HeW. RougeJ.L. Cellular uptake mechanism of nucleic acid nanocapsules and their DNA-surfactant building blocks.Bioconjug. Chem.20233461004101310.1021/acs.bioconjchem.3c0010437231780
    [Google Scholar]
  56. ZhaoZ. UkidveA. KimJ. MitragotriS. Targeting strategies for tissue-specific drug delivery.Cell2020181115116710.1016/j.cell.2020.02.00132243788
    [Google Scholar]
  57. MohammedV. KalaraniI.B. VeerabathiranR. Nanomedicine in neuroscience: An application towards the treatment of various neurological diseases.Curr. Nanomed.20221228492
    [Google Scholar]
  58. ShiD. BeasockD. FesslerA. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives.Adv. Drug Deliv. Rev.202218011407910.1016/j.addr.2021.11407934902516
    [Google Scholar]
  59. LiJ. ZhangZ. ZhangB. YanX. FanK. Transferrin receptor 1 targeted nanomedicine for brain tumor therapy.Biomater. Sci.202311103394341310.1039/D2BM02152H36847174
    [Google Scholar]
  60. MishraA. KumarR. MishraJ. Strategies facilitating the permeation of nanoparticles through blood-brain barrier: An insight towards the development of brain-targeted drug delivery system.J. Drug Deliv. Sci. Technol.20238610469410.1016/j.jddst.2023.104694
    [Google Scholar]
  61. ZhangG. YaoM. MaS. Application of cell membrane-functionalized biomimetic nanoparticles in the treatment of glioma.J. Mater. Chem. B Mater. Biol. Med.202311307055706810.1039/D3TB00605K
    [Google Scholar]
  62. EskandaniR. KazempourM. FarahzadiR. Engineered nanoparticles as emerging gene/drug delivery systems targeting the nuclear factor-κB protein and related signaling pathways in cancer.Biomed. Pharmacother.202215611393210.1016/j.biopha.2022.11393236411621
    [Google Scholar]
  63. OuyangC. ZhangS. XueC. Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo.J. Am. Chem. Soc.202014231265127710.1021/jacs.9b0978231895985
    [Google Scholar]
  64. HalderJ. PradhanD. BiswasroyP. Trends in iron oxide nanoparticles: A nano-platform for theranostic application in breast cancer.J. Drug Target.2022301012110.1080/1061186X.2022.209538935786242
    [Google Scholar]
  65. GirigoswamiA. GirigoswamiK. Potential applications of nanoparticles in improving the outcome of lung cancer treatment.Genes 2023147137010.3390/genes1407137037510275
    [Google Scholar]
  66. ChangH. YheeJ.Y. JeonS. In vivo toxicity evaluation of tumor targeted glycol chitosan nanoparticles in healthy mice: repeated high-dose of glycol chitosan nanoparticles potentially induce cardiotoxicity.J. Nanobiotechnology20232118210.1186/s12951‑023‑01824‑336894943
    [Google Scholar]
  67. VanićŽ. JøraholmenM.W. Škalko-BasnetN. Nanomedicines for the topical treatment of vulvovaginal infections: Addressing the challenges of antimicrobial resistance.Adv. Drug Deliv. Rev.202117811385510.1016/j.addr.2021.11385534214638
    [Google Scholar]
  68. KlausenM. UcuncuM. BradleyM. Design of photosensitizing agents for targeted antimicrobial photodynamic therapy.Molecules20202522523910.3390/molecules2522523933182751
    [Google Scholar]
  69. ParasuramanP R y T, Shaji C, et al. Biogenic silver nanoparticles decorated with methylene blue potentiated the photodynamic inactivation of Pseudomonas aeruginosa and Staphylococcus aureus.Pharmaceutics202012870910.3390/pharmaceutics1208070932751176
    [Google Scholar]
  70. DelshadiR. BahramiA. McClementsD.J. MooreM.D. WilliamsL. Development of nanoparticle-delivery systems for antiviral agents: A review.J. Control. Release2021331304410.1016/j.jconrel.2021.01.01733450319
    [Google Scholar]
  71. MeagherR.B. LewisZ.A. AmbatiS. LinX. DectiSomes: C-type lectin receptor-targeted liposomes as pan-antifungal drugs.Adv. Drug Deliv. Rev.202319611477610.1016/j.addr.2023.11477636934519
    [Google Scholar]
  72. VajagathaliM. RamakrishnanV. Genetic predisposition of BDNF (rs6265) gene is susceptible to Schizophrenia: A prospective study and updated meta-analysis.Neurologia202210.1016/j.nrl.2021.10.006
    [Google Scholar]
  73. HassanN.A. AlshamariA.K. HassanA.A. Advances on therapeutic strategies for Alzheimer’s disease: From medicinal plant to nanotechnology.Molecules20222715483910.3390/molecules2715483935956796
    [Google Scholar]
  74. ElkouziA. Vedam-MaiV. EisingerR.S. OkunM.S. Emerging therapies in Parkinson disease — repurposed drugs and new approaches.Nat. Rev. Neurol.201915420422310.1038/s41582‑019‑0155‑730867588
    [Google Scholar]
  75. KempJ.A. KwonY.J. Cancer nanotechnology: Current status and perspectives.Nano Converg.2021813410.1186/s40580‑021‑00282‑734727233
    [Google Scholar]
  76. Letko KhaitN. HoE. ShoichetM.S. Wielding the double‐edged sword of inflammation: Building biomaterial‐based strategies for immunomodulation in ischemic stroke treatment.Adv. Funct. Mater.20213144201067410.1002/adfm.202010674
    [Google Scholar]
  77. SinghN. SherinG.R. MugeshG. Antioxidant and prooxidant nanozymes: From cellular redox regulation to next‐generation therapeutics.Angew. Chem. Int. Ed.20236233e20230123210.1002/anie.20230123237083312
    [Google Scholar]
  78. WangY. PisapatiA.V. ZhangX.F. ChengX. Recent developments in nanomaterial‐based shear‐sensitive drug delivery systems.Adv. Healthc. Mater.20211013200219610.1002/adhm.20200219634076369
    [Google Scholar]
  79. GeorgeT.A. HsuC.C. MeesonA. LundyD.J. Nanocarrier-based targeted therapies for myocardial infarction.Pharmaceutics202214593010.3390/pharmaceutics1405093035631516
    [Google Scholar]
  80. KaviarasanV. MohammedV. VeerabathiranR. Genetic predisposition study of heart failure and its association with cardiomyopathy.Egypt. Heart J.2022741510.1186/s43044‑022‑00240‑635061126
    [Google Scholar]
  81. PalazzoloJ.S. Targeting nanotechnologies for the treatment of thrombosis and cardiovascular disease.In: Seminars in Thrombosis and Hemostasis.Thieme Medical Publishers202010.1055/s‑0039‑1697946
    [Google Scholar]
  82. YanJ. WangY. SongX. The advancement of gas‐generating nanoplatforms in biomedical fields: Current frontiers and future perspectives.Small Methods202267220013910.1002/smtd.20220013935587774
    [Google Scholar]
  83. ImamS.S. Al-AbbasiF.A. HosawiS. Role of platelet rich plasma mediated repair and regeneration of cell in early stage of cardiac injury.Regen. Ther.20221914415310.1016/j.reth.2022.01.00635229012
    [Google Scholar]
  84. ZhuangJ. ZhangX. LiuQ. ZhuM. HuangX. Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases.Theranostics202212146223624110.7150/thno.7342136168632
    [Google Scholar]
  85. YiW. XiaoP. LiuX. Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry.Signal Transduct. Target. Ther.20227138610.1038/s41392‑022‑01250‑136460660
    [Google Scholar]
  86. VoraL.K. MoffattK. TekkoI.A. Microneedle array systems for long-acting drug delivery.Eur. J. Pharm. Biopharm.2021159447610.1016/j.ejpb.2020.12.00633359666
    [Google Scholar]
  87. ThorpE.B. BoadaC. JarbathC. LuoX. Nanoparticle platforms for antigen-specific immune tolerance.Front. Immunol.20201194510.3389/fimmu.2020.0094532508829
    [Google Scholar]
  88. BrunoM.C. CristianoM.C. CeliaC. Injectable drug delivery systems for osteoarthritis and rheumatoid arthritis.ACS Nano20221612196651969010.1021/acsnano.2c0639336512378
    [Google Scholar]
  89. LeeN.K. KimS.N. ParkC.G. Immune cell targeting nanoparticles: a review.Biomater. Res.20212514410.1186/s40824‑021‑00246‑234930494
    [Google Scholar]
  90. ChenY. TandonI. HeelanW. WangY. TangW. HuQ. Proteolysis-targeting chimera (PROTAC) delivery system: Advancing protein degraders towards clinical translation.Chem. Soc. Rev.202251135330535010.1039/D1CS00762A35713468
    [Google Scholar]
  91. GaoH WuN WangN LiJ SunJ PengQ Chitosan-based therapeutic systems and their potentials in treatment of oral diseases.Int J Biol Macromol 2022222Pt B31789410.1016/j.ijbiomac.2022.10.09036244538
    [Google Scholar]
  92. KazemianP. YuS.Y. ThomsonS.B. BirkenshawA. LeavittB.R. RossC.J.D. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components.Mol. Pharm.20221961669168610.1021/acs.molpharmaceut.1c0091635594500
    [Google Scholar]
  93. DhasN. Intranasal gene therapy for the treatment of neurological disorders. In: Direct Nose-to-Brain Drug Delivery.Elsevier202135138710.1016/B978‑0‑12‑822522‑6.00017‑5
    [Google Scholar]
  94. AhmedZ. QaisarR. Nanomedicine for treating muscle dystrophies: Opportunities, challenges, and future perspectives.Int. J. Mol. Sci.202223191203910.3390/ijms23191203936233338
    [Google Scholar]
  95. ChariouP.L. Engineering virus-based nanocarriers for human and plant health.San DiegoUniversity of California2020
    [Google Scholar]
  96. ArishiW.A. AlhadramiH.A. ZourobM. Techniques for the detection of sickle cell disease: A review.Micromachines 202112551910.3390/mi1205051934063111
    [Google Scholar]
  97. MukherjeeS. MadamsettyV.S. BhattacharyaD. Roy ChowdhuryS. PaulM.K. MukherjeeA. Recent advancements of nanomedicine in neurodegenerative disorders theranostics.Adv. Funct. Mater.20203035200305410.1002/adfm.202003054
    [Google Scholar]
  98. ZhangX. WeiP. YangZ. Current progress and outlook of nano-based hydrogel dressings for wound healing.Pharmaceutics20221516810.3390/pharmaceutics1501006836678696
    [Google Scholar]
  99. MeiH. CaiS. HuangD. GaoH. CaoJ. HeB. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification.Bioact. Mater.2022822024010.1016/j.bioactmat.2021.06.03534541398
    [Google Scholar]
  100. KimE. LimE.K. ParkG. Advanced nanomaterials for preparedness against (Re‐)emerging viral diseases.Adv. Mater.20213347200592710.1002/adma.20200592733586180
    [Google Scholar]
  101. GuptaT. KumarA. SeshadriS. Bioprocess challenges in purification of therapeutic protein charge variants.Biotechnol. Bioprocess Eng.; BBE202328449350610.1007/s12257‑023‑0078‑4
    [Google Scholar]
  102. SaraswatA.L. VartakR. HegazyR. PatelA. PatelK. Drug delivery challenges and formulation aspects of proteolysis targeting chimera (PROTACs).Drug Discov. Today202328110338710.1016/j.drudis.2022.10338736184017
    [Google Scholar]
  103. DasguptaA. BiancacciI. KiesslingF. LammersT. Imaging-assisted anticancer nanotherapy.Theranostics202010395696710.7150/thno.3828831938045
    [Google Scholar]
  104. GovindanB. SabriM.A. HaiA. BanatF. HaijaM.A. A review of advanced multifunctional magnetic nanostructures for cancer diagnosis and therapy integrated into an artificial intelligence approach.Pharmaceutics202315386810.3390/pharmaceutics1503086836986729
    [Google Scholar]
  105. SoltaniM. Moradi KashkooliF. SouriM. Enhancing clinical translation of cancer using nanoinformatics.Cancers 20211310248110.3390/cancers1310248134069606
    [Google Scholar]
  106. CaoT. LiuK. LuL. ChuiH.C. SimpsonR.E. Large-area broadband near-perfect absorption from a thin chalcogenide film coupled to gold nanoparticles.ACS Appl. Mater. Interfaces20191155176518210.1021/acsami.8b2145230632371
    [Google Scholar]
  107. SalahM. AhmedF. HanaaA. Thermal radiations mitigation and stealth using egyptians cotton fabrics treated with ZnO nanoparticles and chlorophyll.Int. J. Adv. Sci. Eng. Inf. Technol.2022823142322
    [Google Scholar]
  108. ZhangM. ChengS. JinY. ZhangN. WangY. Membrane engineering of cell membrane biomimetic nanoparticles for nanoscale therapeutics.Clin. Transl. Med.2021112e29210.1002/ctm2.29233635002
    [Google Scholar]
  109. ChenY. ChengK. Advances of biological-camouflaged nanoparticles delivery system.Nano Res.202013102617262410.1007/s12274‑020‑2931‑5
    [Google Scholar]
  110. YanJ. WangY. MuZ. Gold nanobipyramid‐mediated apoptotic camouflage of adipocytes for obesity immunotherapy.Adv. Mater.2023358220768610.1002/adma.20220768636502507
    [Google Scholar]
  111. ArmanA. SağlamŞ. ÜzerA. ApakR. Electrochemical determination of nitroaromatic explosives using glassy carbon/multi walled carbon nanotube/polyethyleneimine electrode coated with gold nanoparticles.Talanta2022238Pt 112299010.1016/j.talanta.2021.12299034857323
    [Google Scholar]
  112. RenY. MiaoC. TangL. Homotypic cancer cell membranes camouflaged nanoparticles for targeting drug delivery and enhanced chemo-photothermal therapy of glioma.Pharmaceuticals202215215710.3390/ph1502015735215270
    [Google Scholar]
  113. ZhangT. LiuH. LiL. Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment.Bioact. Mater.20216113865387810.1016/j.bioactmat.2021.04.00433937590
    [Google Scholar]
  114. LiuZ. WangF. LiuX. Cell membrane–camouflaged liposomes for tumor cell–selective glycans engineering and imaging in vivo.Proc. Natl. Acad. Sci. 202111830e202276911810.1073/pnas.202276911834301864
    [Google Scholar]
  115. ZhangN. ChengH. HanW. GeF. YinY. WangC. Electrical‐triggered multicolor reversible color‐changing Ag nanoparticles/reduced graphene oxide/polyurethane conductive fibers.Macromol. Mater. Eng.20233081220043810.1002/mame.202200438
    [Google Scholar]
  116. ManujaA. KumarB. ChhabraD. Synergistic effect of zinc-chitosan nanoparticles and hydroxychloroquine to inhibit buffalo coronavirus.Polymers 20231513294910.3390/polym1513294937447594
    [Google Scholar]
  117. AttaA.M. AbomelkaH.M. Multifunctional finishing of cotton fibers using silver nanoparticles via microwave-assisted reduction of silver alkylcarbamate.Mater. Chem. Phys.202126012413710.1016/j.matchemphys.2020.124137
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615273067231011110436
Loading
/content/journals/cnm/10.2174/0124054615273067231011110436
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test