Skip to content
2000
Volume 10, Issue 1
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Titanium dioxide nanoparticles (TiO NPs) are formed in vast amounts worldwide for usage in several applications. They possess excellent photocatalytic properties, high chemical stability, and a wide bandgap, making them highly effective in environmental remediation and solar energy conversion. TiO nanoparticles exhibit biocompatibility, allowing their utilization in biomedical uses, such as molecular imaging, drug delivery, and tissue engineering. Chemical methods, such as hydrothermal, sol-gel, and chemical vapor deposition, provide versatility in controlling nanoparticle size, morphology, and crystallinity. They offer relatively lower production costs, scalability, and the ability to incorporate dopants or functionalize the nanoparticle surface. Their small size and large surface area-to-volume ratio enable enhanced reactivity and surface functionality, facilitating their incorporation into composite materials and surface coatings for improved performance. Regarding the potential toxicity of TiO nanoparticles, the bulk form of TiO is considered safe for human consumption, but the reduced size of nanoparticles raises concerns about their potential adverse effects. TiO nanoparticles strongly depend on factors, such as particle size, surface modifications, exposure route, and duration. Therefore, continued research is essential to gain a comprehensive understanding of the toxicity mechanisms and develop strategies to mitigate any potential adverse effects, ensuring the safe and responsible utilization of TiO nanoparticles in different fields.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/2405461508666230829100138
2023-10-09
2025-01-15
Loading full text...

Full text loading...

References

  1. HamadS. CatlowC.R.A. WoodleyS.M. LagoS. MejíasJ.A. Structure and stability of small TiO2 nanoparticles. J. Phys. Chem. B200510933157411574810.1021/jp052191416852997
    [Google Scholar]
  2. SungurŞ. Titanium dioxide nanoparticles.In: Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications.BerlinSpringer2021713730
    [Google Scholar]
  3. SangL. ZhaoY. BurdaC. TiO2 nanoparticles as functional building blocks.Chem. Rev.2014114199283931810.1021/cr400629p25294395
    [Google Scholar]
  4. HaiderA.J. AL- Anbari RH, Kadhim GR, Salame CT. Exploring potential environmental applications of TiO2 nanoparticles.Energy Procedia201711933234510.1016/j.egypro.2017.07.117
    [Google Scholar]
  5. ZhaoY. LiC. LiuX. Synthesis and optical properties of TiO2 nanoparticles.Mater. Lett.2007611798310.1016/j.matlet.2006.04.010
    [Google Scholar]
  6. BehnajadyM.A. EskandarlooH. ModirshahlaN. ShokriM. Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles.Desalination20112781-3101710.1016/j.desal.2011.04.019
    [Google Scholar]
  7. AuvinenS. AlataloM. HaarioH. JalavaJ.P. LamminmäkiR.J. Size and shape dependence of the electronic and spectral properties in TiO2 nanoparticles.J. Phys. Chem. C2011115178484849310.1021/jp112114p
    [Google Scholar]
  8. ZientalD. Czarczynska-GoslinskaB. MlynarczykD.T. Titanium dioxide nanoparticles: prospects and applications in medicine.Nanomaterials (Basel)202010238710.3390/nano1002038732102185
    [Google Scholar]
  9. ShiH. MagayeR. CastranovaV. ZhaoJ.J.P. Titanium dioxide nanoparticles: a review of current toxicological data.Part. Fibre Toxicol.20131015
    [Google Scholar]
  10. Baranowska-WójcikE. SzwajgierD. OleszczukP. Effects of titanium dioxide nanoparticles exposure on human health—a review.Biol. Trace Elem. Res.20201931118129
    [Google Scholar]
  11. GrandeF. TucciP. Titanium dioxide nanoparticles: A risk for human health?Mini Rev. Med. Chem.201616976276910.2174/138955751666616032111434126996620
    [Google Scholar]
  12. NolanM. PembleM. SheelD. YatesH.J.T.S.F. One step process for chemical vapour deposition of titanium dioxide thin films incorporating controlled structure nanoparticles.Thin Solid Films200651541956196210.1016/j.tsf.2006.07.182
    [Google Scholar]
  13. VishwakarmaA.K. YadavaL.J.A.S. Engineering, medicine. Fabrication and characterization of Nano-TiO2 thin film using physical vapor deposition method.Adv. Sci. Eng. Med.2018107-8723726
    [Google Scholar]
  14. UllattilS.G. PeriyatP. Sol-gel synthesis of titanium dioxide. In: Sol-Gel Materials for Energy, Environment and Electronic Applications. Advances in Sol-Gel Derived Materials and Technologies.ChamSpringer2017271283
    [Google Scholar]
  15. NaimM.N. KuwataM. KamiyaH. LenggoroI.W. Deposition of TiO2 nanoparticles in surfactant-containing aqueous suspension by a pulsed DC charging-mode electrophoresis.J. Ceram. Soc. Jpn.2009117136112713210.2109/jcersj2.117.127
    [Google Scholar]
  16. ChenX. SelloniA. Introduction: titanium dioxide (TiO2) nanomaterials.Chem. Rev.2014114199281928210.1021/cr500422r25294394
    [Google Scholar]
  17. OthmanS.H. Abdul RashidS. Mohd GhaziT.I. AbdullahN. Dispersion and stabilization of photocatalytic TiO2 nanoparticles in aqueous suspension for coatings applications.J. Nanomater.2012201211010.1155/2012/718214
    [Google Scholar]
  18. VieiraN.C.S. FigueiredoA. FacetoA.D. de QueirozA.A.A. ZucolottoV. GuimarãesF.E.G. Dendrimers/TiO2 nanoparticles layer-by-layer films as extended gate FET for pH detection.Sens. Actuators B Chem.201216939740010.1016/j.snb.2012.01.003
    [Google Scholar]
  19. WuH.P. ChengT.L. TsengW.L. Phosphate-modified TiO2 nanoparticles for selective detection of dopamine, levodopa, adrenaline, and catechol based on fluorescence quenching.Langmuir200723147880788510.1021/la700555y17564470
    [Google Scholar]
  20. TsuangY.H. SunJ.S. HuangY.C. LuC.H. ChangW.H.S. WangC.C.J.A.O. Studies of photokilling of bacteria using titanium dioxide nanoparticles.Artificial. Organs200832216717410.1111/j.1525‑1594.2007.00530.x
    [Google Scholar]
  21. IkramM. JavedB. HassanS.W.U. Therapeutic potential of biogenic titanium dioxide nanoparticles: a review on mechanistic approaches.Nanomedicine (Lond.)202116161429144610.2217/nnm‑2021‑002034085534
    [Google Scholar]
  22. SunnyN.E. MathewS.S. ChandelN. Green synthesis of titanium dioxide nanoparticles using plant biomass and their applications- A review.Chemosphere202230013461210.1016/j.chemosphere.2022.13461235430203
    [Google Scholar]
  23. HafeezM. ShamimW. EhsanR. Structural and biological investigation of biogenically synthesized titanium dioxide nanoparticles: Calcination and characterization.Microsc. Res. Tech.202184102372238010.1002/jemt.2379233880810
    [Google Scholar]
  24. IrshadM.A. NawazR. RehmanM.Z. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review.Ecotoxicol. Environ. Saf.202121211197810.1016/j.ecoenv.2021.11197833561774
    [Google Scholar]
  25. SharmaV.K. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—A Review.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.200944141485149510.1080/1093452090326323120183505
    [Google Scholar]
  26. DarG.I. SaeedM. Toxicity of TiO2 nanoparticles. TiO2 nanoparticles: applications in nanobiotechnology and nanomedicine.Wiley Online Library202067103
    [Google Scholar]
  27. ClémentL. HurelC. MarmierN. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – Effects of size and crystalline structure.Chemosphere20139031083109010.1016/j.chemosphere.2012.09.01323062945
    [Google Scholar]
  28. AnderssonPO LejonC Ekstrand-HammarströmB AkfurC AhlinderL BuchtA Polymorph- and size-dependent uptake and toxicity of TiO₂ nanoparticles in living lung epithelial cells. Small (Weinheim an der Bergstrasse, Germany) 20117451423
    [Google Scholar]
  29. MillerR.J. BennettS. KellerA.A. PeaseS. LenihanH.S. TiO2 nanoparticles are phototoxic to marine phytoplankton.PLoS One201271e3032110.1371/journal.pone.003032122276179
    [Google Scholar]
  30. KoseO. TomatisM. LeclercL. Impact of the physicochemical features of TiO2 nanoparticles on their in vitro toxicity.Chem. Res. Toxicol.20203392324233710.1021/acs.chemrestox.0c0010632786542
    [Google Scholar]
  31. WuJ. LiuW. XueC. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure.Toxicol. Lett.200919111810.1016/j.toxlet.2009.05.02019501137
    [Google Scholar]
  32. SimoninM. MartinsJ.M.F. Le RouxX. UzuG. CalasA. RichaumeA. Toxicity of TiO2 nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose–response relationships.Nanotoxicology201711224725510.1080/17435390.2017.129084528151030
    [Google Scholar]
  33. FenoglioI. GrecoG. LivraghiS. FubiniB. Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses.Chemistry200915184614462110.1002/chem.20080254219291716
    [Google Scholar]
  34. HaoL. WangZ. XingB. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio).J. Environ. Sci. (China)200921101459146610.1016/S1001‑0742(08)62440‑720000003
    [Google Scholar]
  35. DalaiS. PakrashiS. ChandrasekaranN. MukherjeeA. Acute toxicity of TiO2 nanoparticles to Ceriodaphnia dubia under visible light and dark conditions in a freshwater system.PLoS One201384e6297010.1371/journal.pone.006297023658658
    [Google Scholar]
  36. ShakeelM. JabeenF. ShabbirS. AsgharM.S. KhanM.S. ChaudhryA.S. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review.Biol. Trace Elem. Res.2016172113610.1007/s12011‑015‑0550‑x26554951
    [Google Scholar]
  37. HouJ. WangL. WangC. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms.J. Environ. Sci. (China)201975405310.1016/j.jes.2018.06.01030473306
    [Google Scholar]
  38. HurbánkováM. VolkovováK. WimmerováS. HenčekováD. MoricováŠ. Respiratory toxicity of TiO2 nanoparticles after intravenous instillation: an experimental study.Cent. Eur. J. Public Health201826317718210.21101/cejph.a522230419618
    [Google Scholar]
  39. ZeniP.F. SantosD.P.D. CanevaroloR.R. Photocatalytic and cytotoxic effects of nitrogen-doped TiO2 nanoparticles on melanoma cells.J. Nanosci. Nanotechnol.20181853722372810.1166/jnn.2018.1462129442890
    [Google Scholar]
  40. BolandS. HussainS. Baeza-SquibanA. Carbon black and titanium dioxide nanoparticles induce distinct molecular mechanisms of toxicity.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20146664165210.1002/wnan.130225266826
    [Google Scholar]
  41. AL-Ammari A, Zhang L, Yang J, Wei F, Chen C, Sun D. Toxicity assessment of synthesized titanium dioxide nanoparticles in fresh water algae Chlorella pyrenoidosa and a zebrafish liver cell line.Ecotoxicol. Environ. Saf.202121111194810.1016/j.ecoenv.2021.11194833486380
    [Google Scholar]
  42. SagawaT. HondaA. IshikawaR. Role of necroptosis of alveolar macrophages in acute lung inflammation of mice exposed to titanium dioxide nanoparticles.Nanotoxicology202115101312133010.1080/17435390.2021.202223135000540
    [Google Scholar]
  43. Świdwińska-GajewskaA.M. CzerczakS. Titanium dioxide nanoparticles--biological effects.Med. Pr.201465565166325812394
    [Google Scholar]
  44. LingC. AnH. LiL. Genotoxicity evaluation of titanium dioxide nanoparticles in vitro: A systematic review of the literature and meta-analysis.Biol. Trace Elem. Res.202119952057207610.1007/s12011‑020‑02311‑832770326
    [Google Scholar]
  45. VujovicM. KosticE. Titanium dioxide and zinc oxide nanoparticles in sunscreens: A review of toxicological data.J. Cosmet. Sci.201970522323431596227
    [Google Scholar]
  46. LappasC.M. The immunomodulatory effects of titanium dioxide and silver nanoparticles.Food Chem. Toxicol.201585788310.1016/j.fct.2015.05.015
    [Google Scholar]
  47. RollerovaE. TulinskaJ. LiskovaA. Titanium dioxide nanoparticles: Some aspects of toxicity/focus on the development.Endocr. Regul.20154929711210.4149/endo_2015_02_9725960011
    [Google Scholar]
  48. ShahS.N.A. ShahZ. HussainM. KhanM. Hazardous effects of titanium dioxide nanoparticles in ecosystem.Bioinorg. Chem. Appl.2017201711210.1155/2017/410173528373829
    [Google Scholar]
  49. BuiV.K.H. TranV.V. MoonJ.Y. ParkD. LeeY.C. Titanium dioxide microscale and macroscale structures: A mini-review.Nanomaterials (Basel)2020106119010.3390/nano1006119032570846
    [Google Scholar]
  50. AlyA.A. MaraeiR.W. LouisY.A. SafwatG. Assessment of irradiated TiO2 nanoparticles on the growth and nutritional components of broccoli.Notulae Botanicae Horti Agrobotanici. Cluj-Napoca20214931239710.15835/nbha49312397
    [Google Scholar]
  51. ChenZ. ZhengP. HanS. ZhangJ. LiZ. ZhouS. Tissue-specific oxidative stress and element distribution after oral exposure to titanium dioxide nanoparticles in rats.Nanoscale20201238200332004610.1039/D0NR05591C
    [Google Scholar]
  52. RaoT.N. BabjiP. AhmadN. KhanR.A. HassanI. ShahzadS.A. Green synthesis and structural classification of Acacia nilotica mediated-silver doped titanium oxide (Ag/TiO2) spherical nanoparticles: Assessment of its antimicrobial and anticancer activity.Saudi J. Biol. Sci.20192671385139110.1016/j.sjbs.2019.09.00531866742
    [Google Scholar]
  53. El-GazzarN. AlmaaryK. IsmailA. PolizziG.J.P.O. Influence of Funneliformis mosseae enhanced with titanium dioxide nanoparticles (TiO2NPs) on Phaseolus vulgaris L. under salinity stress.PLoS One2020158e0235355
    [Google Scholar]
  54. HosseiniZ.S. HaghparastF. MasoudiA.A. MortezaaliA.J.M.C. Enhanced visible photocatalytic performance of un-doped TiO2 nanoparticles thin films through modifying the substrate surface roughness.Mater. Chem. Phys.2022279125530
    [Google Scholar]
  55. KeerthanaV. GirigoswamiA. JothikaS. Kavitha D, Gopikrishna A, Somanathan T, Girigoswami K Synthesis, characterization and applications of GO–TiO2 nanocomposites in textile dye remediation.Iran. J. Sci. Tech. Transact . Sci.20224641149116110.1007/s40995‑022‑01337‑y
    [Google Scholar]
  56. RajaramanTS GandhiVG NguyenVH ParikhSP Aluminium foil-assisted NaBH4 reduced TiO2 with surface defects for photocatalytic degradation of toxic fuchsin basic dye.Appl Nanosci202313639254410.1007/s13204‑022‑02628‑x
    [Google Scholar]
  57. AnwarT. KumamP. WatthayuW. An exact analysis of unsteady MHD free convection flow of some nanofluids with ramped wall velocity and ramped wall temperature accounting heat radiation and injection/consumption.Sci. Rep.20201011783010.1038/s41598‑020‑74739‑w33082448
    [Google Scholar]
  58. BaranwalA. SrivastavaA. KumarP. BajpaiV.K. MauryaP.K. ChandraP. Prospects of nanostructure materials and their composites as antimicrobial agents.Front. Microbiol.2018942210.3389/fmicb.2018.0042229593676
    [Google Scholar]
  59. BilalM. AhmedA.E. El-NabulsiR.A. Numerical analysis of an unsteady, electroviscous, ternary hybrid nanofluid flow with chemical reaction and activation energy across parallel plates.Micromachines (Basel)202213687410.3390/mi1306087435744488
    [Google Scholar]
  60. HogganJ.L. SabatiniD.A. KibbeyT.C.G. Transport and retention of TiO 2 and polystyrene nanoparticles during drainage from tall heterogeneous layered columns.J. Contam. Hydrol.2016194303510.1016/j.jconhyd.2016.10.00327780094
    [Google Scholar]
  61. HussainM. RasoolM. MehmoodA. Radiative flow of viscous nano-fluid over permeable stretched swirling disk with generalized slip.Sci. Rep.20221211103810.1038/s41598‑022‑15159‑w35773464
    [Google Scholar]
  62. NadeemM. ElmoasryA. SiddiqueI. Study of triangular fuzzy hybrid nanofluids on the natural convection flow and heat transfer between two vertical plates.Comput. Intell. Neurosci.2021202111510.1155/2021/367833534804139
    [Google Scholar]
  63. RoyJ. OjhaP.K. RoyK. Risk assessment of heterogeneous TiO2 -based engineered nanoparticles (NPs): a QSTR approach using simple periodic table based descriptors.Nanotoxicology201913570171610.1080/17435390.2019.159354330938199
    [Google Scholar]
  64. VisserD. ChenD.Y. DésièresY. RavishankarA.P. AnandS. Embossed Mie resonator arrays composed of compacted TiO2 nanoparticles for broadband anti-reflection in solar cells.Sci. Rep.20201011252710.1038/s41598‑020‑69518‑632719504
    [Google Scholar]
  65. WangH. DuL.J. SongZ.M. ChenX.X. Progress in the characterization and safety evaluation of engineered inorganic nanomaterials in food.Nanomedicine (Lond.)20138122007202510.2217/nnm.13.17624279490
    [Google Scholar]
  66. WarheitD.B. BoatmanR. BrownS.C. Developmental toxicity studies with 6 forms of titanium dioxide test materials (3 pigment-different grade & 3 nanoscale) demonstrate an absence of effects in orally-exposed rats.Regul. Toxicol. Pharmacol.201573388789610.1016/j.yrtph.2015.09.03226434710
    [Google Scholar]
/content/journals/cnm/10.2174/2405461508666230829100138
Loading
/content/journals/cnm/10.2174/2405461508666230829100138
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test