Skip to content
2000
image of Revolutionizing Disease Prevention: The Rise of mRNA Vaccines and Nanotechnology for the Treatment of Cancer and Infectious Diseases

Abstract

Background

mRNA is a single-stranded RNA molecule. It conveys all the genetic information that is found in DNA and is complementary to it. mRNA was discovered in the early 1960s, and further studies were conducted in the 1970s. Yet, the greatest issue was that mRNA would be taken up by the body and rapidly destroyed. The crisis condition developed during the COVID-19 pandemic made the evolution of mRNA vaccines very swift.

Introduction

The main aim of this review article is to explain the development of different types of mRNA vaccines along with lipid nanoparticles, their transcription, how they can be used in cancer immunotherapy, and the possibilities of their working, including studies, mechanism of actions, and their uses in the treatment of various infectious diseases such as norovirus, influenza, sickle cell anemia, and HIV/AIDS.

Methods

The functional result of a gene (proteins) is created when the genetic instructions (triplets) found on mRNA are translated into amino acids. With advancements in nanotechnology, the development of lipid nanoparticles that wrap the mRNA like a bubble makes the entry into the cell possible. Once inside the cell, mRNA vaccines work by releasing the target gene, which contains information for cells to produce a harmless piece of the target virus.

Results

The invention and clinical execution of mRNA vaccines for cancer have been improved by recent technological advancements for the delivery of synthetic mRNA sequences using lipid nanoparticles. mRNA vaccines represent a significant advancement in vaccine technology, offering both rapid development capabilities and potent immune responses against various infectious diseases.

Conclusion

In this review article, we discuss the development of mRNA vaccines, their mechanism of action to prevent a wide variety of infectious diseases, their formulation, and the use of Lipid Nanoparticles (LNPs) for the delivery of the vaccine. Moreover, we discuss the use of mRNA vaccines in cancer immunotherapy and their future prospects.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873339647250214070805
2025-02-18
2025-07-10
Loading full text...

Full text loading...

References

  1. Gu Y. Duan J. Yang N. Yang Y. Zhao X. mRNA vaccines in the prevention and treatment of diseases. MedComm 2022 3 3 e167 10.1002/mco2.167 36033422
    [Google Scholar]
  2. Chavda V. Soni S. Vora L. Soni S. Khadela A. Ajabiya J. mRNA-based vaccines and therapeutics for COVID-19 and future pandemics. Vaccines 2022 10 12 2150 10.3390/vaccines10122150 36560560
    [Google Scholar]
  3. Cosentino M. Marino F. Understanding the pharmacology of COVID-19 mRNA vaccines: Playing dice with the spike? Int. J. Mol. Sci. 2022 23 18 10881 10.3390/ijms231810881 36142792
    [Google Scholar]
  4. Wilder-Smith A. Chiew C.J. Lee V.J. Can we contain the COVID-19 outbreak with the same measures as for SARS? Lancet Infect. Dis. 2020 20 5 e102 e107 10.1016/S1473‑3099(20)30129‑8 32145768
    [Google Scholar]
  5. Holmes E.A. O’Connor R.C. Perry V.H. Tracey I. Wessely S. Arseneault L. Ballard C. Christensen H. Cohen Silver R. Everall I. Ford T. John A. Kabir T. King K. Madan I. Michie S. Przybylski A.K. Shafran R. Sweeney A. Worthman C.M. Yardley L. Cowan K. Cope C. Hotopf M. Bullmore E. Multidisciplinary research priorities for the COVID-19 pandemic: A call for action for mental health science. Lancet Psychiatry 2020 7 6 547 560 10.1016/S2215‑0366(20)30168‑1 32304649
    [Google Scholar]
  6. Pfefferbaum B. North C.S. Mental health and the Covid-19 pandemic. N. Engl. J. Med. 2020 383 6 510 512 10.1056/NEJMp2008017 32283003
    [Google Scholar]
  7. Dubey S. Biswas P. Ghosh R. Chatterjee S. Dubey M.J. Chatterjee S. Lahiri D. Lavie C.J. Psychosocial impact of COVID-19. Diabetes Metab. Syndr. 2020 14 5 779 788 10.1016/j.dsx.2020.05.035 32526627
    [Google Scholar]
  8. Dong Z.Q. Ma J. Hao Y.N. Shen X.L. Liu F. Gao Y. Zhang L. The social psychological impact of the COVID-19 pandemic on medical staff in China: A cross- sectional study. Eur. Psychiatry 2020 63 1 e65 10.1192/j.eurpsy.2020.59 32476633
    [Google Scholar]
  9. Nande A. Adlam B. Sheen J. Levy M.Z. Hill A.L. Dynamics of COVID-19 under social distancing measures are driven by transmission network structure. PLOS Comput. Biol. 2021 17 2 e1008684 10.1371/journal.pcbi.1008684 33534808
    [Google Scholar]
  10. Middle East respiratory syndrome coronavirus (MERS-CoV). 2022 Available from: https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov)?gad_source=1&gclid=Cj0KCQjwsuSzBhCLARIsAIcdLm
  11. Forni G. Mantovani A. COVID-19 Commission of Accademia Nazionale dei Lincei, Rome. COVID-19 Vaccines: Where we stand and challenges ahead. Cell Death Differ. 2021 28 2 626 639 10.1038/s41418‑020‑00720‑9 33479399
    [Google Scholar]
  12. Chi X. Yan R. Zhang J. Zhang G. Zhang Y. Hao M. Zhang Z. Fan P. Dong Y. Yang Y. Chen Z. Guo Y. Zhang J. Li Y. Song X. Chen Y. Xia L. Fu L. Hou L. Xu J. Yu C. Li J. Zhou Q. Chen W. A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2. Science 2020 369 6504 650 655 10.1126/science.abc6952 32571838
    [Google Scholar]
  13. Zhang G. Tang T. Chen Y. Huang X. Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduct. Target. Ther. 2023 8 1 365 10.1038/s41392‑023‑01579‑1 37726283
    [Google Scholar]
  14. Shi R. Shan C. Duan X. Chen Z. Liu P. Song J. Song T. Bi X. Han C. Wu L. Gao G. Hu X. Zhang Y. Tong Z. Huang W. Liu W.J. Wu G. Zhang B. Wang L. Qi J. Feng H. Wang F.S. Wang Q. Gao G.F. Yuan Z. Yan J. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 2020 584 7819 120 124 10.1038/s41586‑020‑2381‑y 32454512
    [Google Scholar]
  15. Plotkin S.A. Vaccines: The fourth century. Clin. Vaccine Immunol. 2009 16 12 1709 1719 10.1128/CVI.00290‑09 19793898
    [Google Scholar]
  16. Cirrincione L. Plescia F. Ledda C. Rapisarda V. Martorana D. Lacca G. Argo A. Zerbo S. Vitale E. Vinnikov D. Cannizzaro E. COVID-19 Pandemic: New prevention and protection measures. Sustainability 2022 14 8 4766 10.3390/su14084766
    [Google Scholar]
  17. Tarighi P. Eftekhari S. Chizari M. Sabernavaei M. Jafari D. Mirzabeigi P. A review of potential suggested drugs for coronavirus disease (COVID-19) treatment. Eur. J. Pharmacol. 2021 895 173890 10.1016/j.ejphar.2021.173890 33482181
    [Google Scholar]
  18. DeFrancesco L. The ‘anti-hype’ vaccine. Nat. Biotechnol. 2017 35 3 193 197 10.1038/nbt.3812 28244993
    [Google Scholar]
  19. Lurie N. Saville M. Hatchett R. Halton J. Developing Covid-19 vaccines at pandemic speed. N. Engl. J. Med. 2020 382 21 1969 1973 10.1056/NEJMp2005630 32227757
    [Google Scholar]
  20. Pardi N. Tuyishime S. Muramatsu H. Kariko K. Mui B.L. Tam Y.K. Madden T.D. Hope M.J. Weissman D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control. Release 2015 217 345 351 10.1016/j.jconrel.2015.08.007 26264835
    [Google Scholar]
  21. Versteeg L. Almutairi M.M. Hotez P.J. Pollet J. Enlisting the mRNA vaccine platform to combat parasitic infections. Vaccines 2019 7 4 122 10.3390/vaccines7040122 31547081
    [Google Scholar]
  22. Stitz L. Vogel A. Schnee M. Voss D. Rauch S. Mutzke T. Ketterer T. Kramps T. Petsch B. A thermostable messenger RNA based vaccine against rabies. PLoS Negl. Trop. Dis. 2017 11 12 e0006108 10.1371/journal.pntd.0006108 29216187
    [Google Scholar]
  23. Zhang X. Li B. Luo X. Zhao W. Jiang J. Zhang C. Gao M. Chen X. Dong Y. Biodegradable amino-ester nanomaterials for Cas9 mRNA Delivery in vitro and in vivo. ACS Appl. Mater. Interfaces 2017 9 30 25481 25487 10.1021/acsami.7b08163 28685575
    [Google Scholar]
  24. Iavarone C. O’hagan D.T. Yu D. Delahaye N.F. Ulmer J.B. Mechanism of action of mRNA-based vaccines. Expert Rev. Vaccines 2017 16 9 871 881 10.1080/14760584.2017.1355245 28701102
    [Google Scholar]
  25. Desfarges S. Ciuffi A. Viral Integration and consequences on host gene expression. Viruses. Essential Agents of Life Springer 2012 147 175
    [Google Scholar]
  26. Cid R. Bolívar J. Platforms for production of protein-based vaccines: From classical to next-generation strategies. Biomolecules 2021 11 8 1072 10.3390/biom11081072 34439738
    [Google Scholar]
  27. Kallen K.J. Theß A. A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther. Adv. Vaccines 2014 2 1 10 31 10.1177/2051013613508729 24757523
    [Google Scholar]
  28. Kowalzik F. Schreiner D. Jensen C. Teschner D. Gehring S. Zepp F. mRNA-based vaccines. Vaccines 2021 9 4 390 10.3390/vaccines9040390 33921028
    [Google Scholar]
  29. Flemming A. Self-amplifying RNA in lipid nanoparticles: A next- generation vaccine? Nat. Rev. Drug Discov. 2012 11 10 749 10.1038/nrd3854 23023675
    [Google Scholar]
  30. Liang Y. Huang L. Liu T. Development and delivery systems of mRNA. Front. Bioeng. Biotechnol. 2021 9 718753 10.3389/fbioe.2021.718753 34386486
    [Google Scholar]
  31. Bown C.P. Bollyky T.J. How COVID-19 vaccine supply chains emerged in the midst of a pandemic. World Econ. 2022 45 2 468 522 10.1111/twec.13183 34548749
    [Google Scholar]
  32. Li D. Liu C. Li Y. Tenchov R. Sasso J.M. Zhang D. Li D. Zou L. Wang X. Zhou Q. Messenger RNA-based therapeutics and vaccines: What’s beyond COVID-19? ACS Pharmacol. Transl. Sci. 2023 6 7 943 969 10.1021/acsptsci.3c00047 37470024
    [Google Scholar]
  33. Wu Z. Li T. Nanoparticle-mediated cytoplasmic delivery of messenger rna vaccines: Challenges and future. Pharm. Res. 2021 38 3 473 478 10.1007/s11095‑021‑03015‑x 33660201
    [Google Scholar]
  34. Maugeri M. Nawaz M. Papadimitriou A. Angerfors A. Camponeschi A. Na M. Hölttä M. Skantze P. Johansson S. Sundqvist M. Lindquist J. Kjellman T. Mårtensson I.L. Jin T. Sunnerhagen P. Östman S. Lindfors L. Valadi H. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat. Commun. 2019 10 1 4333 10.1038/s41467‑019‑12275‑6 31551417
    [Google Scholar]
  35. Pardi N. Hogan M.J. Porter F.W. Weissman D. mRNA vaccines — A new era in vaccinology. Nat. Rev. Drug Discov. 2018 17 4 261 279 10.1038/nrd.2017.243 29326426
    [Google Scholar]
  36. Houseley J. Tollervey D. The many pathways of RNA degradation. Cell 2009 136 4 763 776 10.1016/j.cell.2009.01.019 19239894
    [Google Scholar]
  37. Jones K.L. Drane D. Gowans E.J. Long-term storage of DNA-free RNA for use in vaccine studies. Biotechniques 2007 43 5 675 681 10.2144/000112593 18072597
    [Google Scholar]
  38. Probst J. Weide B. Scheel B. Pichler B.J. Hoerr I. Rammensee H-G. Pascolo S. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther. 2007 14 15 1175 1180 10.1038/sj.gt.3302964 17476302
    [Google Scholar]
  39. Wolff J.A. Malone R.W. Williams P. Chong W. Acsadi G. Jani A. Felgner P.L. Direct gene transfer into mouse muscle in vivo. Science 1990 247 4949 1465 1468 10.1126/science.1690918 1690918
    [Google Scholar]
  40. Diken M. Kreiter S. Selmi A. Britten C.M. Huber C. Türeci Ö. Sahin U. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther. 2011 18 7 702 708 10.1038/gt.2011.17 21368901
    [Google Scholar]
  41. Selmi A. Vascotto F. Kautz-Neu K. Türeci Ö. Sahin U. von Stebut E. Diken M. Kreiter S. Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice. Cancer Immunol. Immunother. 2016 65 9 1075 1083 10.1007/s00262‑016‑1869‑7 27422115
    [Google Scholar]
  42. Zhang G. Guo B. Wu H. Tang T. Zhang B.T. Zheng L. He Y. Yang Z. Pan X. Chow H. To K. Li Y. Li D. Wang X. Wang Y. Lee K. Hou Z. Dong N. Li G. Leung K. Hung L. He F. Zhang L. Qin L. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat. Med. 2012 18 2 307 314 10.1038/nm.2617 22286306
    [Google Scholar]
  43. Ding Y. Guo Z. Liu Y. Li X. Zhang Q. Xu X. Gu Y. Zhang Y. Zhao D. Cao X. The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC class I–peptide complex formation. Nat. Immunol. 2016 17 10 1167 1175 10.1038/ni.3535 27548433
    [Google Scholar]
  44. Boczkowski D. Nair S.K. Snyder D. Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med. 1996 184 2 465 472 10.1084/jem.184.2.465 8760800
    [Google Scholar]
  45. Baldin A.V. Savvateeva L.V. Bazhin A.V. Zamyatnin A.A. Jr Dendritic cells in anticancer vaccination: Rationale for ex-vivo loading or in vivo targeting. Cancers 2020 12 3 590 10.3390/cancers12030590 32150821
    [Google Scholar]
  46. Van Tendeloo V.F.I. Ponsaerts P. Lardon F. Nijs G. Lenjou M. Van Broeckhoven C. Van Bockstaele D.R. Berneman Z.N. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 2001 98 1 49 56 10.1182/blood.V98.1.49 11418462
    [Google Scholar]
  47. Benteyn D. Heirman C. Bonehill A. Thielemans K. Breckpot K. mRNA-based dendritic cell vaccines. Expert Rev. Vaccines 2015 14 2 161 176 10.1586/14760584.2014.957684 25196947
    [Google Scholar]
  48. Ramachandran S. Satapathy S.R. Dutta T. Delivery strategies for mRNA vaccines. Pharmaceut. Med. 2022 36 1 11 20 10.1007/s40290‑021‑00417‑5 35094366
    [Google Scholar]
  49. Shin M.D. Shukla S. Chung Y.H. Beiss V. Chan S.K. Ortega-Rivera O.A. Wirth D.M. Chen A. Sack M. Pokorski J.K. Steinmetz N.F. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 2020 15 8 646 655 10.1038/s41565‑020‑0737‑y 32669664
    [Google Scholar]
  50. Lokugamage M.P. Gan Z. Zurla C. Levin J. Islam F.Z. Kalathoor S. Sato M. Sago C.D. Santangelo P.J. Dahlman J.E. Mild innate immune activation overrides efficient nanoparticle-mediated RNA delivery. Adv. Mater. 2020 32 1 1904905 10.1002/adma.201904905 31743531
    [Google Scholar]
  51. Thomas S.J. Perez J.L. Lockhart S.P. Hariharan S. Kitchin N. Bailey R. Liau K. Lagkadinou E. Türeci Ö. Şahin U. Xu X. Koury K. Dychter S.S. Lu C. Gentile T.C. Gruber W.C. Efficacy and safety of the BNT162b2 mRNA COVID-19 vaccine in participants with a history of cancer: Subgroup analysis of a global phase 3 randomized clinical trial. Vaccine 2022 40 10 1483 1492 10.1016/j.vaccine.2021.12.046 35131133
    [Google Scholar]
  52. Buschmann M.D. Carrasco M.J. Alishetty S. Paige M. Alameh M.G. Weissman D. Nanomaterial delivery systems for mRNA Vaccines. Vaccines 2021 9 1 65 10.3390/vaccines9010065 33478109
    [Google Scholar]
  53. Hajiaghapour Asr M. Dayani F. Saedi Segherloo F. Kamedi A. Neill A.O. MacLoughlin R. Doroudian M. Lipid nanoparticles as promising carriers for mRNA vaccines for viral lung infections. Pharmaceutics 2023 15 4 1127 10.3390/pharmaceutics15041127 37111613
    [Google Scholar]
  54. Hou X. Zaks T. Langer R. Dong Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021 6 12 1078 1094 10.1038/s41578‑021‑00358‑0 34394960
    [Google Scholar]
  55. Ramishetti S. Hazan-Halevy I. Palakuri R. Chatterjee S. Naidu Gonna S. Dammes N. Freilich I. Kolik Shmuel L. Danino D. Peer D. A combinatorial library of lipid nanoparticles for RNA delivery to leukocytes. Adv. Mater. 2020 32 12 1906128 10.1002/adma.201906128 31999380
    [Google Scholar]
  56. Gilleron J. Querbes W. Zeigerer A. Borodovsky A. Marsico G. Schubert U. Manygoats K. Seifert S. Andree C. Stöter M. Epstein-Barash H. Zhang L. Koteliansky V. Fitzgerald K. Fava E. Bickle M. Kalaidzidis Y. Akinc A. Maier M. Zerial M. Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 2013 31 7 638 646 10.1038/nbt.2612 23792630
    [Google Scholar]
  57. Samaridou E. Heyes J. Lutwyche P. Lipid nanoparticles for nucleic acid delivery: Current perspectives. Adv. Drug Deliv. Rev. 2020 154-155 37 63 10.1016/j.addr.2020.06.002 32526452
    [Google Scholar]
  58. Cheng X Lee RJ The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev. 2016 99 Pt A 129 137
    [Google Scholar]
  59. Fang Y Xue J Gao S Lu A Yang D Jiang H He Y Shi K. Cleavable PEGylation: A strategy for overcoming the "PEG dilemma" in efficient drug delivery. Drug Deliv. 2017 24 sup1 22 32
    [Google Scholar]
  60. Chaudhary N. Weissman D. Whitehead K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021 20 11 817 838 10.1038/s41573‑021‑00283‑5 34433919
    [Google Scholar]
  61. Krause M.R. Regen S.L. The structural role of cholesterol in cell membranes: From condensed bilayers to lipid rafts. Acc. Chem. Res. 2014 47 12 3512 3521 10.1021/ar500260t 25310179
    [Google Scholar]
  62. Gote V. Bolla P.K. Kommineni N. Butreddy A. Nukala P.K. Palakurthi S.S. Khan W. A comprehensive review of mRNA vaccines. Int. J. Mol. Sci. 2023 24 3 2700 10.3390/ijms24032700 36769023
    [Google Scholar]
  63. Paunovska K. Da Silva Sanchez A.J. Sago C.D. Gan Z. Lokugamage M.P. Islam F.Z. Kalathoor S. Krupczak B.R. Dahlman J.E. Nanoparticles containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv. Mater. 2019 31 14 1807748 10.1002/adma.201807748 30748040
    [Google Scholar]
  64. Patel S. Ashwanikumar N. Robinson E. Xia Y. Mihai C. Griffith J.P. III Hou S. Esposito A.A. Ketova T. Welsher K. Joyal J.L. Almarsson Ö. Sahay G. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 2020 11 1 983 10.1038/s41467‑020‑14527‑2 32080183
    [Google Scholar]
  65. Pardi N. Muramatsu H. Weissman D. Karikó K. in vitro transcription of long RNA containing modified nucleosides. Methods Mol. Biol. 2013 969 29 42 10.1007/978‑1‑62703‑260‑5_2 23296925
    [Google Scholar]
  66. Hajj K.A. Whitehead K.A. Tools for translation: Non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017 2 10 17056 10.1038/natrevmats.2017.56
    [Google Scholar]
  67. Hess P.R. Boczkowski D. Nair S.K. Snyder D. Gilboa E. Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol. Immunother. 2006 55 6 672 683 10.1007/s00262‑005‑0064‑z 16133108
    [Google Scholar]
  68. Kim J. Eygeris Y. Gupta M. Sahay G. Self-assembled mRNA vaccines. Adv. Drug Deliv. Rev. 2021 170 83 112 10.1016/j.addr.2020.12.014 33400957
    [Google Scholar]
  69. Schlake T. Thess A. Thran M. Jordan I. mRNA as novel technology for passive immunotherapy. Cell. Mol. Life Sci. 2019 76 2 301 328 10.1007/s00018‑018‑2935‑4 30334070
    [Google Scholar]
  70. Heiser A. Coleman D. Dannull J. Yancey D. Maurice M.A. Lallas C.D. Dahm P. Niedzwiecki D. Gilboa E. Vieweg J. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest. 2002 109 3 409 417 10.1172/JCI0214364 11828001
    [Google Scholar]
  71. Miliotou A.N. Papadopoulou L.C. Chimeric antigen receptor T cells. in vitro-transcribed (IVT)-mRNA CAR therapy development. Springer 2020 87 117
    [Google Scholar]
  72. Oberli M.A. Reichmuth A.M. Dorkin J.R. Mitchell M.J. Fenton O.S. Jaklenec A. Anderson D.G. Langer R. Blankschtein D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017 17 3 1326 1335 10.1021/acs.nanolett.6b03329 28273716
    [Google Scholar]
  73. Reichmuth A.M. Oberli M.A. Jaklenec A. Langer R. Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 2016 7 5 319 334 10.4155/tde‑2016‑0006 27075952
    [Google Scholar]
  74. Mirtaleb M.S. Falak R. Heshmatnia J. Bakhshandeh B. Taheri R.A. Soleimanjahi H. Zolfaghari Emameh R. An insight overview on COVID-19 mRNA vaccines: Advantageous, pharmacology, mechanism of action, and prospective considerations. Int. Immunopharmacol. 2023 117 109934 10.1016/j.intimp.2023.109934 36867924
    [Google Scholar]
  75. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2021. CA Cancer J. Clin. 2021 71 1 7 33 10.3322/caac.21654 33433946
    [Google Scholar]
  76. Van Lint S. Wilgenhof S. Heirman C. Corthals J. Breckpot K. Bonehill A. Neyns B. Thielemans K. Optimized dendritic cell-based immunotherapy for melanoma: The TriMix-formula. Cancer Immunol. Immunother. 2014 63 9 959 967 10.1007/s00262‑014‑1558‑3 24878889
    [Google Scholar]
  77. Zeng C. Zhang C. Walker P.G. Dong Y. Zeng C. Zhang C. Walker P.G. Dong Y. Formulation and delivery technologies for mRNA Vaccines. Curr. Top. Microbiol. Immunol. 2020 440 71 110 10.1007/82_2020_217 32483657
    [Google Scholar]
  78. Pastor F. Berraondo P. Etxeberria I. Frederick J. Sahin U. Gilboa E. Melero I. An RNA toolbox for cancer immunotherapy. Nat. Rev. Drug Discov. 2018 17 10 751 767 10.1038/nrd.2018.132 30190565
    [Google Scholar]
  79. Ying H. Zaks T.Z. Wang R.F. Irvine K.R. Kammula U.S. Marincola F.M. Leitner W.W. Restifo N.P. Cancer therapy using a self-replicating RNA vaccine. Nat. Med. 1999 5 7 823 827 10.1038/10548 10395329
    [Google Scholar]
  80. Zhou W.Z. Hoon D.S.B. Huang S.K.S. Fujii S. Hashimoto K. Morishita R. Kaneda Y. RNA melanoma vaccine: Induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum. Gene Ther. 1999 10 16 2719 2724 10.1089/10430349950016762 10566900
    [Google Scholar]
  81. Finn O.J. Cancer vaccines: Between the idea and the reality. Nat. Rev. Immunol. 2003 3 8 630 641 10.1038/nri1150 12974478
    [Google Scholar]
  82. Haen S.P. Löffler M.W. Rammensee H.G. Brossart P. Towards new horizons: Characterization, classification and implications of the tumour antigenic repertoire. Nat. Rev. Clin. Oncol. 2020 17 10 595 610 10.1038/s41571‑020‑0387‑x 32572208
    [Google Scholar]
  83. Buonaguro L. Tagliamonte M. Selecting target antigens for cancer vaccine development. Vaccines 2020 8 4 615 10.3390/vaccines8040615 33080888
    [Google Scholar]
  84. Minati R. Perreault C. Thibault P. A roadmap toward the definition of actionable tumor-specific antigens. Front. Immunol. 2020 11 583287 10.3389/fimmu.2020.583287 33424836
    [Google Scholar]
  85. Zhang Z. Lu M. Qin Y. Gao W. Tao L. Su W. Zhong J. Neoantigen: A new breakthrough in tumor immunotherapy. Front. Immunol. 2021 12 672356 10.3389/fimmu.2021.672356 33936118
    [Google Scholar]
  86. Liu J. Fu M. Wang M. Wan D. Wei Y. Wei X. Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J. Hematol. Oncol. 2022 15 1 28 10.1186/s13045‑022‑01247‑x 35303904
    [Google Scholar]
  87. Crews D.W. Dombroski J.A. King M.R. Prophylactic cancer vaccines engineered to elicit specific adaptive immune response. Front. Oncol. 2021 11 626463 10.3389/fonc.2021.626463 33869008
    [Google Scholar]
  88. Finn O.J. The dawn of vaccines for cancer prevention. Nat. Rev. Immunol. 2018 18 3 183 194 10.1038/nri.2017.140 29279613
    [Google Scholar]
  89. Vishweshwaraiah Y.L. Dokholyan N.V. mRNA vaccines for cancer immunotherapy. Front. Immunol. 2022 13 1029069 10.3389/fimmu.2022.1029069 36591226
    [Google Scholar]
  90. Petrosky E. Bocchini J.A.J. Jr Hariri S. Chesson H. Curtis C.R. Saraiya M. Unger E.R. Markowitz L.E. Use of 9-valent human papillomavirus (HPV) vaccine: Updated HPV vaccination recommendations of the advisory committee on immunization practices. MMWR Morb. Mortal. Wkly. Rep. 2015 64 11 300 304 25811679
    [Google Scholar]
  91. Mast E.E. Margolis H.S. Fiore A.E. Brink E.W. Goldstein S.T. Wang S.A. Moyer L.A. Bell B.P. Alter M.J. A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: Recommendations of the advisory committee on immunization practices (ACIP) part 1: Immunization of infants, children, and adolescents. MMWR Recomm. Rep. 2005 54 RR-16 1 31 16371945
    [Google Scholar]
  92. Ozawa S. Mirelman A. Stack M.L. Walker D.G. Levine O.S. Cost- effectiveness and economic benefits of vaccines in low- and middle-income countries: A systematic review. Vaccine 2012 31 1 96 108 10.1016/j.vaccine.2012.10.103 23142307
    [Google Scholar]
  93. Tsung K. Norton J.A. In situ vaccine, immunological memory and cancer cure. Hum. Vaccin. Immunother. 2016 12 1 117 119 10.1080/21645515.2015.1073427 26360526
    [Google Scholar]
  94. Pulendran B. Ahmed R. Immunological mechanisms of vaccination. Nat. Immunol. 2011 12 6 509 517 10.1038/ni.2039 21739679
    [Google Scholar]
  95. Cramer D.W. Titus-Ernstoff L. McKolanis J.R. Welch W.R. Vitonis A.F. Berkowitz R.S. Finn O.J. Conditions associated with antibodies against the tumor-associated antigen MUC1 and their relationship to risk for ovarian cancer. Cancer Epidemiol. Biomarkers Prev. 2005 14 5 1125 1131 10.1158/1055‑9965.EPI‑05‑0035 15894662
    [Google Scholar]
  96. Huff A.L. Jaffee E.M. Zaidi N. Messenger RNA vaccines for cancer immunotherapy: Progress promotes promise. J. Clin. Invest. 2022 132 6 e156211 10.1172/JCI156211 35289317
    [Google Scholar]
  97. Chiang C. Coukos G. Kandalaft L. Whole tumor antigen vaccines: Where are we? Vaccines 2015 3 2 344 372 10.3390/vaccines3020344 26343191
    [Google Scholar]
  98. de Gruijl T.D. van den Eertwegh A.J.M. Pinedo H.M. Scheper R.J. Whole-cell cancer vaccination: From autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol. Immunother. 2008 57 10 1569 1577 10.1007/s00262‑008‑0536‑z 18523771
    [Google Scholar]
  99. DeMaria P.J. Bilusic M. Cancer vaccines. Hematol. Oncol. Clin. North Am. 2019 33 2 199 214 10.1016/j.hoc.2018.12.001 30832995
    [Google Scholar]
  100. Igarashi Y. Sasada T. Cancer vaccines: Toward the next breakthrough in cancer immunotherapy. J. Immunol. Res. 2020 2020 1 13 10.1155/2020/5825401 33282961
    [Google Scholar]
  101. Khong H. Overwijk W.W. Adjuvants for peptide-based cancer vaccines. J. Immunother. Cancer 2016 4 1 56 10.1186/s40425‑016‑0160‑y 27660710
    [Google Scholar]
  102. Cox J.C. Coulter A.R. Adjuvants—A classification and review of their modes of action. Vaccine 1997 15 3 248 256 10.1016/S0264‑410X(96)00183‑1 9139482
    [Google Scholar]
  103. Vasou A. Sultanoglu N. Goodbourn S. Randall R.E. Kostrikis L.G. Targeting pattern recognition receptors (PRR) for vaccine adjuvantation: From synthetic PRR agonists to the potential of defective interfering particles of viruses. Viruses 2017 9 7 186 10.3390/v9070186 28703784
    [Google Scholar]
  104. Nelde A. Rammensee H.G. Walz J.S. The peptide vaccine of the future. Mol. Cell. Proteomics 2021 20 100022 10.1074/mcp.R120.002309 33583769
    [Google Scholar]
  105. Santos Apolonio J. Lima de Souza Gonçalves V. Cordeiro Santos M.L. Silva Luz M. Silva Souza J.V. Rocha Pinheiro S.L. de Souza W.R. Sande Loureiro M. de Melo F.F. Oncolytic virus therapy in cancer: A current review. World J. Virol. 2021 10 5 229 255 10.5501/wjv.v10.i5.229 34631474
    [Google Scholar]
  106. Fu L.Q. Wang S.B. Cai M.H. Wang X.J. Chen J.Y. Tong X.M. Chen X.Y. Mou X.Z. Recent advances in oncolytic virus-based cancer therapy. Virus Res. 2019 270 197675 10.1016/j.virusres.2019.197675 31351879
    [Google Scholar]
  107. Paston S.J. Brentville V.A. Symonds P. Durrant L.G. Cancer vaccines, adjuvants, and delivery systems. Front. Immunol. 2021 12 627932 10.3389/fimmu.2021.627932 33859638
    [Google Scholar]
  108. Liu D. Che X. Wang X. Ma C. Wu G. Tumor vaccines: Unleashing the power of the immune system to fight cancer. Pharmaceuticals 2023 16 10 1384 10.3390/ph16101384 37895855
    [Google Scholar]
  109. Chang J. Adenovirus vectors: Excellent tools for vaccine development. Immune Netw. 2021 21 1 e6 10.4110/in.2021.21.e6 33728099
    [Google Scholar]
  110. Qin F. Xia F. Chen H. Cui B. Feng Y. Zhang P. Chen J. Luo M. A guide to nucleic acid vaccines in the prevention and treatment of infectious diseases and cancers: From basic principles to current applications. Front. Cell Dev. Biol. 2021 9 633776 10.3389/fcell.2021.633776 34113610
    [Google Scholar]
  111. Tiptiri-Kourpeti A. Spyridopoulou K. Pappa A. Chlichlia K. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol. Ther. 2016 165 32 49 10.1016/j.pharmthera.2016.05.004 27235391
    [Google Scholar]
  112. Vishweshwaraiah Y.L. Dokholyan N.V. Toward rational vaccine engineering. Adv. Drug Deliv. Rev. 2022 183 114142 10.1016/j.addr.2022.114142 35150769
    [Google Scholar]
  113. Zhang C. Maruggi G. Shan H. Li J. Advances in mRNA vaccines for infectious diseases. Front. Immunol. 2019 10 594 10.3389/fimmu.2019.00594 30972078
    [Google Scholar]
  114. James S.L. Abate D. Abate K.H. Abay S.M. Abbafati C. Abbasi N. Abbastabar H. Abd-Allah F. Abdela J. Abdelalim A. Abdollahpour I. Abdulkader R.S. Abebe Z. Abera S.F. Abil O.Z. Abraha H.N. Abu-Raddad L.J. Abu-Rmeileh N.M.E. Accrombessi M.M.K. Acharya D. Acharya P. Ackerman I.N. Adamu A.A. Adebayo O.M. Adekanmbi V. Adetokunboh O.O. Adib M.G. Adsuar J.C. Afanvi K.A. Afarideh M. Afshin A. Agarwal G. Agesa K.M. Aggarwal R. Aghayan S.A. Agrawal S. Ahmadi A. Ahmadi M. Ahmadieh H. Ahmed M.B. Aichour A.N. Aichour I. Aichour M.T.E. Akinyemiju T. Akseer N. Al-Aly Z. Al-Eyadhy A. Al-Mekhlafi H.M. Al-Raddadi R.M. Alahdab F. Alam K. Alam T. Alashi A. Alavian S.M. Alene K.A. Alijanzadeh M. Alizadeh-Navaei R. Aljunid S.M. Alkerwi A. Alla F. Allebeck P. Alouani M.M.L. Altirkawi K. Alvis-Guzman N. Amare A.T. Aminde L.N. Ammar W. Amoako Y.A. Anber N.H. Andrei C.L. Androudi S. Animut M.D. Anjomshoa M. Ansha M.G. Antonio C.A.T. Anwari P. Arabloo J. Arauz A. Aremu O. Ariani F. Armoon B. Ärnlöv J. Arora A. Artaman A. Aryal K.K. Asayesh H. Asghar R.J. Ataro Z. Atre S.R. Ausloos M. Avila-Burgos L. Avokpaho E.F.G.A. Awasthi A. Ayala Quintanilla B.P. Ayer R. Azzopardi P.S. Babazadeh A. Badali H. Badawi A. Bali A.G. Ballesteros K.E. Ballew S.H. Banach M. Banoub J.A.M. Banstola A. Barac A. Barboza M.A. Barker-Collo S.L. Bärnighausen T.W. Barrero L.H. Baune B.T. Bazargan-Hejazi S. Bedi N. Beghi E. Behzadifar M. Behzadifar M. Béjot Y. Belachew A.B. Belay Y.A. Bell M.L. Bello A.K. Bensenor I.M. Bernabe E. Bernstein R.S. Beuran M. Beyranvand T. Bhala N. Bhattarai S. Bhaumik S. Bhutta Z.A. Biadgo B. Bijani A. Bikbov B. Bilano V. Bililign N. Bin Sayeed M.S. Bisanzio D. Blacker B.F. Blyth F.M. Bou-Orm I.R. Boufous S. Bourne R. Brady O.J. Brainin M. Brant L.C. Brazinova A. Breitborde N.J.K. Brenner H. Briant P.S. Briggs A.M. Briko A.N. Britton G. Brugha T. Buchbinder R. Busse R. Butt Z.A. Cahuana-Hurtado L. Cano J. Cárdenas R. Carrero J.J. Carter A. Carvalho F. Castañeda-Orjuela C.A. Castillo Rivas J. Castro F. Catalá-López F. Cercy K.M. Cerin E. Chaiah Y. Chang A.R. Chang H-Y. Chang J-C. Charlson F.J. Chattopadhyay A. Chattu V.K. Chaturvedi P. Chiang P.P-C. Chin K.L. Chitheer A. Choi J-Y.J. Chowdhury R. Christensen H. Christopher D.J. Cicuttini F.M. Ciobanu L.G. Cirillo M. Claro R.M. Collado-Mateo D. Cooper C. Coresh J. Cortesi P.A. Cortinovis M. Costa M. Cousin E. Criqui M.H. Cromwell E.A. Cross M. Crump J.A. Dadi A.F. Dandona L. Dandona R. Dargan P.I. Daryani A. Das Gupta R. Das Neves J. Dasa T.T. Davey G. Davis A.C. Davitoiu D.V. De Courten B. De La Hoz F.P. De Leo D. De Neve J-W. Degefa M.G. Degenhardt L. Deiparine S. Dellavalle R.P. Demoz G.T. Deribe K. Dervenis N. Des Jarlais D.C. Dessie G.A. Dey S. Dharmaratne S.D. Dinberu M.T. Dirac M.A. Djalalinia S. Doan L. Dokova K. Doku D.T. Dorsey E.R. Doyle K.E. Driscoll T.R. Dubey M. Dubljanin E. Duken E.E. Duncan B.B. Duraes A.R. Ebrahimi H. Ebrahimpour S. Echko M.M. Edvardsson D. Effiong A. Ehrlich J.R. El Bcheraoui C. El Sayed Zaki M. El-Khatib Z. Elkout H. Elyazar I.R.F. Enayati A. Endries A.Y. Er B. Erskine H.E. Eshrati B. Eskandarieh S. Esteghamati A. Esteghamati S. Fakhim H. Fallah Omrani V. Faramarzi M. Fareed M. Farhadi F. Farid T.A. Farinha C.S.E. Farioli A. Faro A. Farvid M.S. Farzadfar F. Feigin V.L. Fentahun N. Fereshtehnejad S-M. Fernandes E. Fernandes J.C. Ferrari A.J. Feyissa G.T. Filip I. Fischer F. Fitzmaurice C. Foigt N.A. Foreman K.J. Fox J. Frank T.D. Fukumoto T. Fullman N. Fürst T. Furtado J.M. Futran N.D. Gall S. Ganji M. Gankpe F.G. Garcia-Basteiro A.L. Gardner W.M. Gebre A.K. Gebremedhin A.T. Gebremichael T.G. Gelano T.F. Geleijnse J.M. Genova-Maleras R. Geramo Y.C.D. Gething P.W. Gezae K.E. Ghadiri K. Ghasemi Falavarjani K. Ghasemi-Kasman M. Ghimire M. Ghosh R. Ghoshal A.G. Giampaoli S. Gill P.S. Gill T.K. Ginawi I.A. Giussani G. Gnedovskaya E.V. Goldberg E.M. Goli S. Gómez-Dantés H. Gona P.N. Gopalani S.V. Gorman T.M. Goulart A.C. Goulart B.N.G. Grada A. Grams M.E. Grosso G. Gugnani H.C. Guo Y. Gupta P.C. Gupta R. Gupta R. Gupta T. Gyawali B. Haagsma J.A. Hachinski V. Hafezi-Nejad N. Haghparast Bidgoli H. Hagos T.B. Hailu G.B. Haj-Mirzaian A. Haj-Mirzaian A. Hamadeh R.R. Hamidi S. Handal A.J. Hankey G.J. Hao Y. Harb H.L. Harikrishnan S. Haro J.M. Hasan M. Hassankhani H. Hassen H.Y. Havmoeller R. Hawley C.N. Hay R.J. Hay S.I. Hedayatizadeh-Omran A. Heibati B. Hendrie D. Henok A. Herteliu C. Heydarpour S. Hibstu D.T. Hoang H.T. Hoek H.W. Hoffman H.J. Hole M.K. Homaie Rad E. Hoogar P. Hosgood H.D. Hosseini S.M. Hosseinzadeh M. Hostiuc M. Hostiuc S. Hotez P.J. Hoy D.G. Hsairi M. Htet A.S. Hu G. Huang J.J. Huynh C.K. Iburg K.M. Ikeda C.T. Ileanu B. Ilesanmi O.S. Iqbal U. Irvani S.S.N. Irvine C.M.S. Islam S.M.S. Islami F. Jacobsen K.H. Jahangiry L. Jahanmehr N. Jain S.K. Jakovljevic M. Javanbakht M. Jayatilleke A.U. Jeemon P. Jha R.P. Jha V. Ji J.S. Johnson C.O. Jonas J.B. Jozwiak J.J. Jungari S.B. Jürisson M. Kabir Z. Kadel R. Kahsay A. Kalani R. Kanchan T. Karami M. Karami Matin B. Karch A. Karema C. Karimi N. Karimi S.M. Kasaeian A. Kassa D.H. Kassa G.M. Kassa T.D. Kassebaum N.J. Katikireddi S.V. Kawakami N. Karyani A.K. Keighobadi M.M. Keiyoro P.N. Kemmer L. Kemp G.R. Kengne A.P. Keren A. Khader Y.S. Khafaei B. Khafaie M.A. Khajavi A. Khalil I.A. Khan E.A. Khan M.S. Khan M.A. Khang Y-H. Khazaei M. Khoja A.T. Khosravi A. Khosravi M.H. Kiadaliri A.A. Kiirithio D.N. Kim C-I. Kim D. Kim P. Kim Y-E. Kim Y.J. Kimokoti R.W. Kinfu Y. Kisa A. Kissimova-Skarbek K. Kivimäki M. Knudsen A.K.S. Kocarnik J.M. Kochhar S. Kokubo Y. Kolola T. Kopec J.A. Kosen S. Kotsakis G.A. Koul P.A. Koyanagi A. Kravchenko M.A. Krishan K. Krohn K.J. Kuate Defo B. Kucuk Bicer B. Kumar G.A. Kumar M. Kyu H.H. Lad D.P. Lad S.D. Lafranconi A. Lalloo R. Lallukka T. Lami F.H. Lansingh V.C. Latifi A. Lau K.M-M. Lazarus J.V. Leasher J.L. Ledesma J.R. Lee P.H. Leigh J. Leung J. Levi M. Lewycka S. Li S. Li Y. Liao Y. Liben M.L. Lim L-L. Lim S.S. Liu S. Lodha R. Looker K.J. Lopez A.D. Lorkowski S. Lotufo P.A. Low N. Lozano R. Lucas T.C.D. Lucchesi L.R. Lunevicius R. Lyons R.A. Ma S. Macarayan E.R.K. Mackay M.T. Madotto F. Magdy Abd El Razek H. Magdy Abd El Razek M. Maghavani D.P. Mahotra N.B. Mai H.T. Majdan M. Majdzadeh R. Majeed A. Malekzadeh R. Malta D.C. Mamun A.A. Manda A-L. Manguerra H. Manhertz T. Mansournia M.A. Mantovani L.G. Mapoma C.C. Maravilla J.C. Marcenes W. Marks A. Martins-Melo F.R. Martopullo I. März W. Marzan M.B. Mashamba-Thompson T.P. Massenburg B.B. Mathur M.R. Matsushita K. Maulik P.K. Mazidi M. McAlinden C. McGrath J.J. McKee M. Mehndiratta M.M. Mehrotra R. Mehta K.M. Mehta V. Mejia-Rodriguez F. Mekonen T. Melese A. Melku M. Meltzer M. Memiah P.T.N. Memish Z.A. Mendoza W. Mengistu D.T. Mengistu G. Mensah G.A. Mereta S.T. Meretoja A. Meretoja T.J. Mestrovic T. Mezerji N.M.G. Miazgowski B. Miazgowski T. Millear A.I. Miller T.R. Miltz B. Mini G.K. Mirarefin M. Mirrakhimov E.M. Misganaw A.T. Mitchell P.B. Mitiku H. Moazen B. Mohajer B. Mohammad K.A. Mohammadifard N. Mohammadnia-Afrouzi M. Mohammed M.A. Mohammed S. Mohebi F. Moitra M. Mokdad A.H. Molokhia M. Monasta L. Moodley Y. Moosazadeh M. Moradi G. Moradi-Lakeh M. Moradinazar M. Moraga P. Morawska L. Moreno Velásquez I. Morgado-Da-Costa J. Morrison S.D. Moschos M.M. Mountjoy-Venning W.C. Mousavi S.M. Mruts K.B. Muche A.A. Muchie K.F. Mueller U.O. Muhammed O.S. Mukhopadhyay S. Muller K. Mumford J.E. Murhekar M. Musa J. Musa K.I. Mustafa G. Nabhan A.F. Nagata C. Naghavi M. Naheed A. Nahvijou A. Naik G. Naik N. Najafi F. Naldi L. Nam H.S. Nangia V. Nansseu J.R. Nascimento B.R. Natarajan G. Neamati N. Negoi I. Negoi R.I. Neupane S. Newton C.R.J. Ngunjiri J.W. Nguyen A.Q. Nguyen H.T. Nguyen H.L.T. Nguyen H.T. Nguyen L.H. Nguyen M. Nguyen N.B. Nguyen S.H. Nichols E. Ningrum D.N.A. Nixon M.R. Nolutshungu N. Nomura S. Norheim O.F. Noroozi M. Norrving B. Noubiap J.J. Nouri H.R. Nourollahpour Shiadeh M. Nowroozi M.R. Nsoesie E.O. Nyasulu P.S. Odell C.M. Ofori-Asenso R. Ogbo F.A. Oh I-H. Oladimeji O. Olagunju A.T. Olagunju T.O. Olivares P.R. Olsen H.E. Olusanya B.O. Ong K.L. Ong S.K. Oren E. Ortiz A. Ota E. Otstavnov S.S. Øverland S. Owolabi M.O. P A M. Pacella R. Pakpour A.H. Pana A. Panda-Jonas S. Parisi A. Park E-K. Parry C.D.H. Patel S. Pati S. Patil S.T. Patle A. Patton G.C. Paturi V.R. Paulson K.R. Pearce N. Pereira D.M. Perico N. Pesudovs K. Pham H.Q. Phillips M.R. Pigott D.M. Pillay J.D. Piradov M.A. Pirsaheb M. Pishgar F. Plana-Ripoll O. Plass D. Polinder S. Popova S. Postma M.J. Pourshams A. Poustchi H. Prabhakaran D. Prakash S. Prakash V. Purcell C.A. Purwar M.B. Qorbani M. Quistberg D.A. Radfar A. Rafay A. Rafiei A. Rahim F. Rahimi K. Rahimi-Movaghar A. Rahimi-Movaghar V. Rahman M. Rahman M.H. Rahman M.A. Rahman S.U. Rai R.K. Rajati F. Ram U. Ranjan P. Ranta A. Rao P.C. Rawaf D.L. Rawaf S. Reddy K.S. Reiner R.C. Reinig N. Reitsma M.B. Remuzzi G. Renzaho A.M.N. Resnikoff S. Rezaei S. Rezai M.S. Ribeiro A.L.P. Roberts N.L.S. Robinson S.R. Roever L. Ronfani L. Roshandel G. Rostami A. Roth G.A. Roy A. Rubagotti E. Sachdev P.S. Sadat N. Saddik B. Sadeghi E. Saeedi Moghaddam S. Safari H. Safari Y. Safari-Faramani R. Safdarian M. Safi S. Safiri S. Sagar R. Sahebkar A. Sahraian M.A. Sajadi H.S. Salam N. Salama J.S. Salamati P. Saleem K. Saleem Z. Salimi Y. Salomon J.A. Salvi S.S. Salz I. Samy A.M. Sanabria J. Sang Y. Santomauro D.F. Santos I.S. Santos J.V. Santric Milicevic M.M. Sao Jose B.P. Sardana M. Sarker A.R. Sarrafzadegan N. Sartorius B. Sarvi S. Sathian B. Satpathy M. Sawant A.R. Sawhney M. Saxena S. Saylan M. Schaeffner E. Schmidt M.I. Schneider I.J.C. Schöttker B. Schwebel D.C. Schwendicke F. Scott J.G. Sekerija M. Sepanlou S.G. Serván-Mori E. Seyedmousavi S. Shabaninejad H. Shafieesabet A. Shahbazi M. Shaheen A.A. Shaikh M.A. Shams-Beyranvand M. Shamsi M. Shamsizadeh M. Sharafi H. Sharafi K. Sharif M. Sharif-Alhoseini M. Sharma M. Sharma R. She J. Sheikh A. Shi P. Shibuya K. Shigematsu M. Shiri R. Shirkoohi R. Shishani K. Shiue I. Shokraneh F. Shoman H. Shrime M.G. Si S. Siabani S. Siddiqi T.J. Sigfusdottir I.D. Sigurvinsdottir R. Silva J.P. Silveira D.G.A. Singam N.S.V. Singh J.A. Singh N.P. Singh V. Sinha D.N. Skiadaresi E. Slepak E.L.N. Sliwa K. Smith D.L. Smith M. Soares Filho A.M. Sobaih B.H. Sobhani S. Sobngwi E. Soneji S.S. Soofi M. Soosaraei M. Sorensen R.J.D. Soriano J.B. Soyiri I.N. Sposato L.A. Sreeramareddy C.T. Srinivasan V. Stanaway J.D. Stein D.J. Steiner C. Steiner T.J. Stokes M.A. Stovner L.J. Subart M.L. Sudaryanto A. Sufiyan M.B. Sunguya B.F. Sur P.J. Sutradhar I. Sykes B.L. Sylte D.O. Tabarés-Seisdedos R. Tadakamadla S.K. Tadesse B.T. Tandon N. Tassew S.G. Tavakkoli M. Taveira N. Taylor H.R. Tehrani-Banihashemi A. Tekalign T.G. Tekelemedhin S.W. Tekle M.G. Temesgen H. Temsah M-H. Temsah O. Terkawi A.S. Teweldemedhin M. Thankappan K.R. Thomas N. Tilahun B. To Q.G. Tonelli M. Topor-Madry R. Topouzis F. Torre A.E. Tortajada-Girbés M. Touvier M. Tovani-Palone M.R. Towbin J.A. Tran B.X. Tran K.B. Troeger C.E. Truelsen T.C. Tsilimbaris M.K. Tsoi D. Tudor Car L. Tuzcu E.M. Ukwaja K.N. Ullah I. Undurraga E.A. Unutzer J. Updike R.L. Usman M.S. Uthman O.A. Vaduganathan M. Vaezi A. Valdez P.R. Varughese S. Vasankari T.J. Venketasubramanian N. Villafaina S. Violante F.S. Vladimirov S.K. Vlassov V. Vollset S.E. Vosoughi K. Vujcic I.S. Wagnew F.S. Waheed Y. Waller S.G. Wang Y. Wang Y-P. Weiderpass E. Weintraub R.G. Weiss D.J. Weldegebreal F. Weldegwergs K.G. Werdecker A. West T.E. Whiteford H.A. Widecka J. Wijeratne T. Wilner L.B. Wilson S. Winkler A.S. Wiyeh A.B. Wiysonge C.S. Wolfe C.D.A. Woolf A.D. Wu S. Wu Y-C. Wyper G.M.A. Xavier D. Xu G. Yadgir S. Yadollahpour A. Yahyazadeh Jabbari S.H. Yamada T. Yan L.L. Yano Y. Yaseri M. Yasin Y.J. Yeshaneh A. Yimer E.M. Yip P. Yisma E. Yonemoto N. Yoon S-J. Yotebieng M. Younis M.Z. Yousefifard M. Yu C. Zadnik V. Zaidi Z. Zaman S.B. Zamani M. Zare Z. Zeleke A.J. Zenebe Z.M. Zhang K. Zhao Z. Zhou M. Zodpey S. Zucker I. Vos T. Murray C.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2018 392 10159 1789 1858 10.1016/S0140‑6736(18)32279‑7 30496104
    [Google Scholar]
  115. Alberer M. Gnad-Vogt U. Hong H.S. Mehr K.T. Backert L. Finak G. Gottardo R. Bica M.A. Garofano A. Koch S.D. Fotin-Mleczek M. Hoerr I. Clemens R. von Sonnenburg F. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: An open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 2017 390 10101 1511 1520 10.1016/S0140‑6736(17)31665‑3 28754494
    [Google Scholar]
  116. Van Craenenbroeck A.H. Smits E.L.J. Anguille S. Van de Velde A. Stein B. Braeckman T. Van Camp K. Nijs G. Ieven M. Goossens H. Berneman Z.N. Van Tendeloo V.F.I. Verpooten G.A. Van Damme P. Cools N. Induction of cytomegalovirus-specific T cell responses in healthy volunteers and allogeneic stem cell recipients using vaccination with messenger RNA-transfected dendritic cells. Transplantation 2015 99 1 120 127 10.1097/TP.0000000000000272 25050468
    [Google Scholar]
  117. Berraondo P. Martini P.G.V. Avila M.A. Fontanellas A. Messenger RNA therapy for rare genetic metabolic diseases. Gut 2019 68 7 1323 1330 10.1136/gutjnl‑2019‑318269 30796097
    [Google Scholar]
  118. Robinson E. MacDonald K.D. Slaughter K. McKinney M. Patel S. Sun C. Sahay G. Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Mol. Ther. 2018 26 8 2034 2046 10.1016/j.ymthe.2018.05.014 29910178
    [Google Scholar]
  119. Magadum A. Kaur K. Zangi L. mRNA-based protein replacement therapy for the heart. Mol. Ther. 2019 27 4 785 793 10.1016/j.ymthe.2018.11.018 30611663
    [Google Scholar]
  120. Uchida S. Itaka K. Uchida H. Hayakawa K. Ogata T. Ishii T. Fukushima S. Osada K. Kataoka K. in vivo messenger RNA introduction into the central nervous system using polyplex nanomicelle. PLoS One 2013 8 2 e56220 10.1371/journal.pone.0056220 23418537
    [Google Scholar]
  121. Nabhan J.F. Wood K.M. Rao V.P. Morin J. Bhamidipaty S. LaBranche T.P. Gooch R.L. Bozal F. Bulawa C.E. Guild B.C. Intrathecal delivery of frataxin mRNA encapsulated in lipid nanoparticles to dorsal root ganglia as a potential therapeutic for Friedreich’s ataxia. Sci. Rep. 2016 6 1 20019 10.1038/srep20019 26883577
    [Google Scholar]
  122. Qin S. Tang X. Chen Y. Chen K. Fan N. Xiao W. Zheng Q. Li G. Teng Y. Wu M. Song X. mRNA-based therapeutics: Powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 2022 7 1 166 10.1038/s41392‑022‑01007‑w 35597779
    [Google Scholar]
  123. Dorofeeva Y. Shilovskiy I. Tulaeva I. Focke-Tejkl M. Flicker S. Kudlay D. Khaitov M. Karsonova A. Riabova K. Karaulov A. Khanferyan R. Pickl W.F. Wekerle T. Valenta R. Past, present, and future of allergen immunotherapy vaccines. Allergy 2021 76 1 131 149 10.1111/all.14300 32249442
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873339647250214070805
Loading
/content/journals/cnanom/10.2174/0124681873339647250214070805
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: nanotechnology ; vaccine ; mRNA ; cancer ; immunotherapy ; lipid nanoparticle ; COVID-19
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test