Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Background

Sm (Er) doping is an effective strategy for enhancing the photocatalytic activity of the semiconductor photocatalysts for the degradation of organic pollutants. BaSn-based nanorods possess wide band gap energy, which limits the photocatalytic application. It is important to research the feasibility of the improved photocatalytic performance of the BaSn-based nanorods by doping with Sm (Er).

Objective

The aim is to synthesize Sm (Er)-doped BaSn-based nanoscale materials through a simple hydrothermal process and research the photocatalytic performance of the Sm (Er)-doped BaSn-based nanoscale materials for the gentian violet degradation.

Methods

Sm (Er)-doped BaSn-based nanoscale materials with a polycrystalline structure were synthesized through a simple hydrothermal process. The Sm (Er)-doped composites were analyzed by X-ray diffraction, electron microscopy, solid diffuse reflectance spectrum, X-ray photoelectron spectroscopy, photoluminescence, and electrochemical impedance spectroscopy.

Results

Sm (Er) doping induces the morphological evolution of the BaSn-based nanoscale materials from the nanorods to irregular nanoscale particles. Sm (Er) in the doped BaSn-based nanoscale materials exists in the form of the cubic SmSnO and orthorhombic ErF phases. The band gap value is decreased with increasing the Sm (Er) dopant contents. Sm (Er)-doped BnSnbased nanoscale materials with the Sm (Er) content of 8wt.% have the lowest band gap and show the strongest light absorption ability. Compared with the un-doped BaSn-based nanoscale materials, the Sm (Er)-doped BnSn-based nanoscale materials exhibit higher photocatalytic activity for the gentian violet degradation. 8wt.% Sm-doped BnSn-based nanoscale materials show the highest photocatalytic activity for the degradation of the gentian violet. 20 mL gentian violet solution (concentration of 10 mg·L-1) can be totally degraded using 20 mg 8wt.% Sm-doped BnSn-based nanoscale materials under UV light illumination for 150 min.

Conclusion

The enhanced photocatalytic activity of the Sm (Er)-doped BnSn-based nanoscale materials can be attributed to the decreased band gap, enhanced light absorption ability, and decreased recombination of the photo-generated electron-hole pairs.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145416666230302114712
2024-06-01
2024-11-26
Loading full text...

Full text loading...

References

  1. XueZ. LiF. YuC. Synthesis of hexahydroxy strontium stannate nanorods for photocatalytic degradation of organic pollutants.Toxicol. Environ. Chem.2021103432634110.1080/02772248.2021.1999453
    [Google Scholar]
  2. JiangY. HuJ. LiJ. Synthesis and visible light responsed photocatalytic activity of Sn doped Bi 2 S 3 microspheres assembled by nanosheets.RSC Advances2016646398103981710.1039/C6RA02621D
    [Google Scholar]
  3. UdawatteC.P. YoshimuraM. Preparation of well-crystallized BaSnO3 powders under hydrothermal conditions.Mater. Lett.2001471-271010.1016/S0167‑577X(00)00202‑0
    [Google Scholar]
  4. JenaH. KuttyK.V.G. KuttyT.R.N. Ionic transport and structural investigations on MSn(OH)6 (M = Ba, Ca, Mg, Co, Zn, Fe, Mn) hydroxide perovskites synthesized by wet sonochemical methods.Mater. Chem. Phys.200488116717910.1016/j.matchemphys.2004.07.003
    [Google Scholar]
  5. MedvedevA.G. MikhaylovA.A. ShamesA.I. Identification of barium hydroxo-hydroperoxostannate precursor for low-temperature formation of perovskite barium stannate.Inorg. Chem.20205924183581836510.1021/acs.inorgchem.0c02993 33285066
    [Google Scholar]
  6. PengT. WenY. WangC. Preparation of SnO2/conjugated polyvinyl alcohol derivative nanohybrid with good performance in visible light-induced photocatalytic reduction of Cr(VI).Mater. Sci. Semicond. Process.201910210458610.1016/j.mssp.2019.104586
    [Google Scholar]
  7. PanJ. GanesanR. ShenH. MathurS. Plasma-modified SnO2 nanowires for enhanced gas sensing.J. Phys. Chem. C2010114188245825010.1021/jp101072f
    [Google Scholar]
  8. PanJ. LiJ. YanZ. ZhouB. WuH. XiongX. SnO2@CdS nanowire-quantum dots heterostructures: Tailoring optical properties of SnO2 for enhanced photodetection and photocatalysis.Nanoscale2013573022302910.1039/c3nr34096a 23463463
    [Google Scholar]
  9. ManjulaP. BoppellaR. ManoramaS.V. A facile and green approach for the controlled synthesis of porous SnO₂ nanospheres: Application as an efficient photocatalyst and an excellent gas sensing material.ACS Appl. Mater. Interfaces20124116252626010.1021/am301840s 23088260
    [Google Scholar]
  10. KangJ. KuangQ. XieZ.X. ZhengL.S. Fabrication of the SnO2/α-Fe2O3 hierarchical heterostructure and its enhanced photocatalytic property.J. Phys. Chem. C2011115167874787910.1021/jp111419w
    [Google Scholar]
  11. TaoF. LiF. HuangJ. A general hydrothermal growth and photocatalytic performance of barium tin hydroxide/tin dioxide nanorods.Cryst. Res. Technol.2022572210015610.1002/crat.202100156
    [Google Scholar]
  12. Hojjati-NajafabadiA. MansoorianfarM. LiangT. Magnetic-MXene-based nanocomposites for water and wastewater treatment: A review.J. Water Process Eng.20224710269610.1016/j.jwpe.2022.102696
    [Google Scholar]
  13. GogateP.R. PanditA.B. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions.Adv. Environ. Res.200483-450155110.1016/S1093‑0191(03)00032‑7
    [Google Scholar]
  14. RozendalR.A. HamelersH.V.M. RabaeyK. KellerJ. BuismanC.J.N. Towards practical implementation of bioelectrochemical wastewater treatment.Trends Biotechnol.200826845045910.1016/j.tibtech.2008.04.008 18585807
    [Google Scholar]
  15. PreethiT. AbarnaB. VidhyaK.N. RajarajeswariG.R. Sol–gel derived cobalt doped nano-titania photocatalytic system for solar light induced degradation of crystal violet.Ceram. Int.2014408131591316710.1016/j.ceramint.2014.05.020
    [Google Scholar]
  16. HoangL.H. PhuN.D. Do ChungP. GuoP.C. ChenX.B. ChouW.C. Photocatalytic activity enhancement of Bi2WO6 nanoparticles by Gd-doping via microwave assisted method.J. Mater. Sci. Mater. Electron.20172816121911219610.1007/s10854‑017‑7034‑z
    [Google Scholar]
  17. IwaseA. KatoH. OkutomiH. KudoA. Formation of surface nano-step structures and improvement of photocatalytic activities of NaTO3 by doping of alkaline earth metal ions.Chem. Lett.200433101260126110.1246/cl.2004.1260
    [Google Scholar]
  18. GurushanthaK. AnantharajuK.S. SharmaS.C. Bio-mediated Sm doped nano cubic zirconia: Photoluminescent, Judd–Ofelt analysis, electrochemical impedance spectroscopy and photocatalytic performance.J. Alloys Compd.201668576177310.1016/j.jallcom.2016.06.105
    [Google Scholar]
  19. ArasiS.E. MadhavanJ. Antony RajM.V. Effect of samarium (Sm 3+) doping on structural, optical properties and photocatalytic activity of titanium dioxide nanoparticles.J. Taibah Univ. Sci.201812218619010.1080/16583655.2018.1451057
    [Google Scholar]
  20. ZhangX. DongS. ZhouX. A facile one-pot synthesis of Er–Al co-doped ZnO nanoparticles with enhanced photocatalytic performance under visible light.Mater. Lett.201514331231410.1016/j.matlet.2014.12.094
    [Google Scholar]
  21. LiuY. ZhuG. GaoJ. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation.Appl. Catal. B201720542143210.1016/j.apcatb.2016.12.061
    [Google Scholar]
  22. LiuS. CaiY. CaiX. Catalytic photodegradation of Congo red in aqueous solution by Ln(OH)3 (Ln = Nd, Sm, Eu, Gd, Tb, and Dy) nanorods.Appl. Catal. A Gen.2013453455310.1016/j.apcata.2012.12.004
    [Google Scholar]
  23. MaY. LiuH. HanZ. YangL. LiuJ. Non-ultraviolet photocatalytic kinetics of NaYF 4:Yb,Tm@TiO 2/Ag core@comby shell nanostructures.J. Mater. Chem. A Mater. Energy Sustain.2015328146421465010.1039/C5TA03143E
    [Google Scholar]
  24. ObregónS. ColónG. Heterostructured Er3+ doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism.Appl. Catal. B2014158-15924224910.1016/j.apcatb.2014.04.029
    [Google Scholar]
  25. SukritiC.P. ChandP. SinghV. Enhanced visible-light photocatalytic activity of samarium-doped zinc oxide nanostructures.J. Rare Earths2020381293810.1016/j.jre.2019.02.009
    [Google Scholar]
  26. HuZ. ChenD. WangS. ZhangN. QinL. HuangY. Facile synthesis of Sm-doped BiFeO 3 nanoparticles for enhanced visible light photocatalytic performance.Mater. Sci. Eng. B201722011210.1016/j.mseb.2017.03.005
    [Google Scholar]
  27. ZhengY. WangW. Electrospun nanofibers of Er3+-doped TiO2 with photocatalytic activity beyond the absorption edge.J. Solid State Chem.2014210120621210.1016/j.jssc.2013.11.029
    [Google Scholar]
  28. FanN. ChenY. FengQ. Enhanced photocatalytic activity and upconversion luminescence of flowerlike hierarchical Bi 2 MoO 6 microspheres by Er 3+ doping.J. Mater. Res.201227111471147510.1557/jmr.2012.89
    [Google Scholar]
  29. DengA. YuC. XueZ. HuangJ. PanH. PeiL. Rare metal doping of the hexahydroxy strontium stannate with enhanced photocatalytic performance for organic pollutants.J. Mater. Res. Technol.2022191073108910.1016/j.jmrt.2022.05.104
    [Google Scholar]
  30. LiangC.H. LiF.B. LiuC.S. LüJ.L. WangX.G. The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I.Dyes Pigments200876247748410.1016/j.dyepig.2006.10.006
    [Google Scholar]
  31. YangX. ZhuL. YangL. ZhouW. XuY. Preparation and photocatalytic activity of neodymium doping titania loaded to silicon dioxide.Trans. Nonferrous Met. Soc. China201121233533910.1016/S1003‑6326(11)60718‑8
    [Google Scholar]
  32. HajipourP. EslamiA. BahramiA. Surface modification of TiO2 nanoparticles with CuO for visible-light antibacterial applications and photocatalytic degradation of antibiotics.Ceram. Int.20214723338753388510.1016/j.ceramint.2021.08.300
    [Google Scholar]
  33. HajipourP. BahramiA. MehrM.Y. van DrielW.D. ZhangK. Facile Synthesis of Ag nanowire/TiO2 and Ag nanowire/TiO2/GO nanocomposites for photocatalytic degradation of Rhodamine B.Materials202114476310.3390/ma14040763 33561955
    [Google Scholar]
  34. LuoY. ChenJ. LiuJ. ShaoY. LiX. LiD. Hydroxide SrSn(OH) 6: A new photocatalyst for degradation of benzene and rhodamine B.Appl. Catal. B201618253354010.1016/j.apcatb.2015.09.051
    [Google Scholar]
  35. RuanW. ZhangR. ZhongQ. FuY. YangZ. XieM. Preparation and wide band emission characteristics of Eu 2+/Eu 3+ co-doped Ba 3 P 4 O 13 phosphors.RSC Adv20221223148191482610.1039/D2RA02478K 35702196
    [Google Scholar]
  36. WangM. YouM. GuoP. Hydrothermal synthesis of Sm-doped Bi2MoO6 and its high photocatalytic performance for the degradation of Rhodamine B.J. Alloys Compd.201772873974610.1016/j.jallcom.2017.09.066
    [Google Scholar]
  37. EskandarlooH. BadieiA. BehnajadyM.A. ZiaraniG.M. Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants.Ultrason. Sonochem.20162816917710.1016/j.ultsonch.2015.07.012 26384896
    [Google Scholar]
  38. DingL. ZhangC. JiangQ. ChenH. SunW. HuJ. Er3+ doped bismuth oxychloride hierarchical microspheres with enhanced photocatalytic properties.Mater. Lett.201515822923210.1016/j.matlet.2015.05.173
    [Google Scholar]
  39. HojamberdievM. ZhuG. LiS. Er3+-doping induced formation of orthorhombic/monoclinic Bi5O7I heterostructure with enhanced visible-light photocatalytic activity for removal of contaminants.Mater. Res. Bull.202012311070110.1016/j.materresbull.2019.110701
    [Google Scholar]
  40. LiangY. GuoN. LiL. LiR. JiG. GanS. Preparation of porous 3D Ce-doped ZnO microflowers with enhanced photocatalytic performance.RSC Advances2015574598875989410.1039/C5RA08519E
    [Google Scholar]
  41. PandiyarajanT. MangalarajaR.V. KarthikeyanB. UV-A light-induced photodegradation of Acid Blue 113 in the presence of Sm-doped ZnO nanostructures.Appl. Phys., A Mater. Sci. Process.2015119248749510.1007/s00339‑015‑9102‑7
    [Google Scholar]
  42. Hemmati BorjiS. NasseriS. MahviA.H. NabizadehR. JavadiA.H. Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles.J. Environ. Health Sci. Eng.201412110110.1186/2052‑336X‑12‑101 25105016
    [Google Scholar]
  43. PeiL.Z. WangS. LiuH.D. LinN. YuH.Y. Vanadium doped barium germanate microrods and photocatalytic properties under solar light.Solid State Commun.2015202353810.1016/j.ssc.2014.10.036
    [Google Scholar]
  44. ChenH. YuC. XueZ. Synthesis of Li-doped bismuth oxide nanoplates, Co nanoparticles modification, and good photocatalytic activity toward organic pollutants.Toxicol. Environ. Chem.20201027-835638510.1080/02772248.2020.1798448
    [Google Scholar]
  45. FangQ. ChenC. YangZ. ChenX. ChenX. LiuT. Synthetization and electrochemical performance of pomegranate-like ZnMn2O4 porous microspheres.J. Alloys Compd.202082615408410.1016/j.jallcom.2020.154084
    [Google Scholar]
  46. PeiL.Z. LinF.F. QiuF.L. WangW.L. ZhangY. FanC.G. Formation of Ba bismuthate nanobelts and sensitive electrochemical determination of tartaric acid.Mater. Res. Express20174707504710.1088/2053‑1591/aa7e04
    [Google Scholar]
  47. PeiL.Z. WeiT. LinN. CaiZ.Y. FanC.G. YangZ. Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of L-cysteine.J. Electrochem. Soc.20161632H1H810.1149/2.0041602jes
    [Google Scholar]
  48. PeiL.Z. WangS. JiangY.X. XieY.K. LiY. GuoY.H. Single crystalline Sr germanate nanowires and their photocatalytic performance for the degradation of methyl blue.CrystEngComm201315387815782310.1039/c3ce40989a
    [Google Scholar]
  49. ReddyD.A. ParkH. MaR. KumarD.P. LimM. KimT.K. Heterostructured WS2-MoS2 ultrathin nanosheets integrated on CdS nanorods to promote charge separation and migration and improve solar-driven photocatalytic hydrogen evolution.ChemSusChem20171071563157010.1002/cssc.201601799 28121391
    [Google Scholar]
  50. GanX. ZhengR. LiuT. N-doped mesoporous In2O3 for photocatalytic oxygen evolution from the In-based metal-organic frameworks.Chemistry201723307264727110.1002/chem.201605576 28233355
    [Google Scholar]
  51. LiuZ.S. LiuZ.L. LiuJ.L. ZhangJ.W. ZhouT.F. JiX. Enhanced photocatalytic performance of Er-doped Bi 24 O 31 Br 10: Facile synthesis and photocatalytic mechanism.Mater. Res. Bull.20167625626310.1016/j.materresbull.2015.12.033
    [Google Scholar]
  52. OppongS.O.B. OpokuF. AnkuW.W. GovenderP.P. Insights into the complementary behaviour of Gd doping in GO/Gd/ZnO composites as an efficient candidate towards photocatalytic degradation of indigo carmine dye.J. Mater. Sci.202156148511852710.1007/s10853‑021‑05846‑w
    [Google Scholar]
  53. ZhouT. HuJ. LiJ. Er3+ doped bismuth molybdate nanosheets with exposed 010 facets and enhanced photocatalytic performance.Appl. Catal. B201111022123010.1016/j.apcatb.2011.09.004
    [Google Scholar]
  54. HouJ. YangC. WangZ. ZhouW. JiaoS. ZhuH. In situ synthesis of α–β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance.Appl. Catal. B2013142-14350451110.1016/j.apcatb.2013.05.050
    [Google Scholar]
  55. GuanY. WuJ. LiuQ. Fabrication of BiOI/MoS2 heterojunction photocatalyst with different treatment methods for enhancing photocatalytic performance under visible-light.Mater. Res. Bull.201912011057910.1016/j.materresbull.2019.110579
    [Google Scholar]
/content/journals/cms/10.2174/2666145416666230302114712
Loading
/content/journals/cms/10.2174/2666145416666230302114712
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test