Skip to content
2000
Volume 17, Issue 1
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Background: In this study, the effect of mechanical and physical properties of the metal and temperature is highlighted. The purpose of this study is to analyze the effect of these stresses on multi-materials. This work aimed to conduct a three-dimensional numerical study by the finite element method on the levels and distributions of the stresses in the Al2O3/NI/HAYNES multi-materials. These stresses of thermal and mechanical origin are generally detrimental to the service life of multi-material. Methods: The use of numerical resolution by finite element method is the most suitable for complex mechanical problems. It allows a more in-depth analysis of all points of the structure. In this study, a fundamental tool was constructed to resolve the mechanical behavior of materials subjected to complex solicitations. Therefore, the ABAQUS calculation code version 6.14 was used to analyze the residual stresses. Results: By interpreting the results in terms of stress variation, we identified the areas at risk; in particular, the nature of a joint effect plays a decisive role in the assembly of the right material in its mechanical resistance. This nature is defined in terms of stiffness (Young's modulus) and differential expansion (coefficient of thermal expansion). Conclusion: The presence of strong residual stresses can constitute a risk of damage to several materials. The difference between the coefficients of thermal expansion of the two materials (metal and ceramic) linked together induces, in these two constituents, normal internal stresses. This difference determines the level and distribution of these constraints. Moreover, the sign of this difference determines the state of the normal stresses.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145416666230216142345
2024-03-01
2025-01-15
Loading full text...

Full text loading...

/content/journals/cms/10.2174/2666145416666230216142345
Loading

  • Article Type:
    Research Article
Keyword(s): ceramic; finite element method; mechanical; Metal; multi-materials; stresses; thermal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test