Full text loading...
-
Structural and Electrical Properties of CuS Nanoparticles and PPy/CuS Hybrid Nanocomposite Chemically Synthesized by Facile Approach
- Source: Current Materials Science, Volume 16, Issue 1, Mar 2023, p. 72 - 84
-
- 01 Mar 2023
Abstract
Objective: In the present study, cupric sulfide (CuS) nanoparticles (NPs) were synthesized in deionized (DIW) water using an eco-benign, simple, and cost-effective chemical route that requires no surfactant or template. Methods: Polypyrrole/cupric sulfide (PPy/CuS) hybrid nanocomposite (HNC) was synthesized using an in-situ chemical oxidative polymerization method in the presence of obtained CuS NPs. The X-ray diffraction (XRD) analysis confirmed the hexagonal structure of CuS, whose crystalline nature was preserved in the HNC. For CuS NPs and PPy/CuS HNC, elastic properties, such as intrinsic microstrain, internal stress, dislocation density, strain energy density, stacking faults, and intercrystalline separation, were used to analyze the crystal imperfections and distortions. Results: Field emission scanning electron spectroscopy (FESEM) micrographs revealed that CuS NPs and PPy/CuS HNC have particulate and globular morphology, respectively. The values of the average intrinsic strain, dislocation density, internal stresses, and strain energy density of PPy/CuS HNC were estimated to be ∼2 × 10-3, ∼8.8166 × 1015 m-2, 164.263 MPa, and 127.278 KJ m−3, respectively, which were observed to be higher than those of CuS NPs. Conclusion: The DC electrical conductivity of as-synthesized samples was measured at room temperature in pelletized form, using the standard four-probe method, and conductivity values were estimated to be ∼480 Scm-1 and ∼4 Scm-1 for CuS NPs and PPy/CuS HNC, respectively.