Skip to content
2000
image of Effect of BNNs/GNNs/IFR Synergistic Flame Retardant on Thermal Degradation Kinetics of Epoxy Resin

Abstract

Background

The thermal stability of epoxy resin (EP) is poor, and adding intumescent flame retardants (IFR) and synergistic flame retardants to EP is an effective method to improve its thermal stability. Hexagonal boron nitride (h-BN) has high-temperature stability, and flake graphite (FGP) has a high specific surface area, making it an ideal synergistic flame retardant. However, the direct use of untreated h-BN and FGP can lead to agglomeration, so it is necessary to peel off the layers of h-BN and FGP.

Methodology

This article simultaneously conducts microwave exfoliation on h-BN and FGP, observes the morphological changes before and after h-BN and FGP exfoliation through scanning electron microscopy (SEM), and combines the exfoliated nano hexagonal boron nitride (BNNs) and graphene nanosheets (GNNs) with EP and IFR to obtain composite materials. The thermal degradation process of EP and its composite materials is studied using a thermogravimetric analyzer. The thermal degradation kinetics activation energy of EP and its composite materials was calculated using the Starink method and Broido method, and the mechanism function of the reaction was determined by the Phadnis method.

Results

The BNNs/GNNs after microwave peeling have a sheet-like shape. EP and its composite materials exhibit similar degradation processes, with activation energies obtained by the Starink method of 165.06 kJ/mol, 162.75 kJ/mol, and 152.00 kJ/mol, 151.80 kJ/mol, respectively; The activation energies obtained by the Broido method are 95.50 kJ/mol, 58.40 kJ/mol, and 56.68 kJ/mol, 56.41 kJ/mol; When G (α)=α 2, the Phadnis method obtains a linear relationship between G '(α) and 1/T.

Conclusion

The microwave method has a good peeling effect on h-BN and FGP. Starink and Broido's methods showed that the addition of IFR reduced the activation energy of EP composite materials, and the addition of BNNs/GNNs further reduced the activation energy. Phadnis's method determined that the thermal degradation mechanism functions of EP and its composite materials are first-order diffusion reactions.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454365841250226064548
2025-03-06
2025-04-22
Loading full text...

Full text loading...

References

  1. Miyano Y. Nakada M. Morisawa Y. Matsuno J. Kageta S. Prediction of creep failure life for unidirectional CFRP with heat-resistant epoxy resin as matrix exposed to high temperature under tension load. J. Compos. Mater. 2024 58 8 1051 1062 10.1177/00219983241234578
    [Google Scholar]
  2. Srinivasan R. Kamaraj M. Mechanical and thermo-mechanical properties of glass fiber reinforced epoxy composites with boron carbide nanofiller. Mech. Eng. C-.J. Mec. 2024 238 8 3116 3126
    [Google Scholar]
  3. Rajendran S. Manoharan T. Velayutham R. Mechanical and free vibrational analysis of silane functionalized aluminum stacked glass fiber/epoxy laminates. J. Adhes. 2024 100 6 446 467 10.1080/00218464.2023.2228713
    [Google Scholar]
  4. Zhang P. Gan S. Chen L. Chen H. Jia C. Fu Y. Xiong Y. Effect of MMT on flame retardancy of PLA/IFR/LDH composites. J. Renew. Mater. 2022 10 11 2937 2947 10.32604/jrm.2022.019590
    [Google Scholar]
  5. Taghi-Akbari L. Naimi-Jamal M.R. Ahmadi S. Bakhtiyari S. Enhanced smoke/toxicity suppression of intumescent flame retardant thermoplastic polyurethane composites with the addition of graphene. Iran. Polym. J. 2024 33 8 1129 1142 10.1007/s13726‑024‑01303‑y
    [Google Scholar]
  6. Donmez S. Tuzenli Z. Bayram G. Savaskan Yilmaz S. Flame retardancy and mechanical properties of polypropylene composites containing intumescent flame retardants, preceramic polymers, and other additives. SPE Polym. 2024 5 3 318 330 10.1002/pls2.10126
    [Google Scholar]
  7. Demirhan Y. Yurtseven R. Usta N. The effect of boric acid on flame retardancy of intumescent flame retardant polypropylene composites including nanoclay. J. Thermoplas. Compos. Mater. 2023 36 3 1187 1214 10.1177/08927057211052327
    [Google Scholar]
  8. Kim N.K. Bhattacharyya D. Fire reaction and post-fire impact properties of flax fibre reinforced composites containing intumescent flame retardants. J. Reinf. Plast. Compos. 2024 43 1-2 111 126 10.1177/07316844231158112
    [Google Scholar]
  9. Muhammed Raji A. Hambali H.U. Khan Z.I. Binti Mohamad Z. Azman H. Ogabi R. Emerging trends in flame retardancy of rigid polyurethane foam and its composites: A review. J. Cell. Plast. 2023 59 1 65 122 10.1177/0021955X221144564
    [Google Scholar]
  10. Dalal A. Bagotia N. Sharma K.K. Chatterjee K.N. Bansal P. Kumar S. One pot facile synthesis of self-extinguishable metal based flame retardant for cotton fabric. J. Nat. Fibers 2022 19 15 10475 10489 10.1080/15440478.2021.1994090
    [Google Scholar]
  11. Tom C. Tanuku V.M.S.G. Paineau E. Pujala R.K. Binary mixtures of colloidal cellulose nanocrystals and laponite for preparation of functional nanocomposites. ACS Appl. Nano Mater. 2021 4 8 8586 8599 10.1021/acsanm.1c02210
    [Google Scholar]
  12. Li X. Feng Y. Chen C. Ye Y. Zeng H. Qu H. Liu J. Zhou X. Long S. Xie X. Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets. J. Mater. Chem. A Mater. Energy Sustain. 2018 6 41 20500 20512 10.1039/C8TA08008A
    [Google Scholar]
  13. Liu S. Yan H. Fang Z. Wang H. Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Compos. Sci. Technol. 2014 90 30 40 47 10.1016/j.compscitech.2013.10.012
    [Google Scholar]
  14. Fischer A.J. Zhong Y. Zhang L. Wu W. Drummer D. Heat propagation in thermally conductive polymers of PA6 and hexagonal boron nitride. Fire Mater. 2019 43 8 928 935 10.1002/fam.2753
    [Google Scholar]
  15. Zaghloul M.M.Y. Zaghloul M.M.Y. Fuseini M. Recent progress in Epoxy Nanocomposites: Corrosion, structural, flame retardancy and applications — A comprehensive review. Polym. Adv. Technol. 2023 34 11 3438 3472 10.1002/pat.6144
    [Google Scholar]
  16. Kumar T.T.A. Ramesh S.K.T. Thermal decomposition kinetics of Prosopis juliflora charcoal briquette using thermogravimetric analysis. Environ. Sci. Pollut. Res. Int. 2022 30 6 16626 16641 10.1007/s11356‑022‑23399‑6 36190626
    [Google Scholar]
  17. Kharadi G.J. Thermal aspects of coordination polymeric Chain assemblies of some transition metal ions with 8-hydroxy quinoline. Int. J. Polym. Mater. 2011 60 9 641 653 10.1080/00914037.2010.551348
    [Google Scholar]
  18. Lu J.D. Hua Y.L. Sun L.S. Combustion characteristics of sewage sludge. Combust. Sci. Technol. 2001 25 03 271 274
    [Google Scholar]
  19. Tejasvi K. Sharma A. Ranga K.V.S. Gurusideswar S. Sundar Singh P. Effect of hollow glass microspheres on transverse properties of carbon fiber reinforced epoxy composites. Polym. Compos. 2024 45 17 15820 15831 10.1002/pc.28872
    [Google Scholar]
  20. Xu S. Wang Z. Wen F. Pyrolysis characteristics of glass fiber/epoxy resin composites. New. Chem. Mater. 2024 52 01 194 197
    [Google Scholar]
  21. Wang X.R. Xin Y. Experimental study on pyrolysis characteristics and kinetics of Pinus koraiensis. Fire Sci. Technol. 2019 38 07 928 932
    [Google Scholar]
  22. Tang D.X. Zhao Y. On the mechanism of dehydration of CrF3·3H2. J. Anhui. Inst. Mech. Electr. Eng. 1999 03 29 32
    [Google Scholar]
  23. Yu S. Sano H. Zheng G. Tanabe S. Microwave-exfoliated graphene oxide for high voltage “water-in-salt”” electrolyte-based supercapacitor. Chem. Lett. 2022 51 3 264 268 10.1246/cl.210657
    [Google Scholar]
  24. Ding Y. Su Y. Huang J. Wang T. Li M.Y. Li W. Flame retardancy behaviors of flexible polyurethane foam based on reactive dihydroxy P-N-containing flame retardants. ACS Omega 2021 6 25 16410 16418 10.1021/acsomega.1c01267 34235312
    [Google Scholar]
  25. Wang Z Zhang XM Wang YC Influence of coal fly ash magnetic spheres on flame retardant properties of epoxy resin polymer. J. safe. Sci. Technol. 2024 20 6 118 125 10.1016/j.mtcomm.2022.105213
    [Google Scholar]
  26. Hou Z.M. Xu Z.Y. Qi Y.Z. Synergistic flame retardant effect of cyclotriphosphazene and DOPS double functional groups on epoxy resin. Polym. Mater. Sci. Eng. 2023 39 4 40 49
    [Google Scholar]
  27. Yan L. Guan J.J. Li Y. Synergistic flame retardancy and smoke suppression of white mud filler in intumescent flame retardant epoxy resins. J Safety Environ 2024 24 05 1832 1839
    [Google Scholar]
  28. Kamila S. Maciej C. Paweł K. Influence of the developed flame retardant system based on renewable raw materials on epoxy resin fire behavior. Mater. Sci. Forum 2020 59 60 37 42
    [Google Scholar]
  29. Huang Y. Zhu M. Meng W. Fu Y. Wang Z. Huang Y. Pei Z. Zhi C. Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: A large-area freestanding flexible substrate for supercapacitors. RSC Advances 2015 5 43 33981 33989 10.1039/C5RA02868J
    [Google Scholar]
  30. Du J. Wu Z.H. Guo J.X. Synergistic intumescent flame retardancy of nano layered graphite /hexagonal boron nitride preparation and flame retardant properties of epoxy composites. China Plast Ind 2021 49 05 91 95
    [Google Scholar]
  31. Taghi-Akbari L. Naimi-Jamal M.R. Ahmadi S. Flammability, smoke production, and mechanical properties of thermoplastic polyurethane composites with an intumescent flame-retardant system and nano-silica. Iran. Polym. J. 2023 32 9 1165 1178 10.1007/s13726‑023‑01188‑3
    [Google Scholar]
  32. Liang MK Qiu J Study on effect of lignin⁃based intumescent flame retardant on flame retardancy and smoke suppression of epoxy resin using cone calorimetry. China Plast 2021 35 09 103 108
    [Google Scholar]
  33. Lu L.G. Zhao J. Su Q. Intumescent flame retardant/nano-CuO synergistic flame-retardant epoxy resin. Polym. Mater. Sci. Eng. 2020 36 10 63 70
    [Google Scholar]
  34. Gavgani J.N. Adelnia H. Gudarzi M.M. Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J. Mater. Sci. 2014 49 1 243 254 10.1007/s10853‑013‑7698‑6
    [Google Scholar]
  35. Wang H.Y. Cheng Z. Lu L.G. Synthesis and performance in epoxy resins of novel cyclotriphosphazene flame retardants. Plast 2019 48 05 57 62
    [Google Scholar]
  36. Wang B. Wang X. Shi Y. Tang G. Tang Q. Song L. Hu Y. Effect of vinyl acetate content and electron beam irradiation on the flame retardancy, mechanical and thermal properties of intumescent flame retardant ethylene-vinyl acetate copolymer. Radiat. Phys. Chem. 2012 81 3 308 315 10.1016/j.radphyschem.2011.10.021
    [Google Scholar]
  37. Ugeheuer A. Bach N. Mir M.T. Coherent acoustic phonons in a coupled hexagonal boron nitride-graphite heterostructure. Struct Dynam-us 2024 11 01 1 10
    [Google Scholar]
/content/journals/cms/10.2174/0126661454365841250226064548
Loading
/content/journals/cms/10.2174/0126661454365841250226064548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test